File size: 18,752 Bytes
eae62a9 b8b7444 eae62a9 b8b7444 eae62a9 b8b7444 eae62a9 b8b7444 eae62a9 b8b7444 eae62a9 b8b7444 eae62a9 6ad08cd eae62a9 6f79981 b8b7444 eae62a9 b8b7444 eae62a9 b8b7444 eae62a9 b8b7444 eae62a9 b8b7444 eae62a9 b8b7444 eae62a9 b8b7444 eae62a9 b8b7444 eae62a9 b8b7444 6ad08cd eae62a9 6ad08cd b8b7444 eae62a9 b8b7444 eae62a9 b8b7444 6ad08cd eae62a9 b8b7444 eae62a9 b8b7444 c7aca6d b8b7444 eae62a9 b8b7444 eae62a9 b8b7444 eae62a9 b8b7444 eae62a9 b8b7444 eae62a9 b8b7444 eae62a9 b8b7444 eae62a9 b8b7444 eae62a9 6f79981 eae62a9 6f79981 6ad08cd eae62a9 6f79981 eae62a9 6f79981 eae62a9 b8b7444 eae62a9 b8b7444 eae62a9 6f79981 eae62a9 b8b7444 eae62a9 b8b7444 eae62a9 b8b7444 eae62a9 b8b7444 eae62a9 b8b7444 eae62a9 b8b7444 eae62a9 b8b7444 eae62a9 b8b7444 eae62a9 b8b7444 eae62a9 b8b7444 eae62a9 b8b7444 eae62a9 b8b7444 eae62a9 b8b7444 eae62a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 |
import os
import tempfile
import numpy as np
import cv2
from pathlib import Path
import logging
from transformers import DepthProImageProcessorFast, DepthProForDepthEstimation
import torch
from PIL import Image
from fastapi import FastAPI, File, UploadFile, Form, HTTPException
from fastapi.responses import JSONResponse, HTMLResponse
from typing import Any, Dict, List, Tuple, Union
import pillow_heif
import json
from depth_pro.utils import load_rgb, extract_exif
# Initialize FastAPI app
app = FastAPI(
title="Depth Pro Distance Estimation",
description="Estimate distance and depth using Apple's Depth Pro model",
version="1.0.0",
docs_url="/docs",
redoc_url="/redoc"
)
# Force CPU usage
device = 'cpu'
def initialize_depth_pipeline():
"""Initialize the Depth Pro pipeline"""
try:
print("Initializing Depth Pro pipeline...")
image_processor = DepthProImageProcessorFast.from_pretrained("apple/DepthPro-hf")
model = DepthProForDepthEstimation.from_pretrained("apple/DepthPro-hf").to(device)
return model, image_processor
except Exception as e:
print(f"Error initializing pipeline: {e}")
print("Falling back to dummy pipeline...")
return None
class DepthEstimator:
def __init__(self, model=None, image_processor=None):
self.device = torch.device('cpu') # Force CPU
print("Initializing Depth Pro estimator...")
self.model = model
self.image_processor = image_processor
print("Depth Pro estimator initialized successfully!")
def estimate_depth(self, image_path):
try:
# Load image
image = Image.open(image_path)
# Resize image for processing
resized_image, new_size = self.resize_image(image_path)
rgb_image = load_rgb(resized_image.name)
f_px = rgb_image[-1]
eval_image = rgb_image[0]
# Perform inference using model
inputs = self.image_processor(eval_image, return_tensors="pt").to(self.device)
with torch.no_grad():
outputs = self.model(**inputs)
post_processed_output = self.image_processor.post_process_depth_estimation(
outputs, target_sizes=[(new_size[1], new_size[0])],
)
result = post_processed_output[0]
field_of_view = result["field_of_view"]
focal_length = result["focal_length"]
depth = result["predicted_depth"]
# Convert to numpy if needed
if isinstance(depth, torch.Tensor):
depth = depth.detach().cpu().numpy()
elif not isinstance(depth, np.ndarray):
depth = np.array(depth)
# Estimate focal length (rough estimation)
print(f_px,focal_length)
return depth, new_size, focal_length
except Exception as e:
print(f"Error in depth estimation: {e}")
return None, None, None
def resize_image(self, image_path, max_size=1536):
with Image.open(image_path) as img:
ratio = max_size / max(img.size)
new_size = (int(img.size[0] * ratio), int(img.size[1] * ratio))
img = img.resize(new_size, Image.Resampling.LANCZOS)
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
img.save(temp_file, format="PNG")
return temp_file, new_size
def find_topmost_pixel(mask):
'''Top Pixel from footpath mask'''
footpath_pixels = np.where(mask > 0)
if len(footpath_pixels[0]) == 0:
return None
min_y = np.min(footpath_pixels[0])
top_pixels_mask = footpath_pixels[0] == min_y
top_x_coords = footpath_pixels[1][top_pixels_mask]
center_idx = len(top_x_coords) // 2
return (min_y, top_x_coords[center_idx])
def find_bottommost_footpath_pixel(mask, topmost_pixel):
"""Find the bottommost pixel perpendicular to the topmost pixel within the mask"""
if topmost_pixel is None:
return None
top_y, top_x = topmost_pixel
# Find all mask pixels in the same x-column as the topmost pixel
mask_y_coords, mask_x_coords = np.where(mask > 0)
column_mask = mask_x_coords == top_x
column_y_coords = mask_y_coords[column_mask]
if len(column_y_coords) == 0:
# If no pixels in the same column, find the bottommost pixel in the entire mask
footpath_pixels = np.where(mask > 0)
if len(footpath_pixels[0]) == 0:
return None
max_y = np.max(footpath_pixels[0])
bottom_pixels_mask = footpath_pixels[0] == max_y
bottom_x_coords = footpath_pixels[1][bottom_pixels_mask]
center_idx = len(bottom_x_coords) // 2
return (max_y, bottom_x_coords[center_idx])
# Find the bottommost pixel in the same x-column
max_y_in_column = np.max(column_y_coords)
return (max_y_in_column, top_x)
def estimate_real_world_distance(depth_map, topmost_pixel, mask):
"""Estimate real-world distance between two pixels using depth information"""
if topmost_pixel is None or depth_map is None:
return None
# Find the bottommost pixel perpendicular to the topmost pixel
bottommost_pixel = find_bottommost_footpath_pixel(mask, topmost_pixel)
if bottommost_pixel is None:
return None
top_y, top_x = topmost_pixel
bottom_y, bottom_x = bottommost_pixel
# Ensure coordinates are within bounds
if (top_y >= depth_map.shape[0] or top_x >= depth_map.shape[1] or
bottom_y >= depth_map.shape[0] or bottom_x >= depth_map.shape[1]):
return None
topmost_depth = depth_map[top_y, top_x]
bottommost_depth = depth_map[bottom_y, bottom_x]
# Check if depth values are valid
if np.isnan(topmost_depth) or np.isnan(bottommost_depth):
print("Invalid depth values (NaN) found")
return None
distance_meters = float(topmost_depth - bottommost_depth)
print(f"Distance calculation:")
print(f" Topmost pixel: ({top_y}, {top_x}) = {topmost_depth:.3f}m")
print(f" Bottommost pixel: ({bottom_y}, {bottom_x}) = {bottommost_depth:.3f}m")
print(f" Distance: {distance_meters:.3f}m")
return distance_meters
# Initialize depth estimator globally
print("Initializing Depth Pro pipeline...")
depth_model, image_processor = initialize_depth_pipeline()
depth_estimator = DepthEstimator(depth_model, image_processor)
@app.get("/health")
async def health_check():
"""Health check endpoint for Docker"""
return {"status": "healthy", "service": "Depth Pro Distance Estimation"}
@app.get("/api")
async def api_info():
"""API information endpoint"""
return {
"message": "Depth Pro Distance Estimation API",
"docs": "/docs",
"health": "/health",
"estimate_endpoint": "/estimate-depth"
}
@app.post("/estimate-depth")
async def estimate_depth_endpoint(file: UploadFile = File(...), mask: UploadFile = File(...)):
"""FastAPI endpoint for depth estimation and distance calculation"""
try:
# Save uploaded file temporarily
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
content = await file.read()
temp_file.write(content)
temp_file_path = temp_file.name
# Save uploaded mask temporarily
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as mtemp_file:
content = await mask.read()
mtemp_file.write(content)
temp_file_path_mask = mtemp_file.name
# Load image for pixel detection
image = cv2.imread(temp_file_path)
mask = cv2.imread(temp_file_path_mask)
if image is None or mask is None:
return JSONResponse(
status_code=400,
content={"error": "Could not load image or mask"}
)
# Estimate depth
depth_map, new_size, focal_length_px = depth_estimator.estimate_depth(temp_file_path)
if depth_map is None:
return JSONResponse(
status_code=500,
content={"error": "Depth estimation failed"}
)
# Resize image and mask to match depth map size
resized_image = cv2.resize(image, new_size)
resized_mask = cv2.resize(mask, new_size)
# Convert mask to grayscale if it's not already
if len(resized_mask.shape) == 3:
resized_mask = cv2.cvtColor(resized_mask, cv2.COLOR_BGR2GRAY)
# Find key pixels from the mask
topmost_pixel = find_topmost_pixel(resized_mask)
# Calculate distance
distance_meters = estimate_real_world_distance(depth_map, topmost_pixel, resized_mask)
# Clean up
os.unlink(temp_file_path)
os.unlink(temp_file_path_mask)
result = {
"depth_map_shape": depth_map.shape,
"focal_length_px": float(focal_length_px) if focal_length_px is not None else None,
"topmost_pixel": [ int(topmost_pixel[0]), int(topmost_pixel[1])] if topmost_pixel else None,
"distance_meters": distance_meters,
"depth_stats": {
"min_depth": float(np.min(depth_map)),
"max_depth": float(np.max(depth_map)),
"mean_depth": float(np.mean(depth_map))
}
}
return JSONResponse(content=result)
except Exception as e:
# Clean up on error
if 'temp_file_path' in locals():
try:
os.unlink(temp_file_path)
except:
pass
if 'temp_file_path_mask' in locals():
try:
os.unlink(temp_file_path_mask)
except:
pass
return JSONResponse(
status_code=500,
content={"error": str(e)}
)
@app.get("/", response_class=HTMLResponse)
async def root():
"""Root endpoint with simple HTML interface"""
html_content = """
<!DOCTYPE html>
<html>
<head>
<title>Depth Pro Distance Estimation</title>
<style>
body {
font-family: Arial, sans-serif;
max-width: 800px;
margin: 0 auto;
padding: 20px;
background-color: #f5f5f5;
}
.container {
background-color: white;
padding: 30px;
border-radius: 10px;
box-shadow: 0 2px 10px rgba(0,0,0,0.1);
}
h1 {
color: #2c3e50;
text-align: center;
margin-bottom: 10px;
}
.subtitle {
text-align: center;
color: #7f8c8d;
margin-bottom: 30px;
}
.upload-section {
border: 2px dashed #3498db;
border-radius: 10px;
padding: 30px;
text-align: center;
margin: 20px 0;
background-color: #ecf0f1;
}
input[type="file"] {
margin: 10px 0;
padding: 10px;
border: 1px solid #bdc3c7;
border-radius: 5px;
}
.file-group {
margin: 20px 0;
}
.file-label {
display: block;
margin-bottom: 8px;
font-weight: bold;
color: #2c3e50;
}
button {
background-color: #3498db;
color: white;
padding: 12px 25px;
border: none;
border-radius: 5px;
cursor: pointer;
font-size: 16px;
}
button:hover {
background-color: #2980b9;
}
.results {
margin-top: 20px;
padding: 20px;
border-radius: 5px;
background-color: #e8f5e8;
display: none;
}
.error {
background-color: #ffeaa7;
border-left: 4px solid #fdcb6e;
padding: 10px;
margin: 10px 0;
}
.endpoint-info {
background-color: #74b9ff;
color: white;
padding: 15px;
border-radius: 5px;
margin: 20px 0;
}
.feature {
margin: 10px 0;
padding: 10px;
border-left: 3px solid #3498db;
background-color: #f8f9fa;
}
</style>
</head>
<body>
<div class="container">
<h1>π Depth Pro Distance Estimation</h1>
<p class="subtitle">Upload an image and a footpath mask to estimate depth and calculate distances using Apple's Depth Pro model</p>
<div class="upload-section">
<h3>Upload Image and Mask</h3>
<form id="uploadForm" enctype="multipart/form-data">
<div style="margin: 20px 0;">
<label for="imageFile" style="display: block; margin-bottom: 5px; font-weight: bold;">πΈ Main Image:</label>
<input type="file" id="imageFile" name="file" accept="image/*" required style="width: 100%;">
</div>
<div style="margin: 20px 0;">
<label for="maskFile" style="display: block; margin-bottom: 5px; font-weight: bold;">π Footpath Mask:</label>
<input type="file" id="maskFile" name="mask" accept="image/*" required style="width: 100%;">
</div>
<button type="submit">Analyze Image with Mask</button>
</form>
<div id="results" class="results">
<h3>Analysis Results:</h3>
<div id="resultsContent"></div>
</div>
</div>
<div class="endpoint-info">
<h3>π API Endpoints</h3>
<p><strong>POST /estimate-depth</strong> - Upload image and footpath mask for depth estimation</p>
<p><strong>GET /docs</strong> - API documentation</p>
<p><strong>GET /health</strong> - Health check</p>
</div>
<div class="feature">
<h3>β¨ Features</h3>
<ul>
<li>π― Monocular depth estimation using Depth Pro</li>
<li>π Footpath mask-based analysis</li>
<li>π Real-world distance calculation between mask boundaries</li>
<li>π₯οΈ CPU-optimized processing</li>
<li>π Fast inference suitable for real-time use</li>
</ul>
</div>
</div>
<script>
document.getElementById('uploadForm').addEventListener('submit', async function(e) {
e.preventDefault();
const fileInput = document.getElementById('imageFile');
const maskInput = document.getElementById('maskFile');
const resultsDiv = document.getElementById('results');
const resultsContent = document.getElementById('resultsContent');
if (!fileInput.files[0]) {
alert('Please select a main image file');
return;
}
if (!maskInput.files[0]) {
alert('Please select a footpath mask file');
return;
}
const formData = new FormData();
formData.append('file', fileInput.files[0]);
formData.append('mask', maskInput.files[0]);
try {
resultsContent.innerHTML = '<p>π Processing image and mask...</p>';
resultsDiv.style.display = 'block';
const response = await fetch('/estimate-depth', {
method: 'POST',
body: formData
});
if (response.ok) {
const result = await response.json();
let html = '<h4>π Results:</h4>';
html += `<p><strong>π Distance:</strong> ${result.distance_meters ? result.distance_meters.toFixed(3) + ' meters' : 'N/A'}</p>`;
html += `<p><strong>π― Focal Length:</strong> ${result.focal_length_px ? result.focal_length_px.toFixed(2) + ' pixels' : 'N/A'}</p>`;
html += `<p><strong>π Depth Map Shape:</strong> ${result.depth_map_shape ? result.depth_map_shape.join(' x ') : 'N/A'}</p>`;
html += `<p><strong>π Top Mask Pixel:</strong> ${result.topmost_pixel ? `(${result.topmost_pixel[0]}, ${result.topmost_pixel[1]})` : 'N/A'}</p>`;
if (result.depth_stats) {
html += '<h4>π Depth Statistics:</h4>';
html += `<p><strong>Min Depth:</strong> ${result.depth_stats.min_depth.toFixed(3)}m</p>`;
html += `<p><strong>Max Depth:</strong> ${result.depth_stats.max_depth.toFixed(3)}m</p>`;
html += `<p><strong>Mean Depth:</strong> ${result.depth_stats.mean_depth.toFixed(3)}m</p>`;
}
resultsContent.innerHTML = html;
} else {
const error = await response.json();
resultsContent.innerHTML = `<div class="error">β Error: ${error.error || 'Processing failed'}</div>`;
}
} catch (error) {
resultsContent.innerHTML = `<div class="error">β Network error: ${error.message}</div>`;
}
});
</script>
</body>
</html>
"""
return HTMLResponse(content=html_content)
# FastAPI app is ready to run
if __name__ == "__main__":
import uvicorn
uvicorn.run(
app,
host="0.0.0.0",
port=7860,
log_level="info",
access_log=True
)
|