Spaces:
Running
on
Zero
Running
on
Zero
jedick
commited on
Commit
·
142bd00
1
Parent(s):
f027363
Don't import tqdm for BM25S tokenizer used in retrieval
Browse files- app.py +2 -2
- mods/bm25s_retriever.py +5 -2
- mods/bm25s_tokenization.py +719 -0
app.py
CHANGED
|
@@ -58,10 +58,10 @@ def cleanup_graph(request: gr.Request):
|
|
| 58 |
timestamp = datetime.now().replace(microsecond=0).isoformat()
|
| 59 |
if request.session_hash in graph_instances["local"]:
|
| 60 |
del graph_instances["local"][request.session_hash]
|
| 61 |
-
print(f"{timestamp} -
|
| 62 |
if request.session_hash in graph_instances["remote"]:
|
| 63 |
del graph_instances["remote"][request.session_hash]
|
| 64 |
-
print(f"{timestamp} -
|
| 65 |
|
| 66 |
|
| 67 |
def append_content(chunk_messages, history, thinking_about):
|
|
|
|
| 58 |
timestamp = datetime.now().replace(microsecond=0).isoformat()
|
| 59 |
if request.session_hash in graph_instances["local"]:
|
| 60 |
del graph_instances["local"][request.session_hash]
|
| 61 |
+
print(f"{timestamp} - Delete local graph for session {request.session_hash}")
|
| 62 |
if request.session_hash in graph_instances["remote"]:
|
| 63 |
del graph_instances["remote"][request.session_hash]
|
| 64 |
+
print(f"{timestamp} - Delete remote graph for session {request.session_hash}")
|
| 65 |
|
| 66 |
|
| 67 |
def append_content(chunk_messages, history, thinking_about):
|
mods/bm25s_retriever.py
CHANGED
|
@@ -155,13 +155,16 @@ class BM25SRetriever(BaseRetriever):
|
|
| 155 |
*,
|
| 156 |
run_manager: CallbackManagerForRetrieverRun,
|
| 157 |
) -> List[Document]:
|
| 158 |
-
from
|
| 159 |
|
| 160 |
processed_query = bm25s_tokenize(query, return_ids=False)
|
| 161 |
if self.activate_numba:
|
| 162 |
self.vectorizer.activate_numba_scorer()
|
| 163 |
return_docs = self.vectorizer.retrieve(
|
| 164 |
-
processed_query,
|
|
|
|
|
|
|
|
|
|
| 165 |
)
|
| 166 |
return [self.docs[i] for i in return_docs.documents[0]]
|
| 167 |
else:
|
|
|
|
| 155 |
*,
|
| 156 |
run_manager: CallbackManagerForRetrieverRun,
|
| 157 |
) -> List[Document]:
|
| 158 |
+
from mods.bm25s_tokenization import tokenize as bm25s_tokenize
|
| 159 |
|
| 160 |
processed_query = bm25s_tokenize(query, return_ids=False)
|
| 161 |
if self.activate_numba:
|
| 162 |
self.vectorizer.activate_numba_scorer()
|
| 163 |
return_docs = self.vectorizer.retrieve(
|
| 164 |
+
processed_query,
|
| 165 |
+
k=self.k,
|
| 166 |
+
backend_selection="numba",
|
| 167 |
+
show_progress=False,
|
| 168 |
)
|
| 169 |
return [self.docs[i] for i in return_docs.documents[0]]
|
| 170 |
else:
|
mods/bm25s_tokenization.py
ADDED
|
@@ -0,0 +1,719 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from ast import Tuple
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
import re
|
| 4 |
+
from typing import Any, Dict, List, Union, Callable, NamedTuple
|
| 5 |
+
import typing
|
| 6 |
+
|
| 7 |
+
from bm25s.utils import json_functions
|
| 8 |
+
|
| 9 |
+
try:
|
| 10 |
+
# To hide progress bars, don't import tqdm
|
| 11 |
+
# from tqdm.auto import tqdm
|
| 12 |
+
raise ImportError("Not importing tqdm")
|
| 13 |
+
except ImportError:
|
| 14 |
+
|
| 15 |
+
def tqdm(iterable, *args, **kwargs):
|
| 16 |
+
return iterable
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
from bm25s.stopwords import (
|
| 20 |
+
STOPWORDS_EN,
|
| 21 |
+
STOPWORDS_EN_PLUS,
|
| 22 |
+
STOPWORDS_GERMAN,
|
| 23 |
+
STOPWORDS_DUTCH,
|
| 24 |
+
STOPWORDS_FRENCH,
|
| 25 |
+
STOPWORDS_SPANISH,
|
| 26 |
+
STOPWORDS_PORTUGUESE,
|
| 27 |
+
STOPWORDS_ITALIAN,
|
| 28 |
+
STOPWORDS_RUSSIAN,
|
| 29 |
+
STOPWORDS_SWEDISH,
|
| 30 |
+
STOPWORDS_NORWEGIAN,
|
| 31 |
+
STOPWORDS_CHINESE,
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class Tokenized(NamedTuple):
|
| 36 |
+
"""
|
| 37 |
+
NamedTuple with two fields: ids and vocab. The ids field is a list of list of token IDs
|
| 38 |
+
for each document. The vocab field is a dictionary mapping tokens to their index in the
|
| 39 |
+
vocabulary.
|
| 40 |
+
"""
|
| 41 |
+
|
| 42 |
+
ids: List[List[int]]
|
| 43 |
+
vocab: Dict[str, int]
|
| 44 |
+
|
| 45 |
+
def __repr__(self):
|
| 46 |
+
"""
|
| 47 |
+
Returns:
|
| 48 |
+
a string representation of the class.
|
| 49 |
+
for example, for a small corpus, it would be something like:
|
| 50 |
+
----
|
| 51 |
+
Tokenized(
|
| 52 |
+
"ids": [
|
| 53 |
+
0: [0, 1, 2, 3]
|
| 54 |
+
],
|
| 55 |
+
"vocab": [
|
| 56 |
+
'': 4
|
| 57 |
+
'cat': 0
|
| 58 |
+
'feline': 1
|
| 59 |
+
'likes': 2
|
| 60 |
+
'purr': 3
|
| 61 |
+
],
|
| 62 |
+
)
|
| 63 |
+
----
|
| 64 |
+
|
| 65 |
+
and, for example, for a large corpus, it would be something like:
|
| 66 |
+
----
|
| 67 |
+
Tokenized(
|
| 68 |
+
"ids": [
|
| 69 |
+
0: [0, 1, 2, 3]
|
| 70 |
+
1: [4, 5, 6, 7, 8, 9]
|
| 71 |
+
2: [10, 11, 12, 13, 14]
|
| 72 |
+
3: [15, 16, 17, 18, 19]
|
| 73 |
+
4: [0, 1, 2, 3, 0, 20, 21, 22, 23, 24, ...]
|
| 74 |
+
5: [0, 1, 2, 3]
|
| 75 |
+
6: [4, 5, 6, 7, 8, 9]
|
| 76 |
+
7: [10, 11, 12, 13, 14]
|
| 77 |
+
8: [15, 16, 17, 18, 19]
|
| 78 |
+
9: [0, 1, 2, 3, 0, 20, 21, 22, 23, 24, ...]
|
| 79 |
+
... (total 500000 docs)
|
| 80 |
+
],
|
| 81 |
+
"vocab": [
|
| 82 |
+
'': 29
|
| 83 |
+
'animal': 12
|
| 84 |
+
'beautiful': 11
|
| 85 |
+
'best': 6
|
| 86 |
+
'bird': 10
|
| 87 |
+
'can': 13
|
| 88 |
+
'carefully': 27
|
| 89 |
+
'casually': 28
|
| 90 |
+
'cat': 0
|
| 91 |
+
'creature': 16
|
| 92 |
+
... (total 30 tokens)
|
| 93 |
+
],
|
| 94 |
+
)
|
| 95 |
+
----
|
| 96 |
+
"""
|
| 97 |
+
lines_print_max_num = 10
|
| 98 |
+
single_doc_print_max_len = 10
|
| 99 |
+
lines = ["Tokenized(", ' "ids": [']
|
| 100 |
+
for doc_idx, document in enumerate(self.ids[:lines_print_max_num]):
|
| 101 |
+
preview = document[:single_doc_print_max_len]
|
| 102 |
+
if len(document) > single_doc_print_max_len:
|
| 103 |
+
preview += ["..."]
|
| 104 |
+
lines.append(f" {doc_idx}: [{', '.join([str(x) for x in preview])}]")
|
| 105 |
+
if len(self.ids) > lines_print_max_num:
|
| 106 |
+
lines.append(f" ... (total {len(self.ids)} docs)")
|
| 107 |
+
lines.append(f' ],\n "vocab": [')
|
| 108 |
+
vocab_keys = sorted(list(self.vocab.keys()))
|
| 109 |
+
for vocab_idx, key_ in enumerate(vocab_keys[:lines_print_max_num]):
|
| 110 |
+
val_ = self.vocab[key_]
|
| 111 |
+
lines.append(f" {key_!r}: {val_}")
|
| 112 |
+
if len(list(vocab_keys)) > 10:
|
| 113 |
+
lines.append(f" ... (total {len(vocab_keys)} tokens)")
|
| 114 |
+
lines.append(" ],\n)")
|
| 115 |
+
return "\n".join(lines)
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
class Tokenizer:
|
| 119 |
+
"""
|
| 120 |
+
Tokenizer class for tokenizing a list of strings and converting them to token IDs.
|
| 121 |
+
|
| 122 |
+
Parameters
|
| 123 |
+
----------
|
| 124 |
+
lower : bool, optional
|
| 125 |
+
Whether to convert the text to lowercase before tokenization
|
| 126 |
+
|
| 127 |
+
splitter : Union[str, Callable], optional
|
| 128 |
+
If a string is provided, the tokenizer will interpret it as a regex pattern,
|
| 129 |
+
and use the `re.compile` function to compile the pattern and use the `findall` method
|
| 130 |
+
to split the text. If a callable is provided, the tokenizer will use the callable to
|
| 131 |
+
split the text. The callable should take a string as input and return a list of strings.
|
| 132 |
+
|
| 133 |
+
stopwords : Union[str, List[str]], optional
|
| 134 |
+
The list of stopwords to remove from the text. If "english" or "en" is provided,
|
| 135 |
+
the function will use the default English stopwords. If None or False is provided,
|
| 136 |
+
no stopwords will be removed. If a list of strings is provided, the tokenizer will
|
| 137 |
+
use the list of strings as stopwords.
|
| 138 |
+
|
| 139 |
+
stemmer : Callable, optional
|
| 140 |
+
The stemmer to use for stemming the tokens. It is recommended
|
| 141 |
+
to use the PyStemmer library for stemming, but you can also any callable that
|
| 142 |
+
takes a list of strings and returns a list of strings.
|
| 143 |
+
"""
|
| 144 |
+
|
| 145 |
+
def __init__(
|
| 146 |
+
self,
|
| 147 |
+
lower: bool = True,
|
| 148 |
+
splitter: Union[str, Callable] = r"(?u)\b\w\w+\b",
|
| 149 |
+
stopwords: Union[str, List[str]] = "english",
|
| 150 |
+
stemmer: Callable = None, # type: ignore
|
| 151 |
+
):
|
| 152 |
+
self.lower = lower
|
| 153 |
+
if isinstance(splitter, str):
|
| 154 |
+
splitter = re.compile(splitter).findall
|
| 155 |
+
if not callable(splitter):
|
| 156 |
+
raise ValueError("splitter must be a callable or a regex pattern.")
|
| 157 |
+
|
| 158 |
+
# Exception handling for stemmer when we are using PyStemmer, which has a stemWords method
|
| 159 |
+
if hasattr(stemmer, "stemWord"):
|
| 160 |
+
stemmer = stemmer.stemWord
|
| 161 |
+
if not callable(stemmer) and stemmer is not None:
|
| 162 |
+
raise ValueError("stemmer must be callable or have a `stemWord` method.")
|
| 163 |
+
|
| 164 |
+
self.stopwords = _infer_stopwords(stopwords)
|
| 165 |
+
self.splitter = splitter
|
| 166 |
+
self.stemmer = stemmer
|
| 167 |
+
|
| 168 |
+
self.reset_vocab()
|
| 169 |
+
|
| 170 |
+
def reset_vocab(self):
|
| 171 |
+
"""
|
| 172 |
+
Reset the vocabulary dictionaries to empty dictionaries, allowing you to
|
| 173 |
+
tokenize a new set of texts without reusing the previous vocabulary.
|
| 174 |
+
"""
|
| 175 |
+
self.word_to_stem = {} # word -> stemmed word, e.g. "apple" -> "appl"
|
| 176 |
+
self.stem_to_sid = {} # stem -> stemmed id, e.g. "appl" -> 0
|
| 177 |
+
# word -> {stemmed, unstemmed} id, e.g. "apple" -> 0 (appl) or "apple" -> 2 (apple)
|
| 178 |
+
self.word_to_id = {}
|
| 179 |
+
|
| 180 |
+
def save_vocab(self, save_dir: str, vocab_name: str = "vocab.tokenizer.json"):
|
| 181 |
+
"""
|
| 182 |
+
Save the vocabulary dictionaries to a file. The file is saved in JSON format.
|
| 183 |
+
|
| 184 |
+
Parameters
|
| 185 |
+
----------
|
| 186 |
+
save_dir : str
|
| 187 |
+
The directory where the vocabulary file is saved.
|
| 188 |
+
|
| 189 |
+
vocab_name : str, optional
|
| 190 |
+
The name of the vocabulary file. Default is "vocab.tokenizer.json". Make
|
| 191 |
+
sure to not use the same name as the vocab.index.json file saved by the BM25
|
| 192 |
+
model, as it will overwrite the vocab.index.json file and cause errors.
|
| 193 |
+
"""
|
| 194 |
+
save_dir: Path = Path(save_dir)
|
| 195 |
+
path = save_dir / vocab_name
|
| 196 |
+
|
| 197 |
+
save_dir.mkdir(parents=True, exist_ok=True)
|
| 198 |
+
with open(path, "w", encoding="utf-8") as f:
|
| 199 |
+
d = {
|
| 200 |
+
"word_to_stem": self.word_to_stem,
|
| 201 |
+
"stem_to_sid": self.stem_to_sid,
|
| 202 |
+
"word_to_id": self.word_to_id,
|
| 203 |
+
}
|
| 204 |
+
f.write(json_functions.dumps(d, ensure_ascii=False))
|
| 205 |
+
|
| 206 |
+
def load_vocab(self, save_dir: str, vocab_name: str = "vocab.tokenizer.json"):
|
| 207 |
+
"""
|
| 208 |
+
Load the vocabulary dictionaries from a file. The file should be saved in JSON format.
|
| 209 |
+
|
| 210 |
+
Parameters
|
| 211 |
+
----------
|
| 212 |
+
save_dir : str
|
| 213 |
+
The directory where the vocabulary file is saved.
|
| 214 |
+
|
| 215 |
+
vocab_name : str, optional
|
| 216 |
+
The name of the vocabulary file.
|
| 217 |
+
|
| 218 |
+
Note
|
| 219 |
+
----
|
| 220 |
+
The vocabulary file should be saved in JSON format, with the following keys:
|
| 221 |
+
- word_to_stem: a dictionary mapping words to their stemmed words
|
| 222 |
+
- stem_to_sid: a dictionary mapping stemmed words to their stemmed IDs
|
| 223 |
+
- word_to_id: a dictionary mapping words to their word
|
| 224 |
+
"""
|
| 225 |
+
path = Path(save_dir) / vocab_name
|
| 226 |
+
|
| 227 |
+
with open(path, "r", encoding="utf-8") as f:
|
| 228 |
+
d = json_functions.loads(f.read())
|
| 229 |
+
self.word_to_stem = d["word_to_stem"]
|
| 230 |
+
self.stem_to_sid = d["stem_to_sid"]
|
| 231 |
+
self.word_to_id = d["word_to_id"]
|
| 232 |
+
|
| 233 |
+
def save_stopwords(
|
| 234 |
+
self, save_dir: str, stopwords_name: str = "stopwords.tokenizer.json"
|
| 235 |
+
):
|
| 236 |
+
"""
|
| 237 |
+
Save the stopwords to a file. The file is saved in JSON format.
|
| 238 |
+
|
| 239 |
+
Parameters
|
| 240 |
+
----------
|
| 241 |
+
save_dir : str
|
| 242 |
+
The directory where the stopwords file is saved.
|
| 243 |
+
|
| 244 |
+
stopwords_name : str, optional
|
| 245 |
+
The name of the stopwords file. Default is "stopwords.tokenizer.json".
|
| 246 |
+
"""
|
| 247 |
+
save_dir: Path = Path(save_dir)
|
| 248 |
+
path = save_dir / stopwords_name
|
| 249 |
+
|
| 250 |
+
save_dir.mkdir(parents=True, exist_ok=True)
|
| 251 |
+
with open(path, "w") as f:
|
| 252 |
+
f.write(json_functions.dumps(self.stopwords))
|
| 253 |
+
|
| 254 |
+
def load_stopwords(
|
| 255 |
+
self, save_dir: str, stopwords_name: str = "stopwords.tokenizer.json"
|
| 256 |
+
):
|
| 257 |
+
"""
|
| 258 |
+
Load the stopwords from a file. The file should be saved in JSON format.
|
| 259 |
+
|
| 260 |
+
Parameters
|
| 261 |
+
----------
|
| 262 |
+
save_dir : str
|
| 263 |
+
The directory where the stopwords file is saved.
|
| 264 |
+
|
| 265 |
+
stopwords_name : str, optional
|
| 266 |
+
The name of the stopwords file.
|
| 267 |
+
"""
|
| 268 |
+
path = Path(save_dir) / stopwords_name
|
| 269 |
+
|
| 270 |
+
with open(path, "r") as f:
|
| 271 |
+
self.stopwords = json_functions.loads(f.read())
|
| 272 |
+
|
| 273 |
+
def streaming_tokenize(
|
| 274 |
+
self,
|
| 275 |
+
texts: List[str],
|
| 276 |
+
update_vocab: Union[bool, str] = True,
|
| 277 |
+
allow_empty: bool = True,
|
| 278 |
+
):
|
| 279 |
+
"""
|
| 280 |
+
Tokenize a list of strings and return a generator of token IDs.
|
| 281 |
+
|
| 282 |
+
Parameters
|
| 283 |
+
----------
|
| 284 |
+
texts : List[str]
|
| 285 |
+
A list of strings to tokenize.
|
| 286 |
+
|
| 287 |
+
update_vocab : bool, optional
|
| 288 |
+
Whether to update the vocabulary dictionary with the new tokens. If true,
|
| 289 |
+
the different dictionaries making up the vocabulary will be updated with the
|
| 290 |
+
new tokens. If False, the function will not update the vocabulary. Unless you have
|
| 291 |
+
a stemmer and the stemmed word is in the stem_to_sid dictionary. If "never",
|
| 292 |
+
the function will never update the vocabulary, even if the stemmed word is in
|
| 293 |
+
the stem_to_sid dictionary. Note that update_vocab="if_empty" is not supported
|
| 294 |
+
in this method, only in the `tokenize` method.
|
| 295 |
+
|
| 296 |
+
allow_empty : bool, optional
|
| 297 |
+
Whether to allow the splitter to return an empty string. If False, the splitter
|
| 298 |
+
will return an empty list, which may cause issues if the tokenizer is not expecting
|
| 299 |
+
an empty list. If True, the splitter will return a list with a single empty string.
|
| 300 |
+
"""
|
| 301 |
+
stopwords_set = set(self.stopwords) if self.stopwords is not None else None
|
| 302 |
+
using_stopwords = stopwords_set is not None
|
| 303 |
+
using_stemmer = self.stemmer is not None
|
| 304 |
+
|
| 305 |
+
if allow_empty is True and update_vocab is True and "" not in self.word_to_id:
|
| 306 |
+
idx = max(self.word_to_id.values(), default=-1) + 1
|
| 307 |
+
self.word_to_id[""] = idx
|
| 308 |
+
|
| 309 |
+
if using_stemmer:
|
| 310 |
+
if "" not in self.word_to_stem:
|
| 311 |
+
self.word_to_stem[""] = ""
|
| 312 |
+
if "" not in self.stem_to_sid:
|
| 313 |
+
self.stem_to_sid[""] = idx
|
| 314 |
+
|
| 315 |
+
for text in texts:
|
| 316 |
+
if self.lower:
|
| 317 |
+
text = text.lower()
|
| 318 |
+
|
| 319 |
+
splitted_words = list(self.splitter(text))
|
| 320 |
+
|
| 321 |
+
if allow_empty is True and len(splitted_words) == 0:
|
| 322 |
+
splitted_words = [""]
|
| 323 |
+
|
| 324 |
+
doc_ids = []
|
| 325 |
+
for word in splitted_words:
|
| 326 |
+
if word in self.word_to_id:
|
| 327 |
+
wid = self.word_to_id[word]
|
| 328 |
+
doc_ids.append(wid)
|
| 329 |
+
continue
|
| 330 |
+
|
| 331 |
+
if using_stopwords and word in stopwords_set:
|
| 332 |
+
continue
|
| 333 |
+
|
| 334 |
+
# We are always updating the word_to_stem mapping since even new
|
| 335 |
+
# words that we have never seen before can be stemmed, with the
|
| 336 |
+
# possibility that the stemmed ID is already in the stem_to_sid
|
| 337 |
+
if using_stemmer:
|
| 338 |
+
if word in self.word_to_stem:
|
| 339 |
+
stem = self.word_to_stem[word]
|
| 340 |
+
else:
|
| 341 |
+
stem = self.stemmer(word)
|
| 342 |
+
self.word_to_stem[word] = stem
|
| 343 |
+
|
| 344 |
+
# if the stem is already in the stem_to_sid, we can just use the ID
|
| 345 |
+
# and update the word_to_id dictionary, unless update_vocab is "never"
|
| 346 |
+
# in which case we skip this word
|
| 347 |
+
if update_vocab != "never" and stem in self.stem_to_sid:
|
| 348 |
+
sid = self.stem_to_sid[stem]
|
| 349 |
+
self.word_to_id[word] = sid
|
| 350 |
+
doc_ids.append(sid)
|
| 351 |
+
|
| 352 |
+
elif update_vocab is True:
|
| 353 |
+
sid = len(self.stem_to_sid)
|
| 354 |
+
self.stem_to_sid[stem] = sid
|
| 355 |
+
self.word_to_id[word] = sid
|
| 356 |
+
doc_ids.append(sid)
|
| 357 |
+
else:
|
| 358 |
+
# if we are not using a stemmer, we can just update the word_to_id
|
| 359 |
+
# directly rather than going through the stem_to_sid dictionary
|
| 360 |
+
if update_vocab is True and word not in self.word_to_id:
|
| 361 |
+
wid = len(self.word_to_id)
|
| 362 |
+
self.word_to_id[word] = wid
|
| 363 |
+
doc_ids.append(wid)
|
| 364 |
+
|
| 365 |
+
if len(doc_ids) == 0 and allow_empty is True and "" in self.word_to_id:
|
| 366 |
+
doc_ids = [self.word_to_id[""]]
|
| 367 |
+
|
| 368 |
+
yield doc_ids
|
| 369 |
+
|
| 370 |
+
def tokenize(
|
| 371 |
+
self,
|
| 372 |
+
texts: List[str],
|
| 373 |
+
update_vocab: Union[bool, str] = "if_empty",
|
| 374 |
+
leave_progress: bool = False,
|
| 375 |
+
show_progress: bool = True,
|
| 376 |
+
length: Union[int, None] = None,
|
| 377 |
+
return_as: str = "ids",
|
| 378 |
+
allow_empty: bool = True,
|
| 379 |
+
) -> Union[List[List[int]], List[List[str]], typing.Generator, Tokenized]:
|
| 380 |
+
"""
|
| 381 |
+
Tokenize a list of strings and return the token IDs.
|
| 382 |
+
|
| 383 |
+
Parameters
|
| 384 |
+
----------
|
| 385 |
+
texts : List[str]
|
| 386 |
+
A list of strings to tokenize.
|
| 387 |
+
|
| 388 |
+
update_vocab : bool, optional
|
| 389 |
+
Whether to update the vocabulary dictionary with the new tokens. If true,
|
| 390 |
+
the different dictionaries making up the vocabulary will be updated with the
|
| 391 |
+
new tokens. If False, the vocabulary will not be updated unless you have a stemmer
|
| 392 |
+
and the stemmed word is in the stem_to_sid dictionary. If update_vocab="if_empty",
|
| 393 |
+
the function will only update the vocabulary if it is empty, i.e. when the
|
| 394 |
+
function is called for the first time, or if the vocabulary has been reset with
|
| 395 |
+
the `reset_vocab` method. If update_vocab="never", the "word_to_id" will never
|
| 396 |
+
be updated, even if the stemmed word is in the stem_to_sid dictionary. Only use
|
| 397 |
+
this if you are sure that the stemmed words are already in the stem_to_sid dictionary.
|
| 398 |
+
|
| 399 |
+
leave_progress : bool, optional
|
| 400 |
+
Whether to leave the progress bar after completion. If False, the progress bar
|
| 401 |
+
will disappear after completion. If True, the progress bar will stay on the screen.
|
| 402 |
+
|
| 403 |
+
show_progress : bool, optional
|
| 404 |
+
Whether to show the progress bar for tokenization. If False, the function will
|
| 405 |
+
not show the progress bar. If True, it will use tqdm.auto to show the progress bar.
|
| 406 |
+
|
| 407 |
+
length : int, optional
|
| 408 |
+
The length of the texts. If None, the function will call `len(texts)` to get the length.
|
| 409 |
+
This is mainly used when `texts` is a generator or a stream instead of a list, in which case
|
| 410 |
+
`len(texts)` will raise a TypeError, and you need to provide the length manually.
|
| 411 |
+
|
| 412 |
+
return_as : str, optional
|
| 413 |
+
The type of object to return by this function.
|
| 414 |
+
If "tuple", this returns a Tokenized namedtuple, which contains the token IDs
|
| 415 |
+
and the vocab dictionary.
|
| 416 |
+
If "string", this return a list of lists of strings, each string being a token.
|
| 417 |
+
If "ids", this return a list of lists of integers corresponding to the token IDs,
|
| 418 |
+
or stemmed IDs if a stemmer is used.
|
| 419 |
+
|
| 420 |
+
allow_empty : bool, optional
|
| 421 |
+
Whether to allow the splitter to return an empty string. If False, the splitter
|
| 422 |
+
will return an empty list, which may cause issues if the tokenizer is not expecting
|
| 423 |
+
an empty list. If True, the splitter will return a list with a single empty string.
|
| 424 |
+
|
| 425 |
+
Returns
|
| 426 |
+
-------
|
| 427 |
+
List[List[int]] or Generator[List[int]] or List[List[str]] or Tokenized object
|
| 428 |
+
If `return_as="stream"`, a Generator[List[int]] is returned, each integer being a token ID.
|
| 429 |
+
If `return_as="ids"`, a List[List[int]] is returned, each integer being a token ID.
|
| 430 |
+
If `return_as="string"`, a List[List[str]] is returned, each string being a token.
|
| 431 |
+
If `return_as="tuple"`, a Tokenized namedtuple is returned, with names `ids` and `vocab`.
|
| 432 |
+
"""
|
| 433 |
+
incorrect_return_error = (
|
| 434 |
+
"return_as must be either 'tuple', 'string', 'ids', or 'stream'."
|
| 435 |
+
)
|
| 436 |
+
incorrect_update_vocab_error = (
|
| 437 |
+
"update_vocab must be either True, False, 'if_empty', or 'never'."
|
| 438 |
+
)
|
| 439 |
+
if return_as not in ["tuple", "string", "ids", "stream"]:
|
| 440 |
+
raise ValueError(incorrect_return_error)
|
| 441 |
+
|
| 442 |
+
if update_vocab not in [True, False, "if_empty", "never"]:
|
| 443 |
+
raise ValueError(incorrect_update_vocab_error)
|
| 444 |
+
|
| 445 |
+
if update_vocab == "if_empty":
|
| 446 |
+
update_vocab = len(self.word_to_id) == 0
|
| 447 |
+
|
| 448 |
+
stream_fn = self.streaming_tokenize(
|
| 449 |
+
texts=texts, update_vocab=update_vocab, allow_empty=allow_empty
|
| 450 |
+
)
|
| 451 |
+
|
| 452 |
+
if return_as == "stream":
|
| 453 |
+
return stream_fn
|
| 454 |
+
|
| 455 |
+
if length is None:
|
| 456 |
+
length = len(texts)
|
| 457 |
+
|
| 458 |
+
tqdm_kwargs = dict(
|
| 459 |
+
desc="Tokenize texts",
|
| 460 |
+
leave=leave_progress,
|
| 461 |
+
disable=not show_progress,
|
| 462 |
+
total=length,
|
| 463 |
+
)
|
| 464 |
+
|
| 465 |
+
token_ids = []
|
| 466 |
+
for doc_ids in tqdm(stream_fn, **tqdm_kwargs):
|
| 467 |
+
token_ids.append(doc_ids)
|
| 468 |
+
|
| 469 |
+
if return_as == "ids":
|
| 470 |
+
return token_ids
|
| 471 |
+
elif return_as == "string":
|
| 472 |
+
return self.decode(token_ids)
|
| 473 |
+
elif return_as == "tuple":
|
| 474 |
+
return self.to_tokenized_tuple(token_ids)
|
| 475 |
+
else:
|
| 476 |
+
raise ValueError(incorrect_return_error)
|
| 477 |
+
|
| 478 |
+
def get_vocab_dict(self) -> Dict[str, Any]:
|
| 479 |
+
if self.stemmer is None:
|
| 480 |
+
# if we are not using a stemmer, we return the word_to_id dictionary
|
| 481 |
+
# which maps the words to the word IDs
|
| 482 |
+
return self.word_to_id
|
| 483 |
+
else:
|
| 484 |
+
# if we are using a stemmer, we return the stem_to_sid dictionary,
|
| 485 |
+
# which we will use to map the stemmed words to the stemmed IDs
|
| 486 |
+
return self.stem_to_sid
|
| 487 |
+
|
| 488 |
+
def to_tokenized_tuple(self, docs: List[List[int]]) -> Tokenized:
|
| 489 |
+
"""
|
| 490 |
+
Convert the token IDs to a Tokenized namedtuple, which contains the word IDs, or the stemmed IDs
|
| 491 |
+
if a stemmer is used. The Tokenized namedtuple contains two fields: ids and vocab. The latter
|
| 492 |
+
is a dictionary mapping the token IDs to the tokens, or a dictionary mapping the stemmed IDs to
|
| 493 |
+
the stemmed tokens (if a stemmer is used).
|
| 494 |
+
"""
|
| 495 |
+
return Tokenized(ids=docs, vocab=self.get_vocab_dict())
|
| 496 |
+
|
| 497 |
+
def decode(self, docs: List[List[int]]) -> List[List[str]]:
|
| 498 |
+
"""
|
| 499 |
+
Convert word IDs (or stemmed IDs if a stemmer is used) back to strings using the vocab dictionary,
|
| 500 |
+
which is a dictionary mapping the word IDs to the words or a dictionary mapping the stemmed IDs
|
| 501 |
+
to the stemmed words (if a stemmer is used).
|
| 502 |
+
|
| 503 |
+
Parameters
|
| 504 |
+
----------
|
| 505 |
+
docs : List[List[int]]
|
| 506 |
+
A list of lists of word IDs or stemmed IDs.
|
| 507 |
+
|
| 508 |
+
Returns
|
| 509 |
+
-------
|
| 510 |
+
List[List[str]]
|
| 511 |
+
A list of lists of strings, each string being a word or a stemmed word if a stemmer is used.
|
| 512 |
+
"""
|
| 513 |
+
vocab = self.get_vocab_dict()
|
| 514 |
+
reverse_vocab = {v: k for k, v in vocab.items()}
|
| 515 |
+
return [[reverse_vocab[token_id] for token_id in doc] for doc in docs]
|
| 516 |
+
|
| 517 |
+
|
| 518 |
+
def convert_tokenized_to_string_list(tokenized: Tokenized) -> List[List[str]]:
|
| 519 |
+
"""
|
| 520 |
+
Convert the token IDs back to strings using the vocab dictionary.
|
| 521 |
+
"""
|
| 522 |
+
reverse_vocab = {v: k for k, v in tokenized.vocab.items()}
|
| 523 |
+
|
| 524 |
+
return [
|
| 525 |
+
[reverse_vocab[token_id] for token_id in doc_ids] for doc_ids in tokenized.ids
|
| 526 |
+
]
|
| 527 |
+
|
| 528 |
+
|
| 529 |
+
def _infer_stopwords(stopwords: Union[str, List[str]]) -> Union[List[str], tuple]:
|
| 530 |
+
# Source of stopwords: https://github.com/nltk/nltk/blob/96ee715997e1c8d9148b6d8e1b32f412f31c7ff7/nltk/corpus/__init__.py#L315
|
| 531 |
+
if stopwords in ["english", "en", True]: # True is added to support the default
|
| 532 |
+
return STOPWORDS_EN
|
| 533 |
+
elif stopwords in ["english_plus", "en_plus"]:
|
| 534 |
+
return STOPWORDS_EN_PLUS
|
| 535 |
+
elif stopwords in ["german", "de"]:
|
| 536 |
+
return STOPWORDS_GERMAN
|
| 537 |
+
elif stopwords in ["dutch", "nl"]:
|
| 538 |
+
return STOPWORDS_DUTCH
|
| 539 |
+
elif stopwords in ["french", "fr"]:
|
| 540 |
+
return STOPWORDS_FRENCH
|
| 541 |
+
elif stopwords in ["spanish", "es"]:
|
| 542 |
+
return STOPWORDS_SPANISH
|
| 543 |
+
elif stopwords in ["portuguese", "pt"]:
|
| 544 |
+
return STOPWORDS_PORTUGUESE
|
| 545 |
+
elif stopwords in ["italian", "it"]:
|
| 546 |
+
return STOPWORDS_ITALIAN
|
| 547 |
+
elif stopwords in ["russian", "ru"]:
|
| 548 |
+
return STOPWORDS_RUSSIAN
|
| 549 |
+
elif stopwords in ["swedish", "sv"]:
|
| 550 |
+
return STOPWORDS_SWEDISH
|
| 551 |
+
elif stopwords in ["norwegian", "no"]:
|
| 552 |
+
return STOPWORDS_NORWEGIAN
|
| 553 |
+
elif stopwords in ["chinese", "zh"]:
|
| 554 |
+
return STOPWORDS_CHINESE
|
| 555 |
+
elif stopwords in [None, False]:
|
| 556 |
+
return []
|
| 557 |
+
elif isinstance(stopwords, str):
|
| 558 |
+
raise ValueError(
|
| 559 |
+
f"{stopwords} not recognized. Only English stopwords as default, German, Dutch, French, Spanish, Portuguese, Italian, Russian, Swedish, Norwegian, and Chinese are currently supported. "
|
| 560 |
+
"Please input a list of stopwords"
|
| 561 |
+
)
|
| 562 |
+
else:
|
| 563 |
+
return stopwords
|
| 564 |
+
|
| 565 |
+
|
| 566 |
+
def tokenize(
|
| 567 |
+
texts: Union[str, List[str]],
|
| 568 |
+
lower: bool = True,
|
| 569 |
+
token_pattern: str = r"(?u)\b\w\w+\b",
|
| 570 |
+
stopwords: Union[str, List[str]] = "english",
|
| 571 |
+
stemmer: Callable = None, # type: ignore
|
| 572 |
+
return_ids: bool = True,
|
| 573 |
+
show_progress: bool = True,
|
| 574 |
+
leave: bool = False,
|
| 575 |
+
allow_empty: bool = True,
|
| 576 |
+
) -> Union[List[List[str]], Tokenized]:
|
| 577 |
+
"""
|
| 578 |
+
Tokenize a list using the same method as the scikit-learn CountVectorizer,
|
| 579 |
+
and optionally apply a stemmer to the tokens or stopwords removal.
|
| 580 |
+
|
| 581 |
+
If you provide stemmer, it must have a `stemWords` method, or be callable
|
| 582 |
+
that takes a list of strings and returns a list of strings. If your stemmer
|
| 583 |
+
can only be called on a single word, you can use a lambda function to wrap it,
|
| 584 |
+
e.g. `lambda lst: list(map(stemmer.stem, lst))`.
|
| 585 |
+
|
| 586 |
+
If return_ids is True, the function will return a namedtuple with: (1) the tokenized
|
| 587 |
+
IDs and (2) the token_to_index dictionary. You can access the tokenized IDs using
|
| 588 |
+
the `ids` attribute and the token_to_index dictionary using the `vocab` attribute,
|
| 589 |
+
You can also destructure the namedtuple to get the ids and vocab_dict variables,
|
| 590 |
+
e.g. `token_ids, vocab = tokenize(...)`.
|
| 591 |
+
|
| 592 |
+
Parameters
|
| 593 |
+
----------
|
| 594 |
+
texts : Union[str, List[str]]
|
| 595 |
+
A list of strings to tokenize. If a single string is provided, it will be
|
| 596 |
+
converted to a list with a single element.
|
| 597 |
+
|
| 598 |
+
lower : bool, optional
|
| 599 |
+
Whether to convert the text to lowercase before tokenization
|
| 600 |
+
|
| 601 |
+
token_pattern : str, optional
|
| 602 |
+
The regex pattern to use for tokenization, by default, r"(?u)\\b\\w\\w+\\b"
|
| 603 |
+
|
| 604 |
+
stopwords : Union[str, List[str]], optional
|
| 605 |
+
The list of stopwords to remove from the text. If "english" or "en" is provided,
|
| 606 |
+
the function will use the default English stopwords
|
| 607 |
+
|
| 608 |
+
stemmer : Callable, optional
|
| 609 |
+
The stemmer to use for stemming the tokens. It is recommended
|
| 610 |
+
to use the PyStemmer library for stemming, but you can also any callable that
|
| 611 |
+
takes a list of strings and returns a list of strings.
|
| 612 |
+
|
| 613 |
+
return_ids : bool, optional
|
| 614 |
+
Whether to return the tokenized IDs and the vocab dictionary. If False, the
|
| 615 |
+
function will return the tokenized strings. If True, the function will return
|
| 616 |
+
a namedtuple with the tokenized IDs and the vocab dictionary.
|
| 617 |
+
|
| 618 |
+
show_progress : bool, optional
|
| 619 |
+
Whether to show the progress bar for tokenization. If False, the function will
|
| 620 |
+
not show the progress bar. If True, it will use tqdm.auto to show the progress bar.
|
| 621 |
+
|
| 622 |
+
leave : bool, optional
|
| 623 |
+
Whether to leave the progress bar after completion. If False, the progress bar
|
| 624 |
+
will disappear after completion. If True, the progress bar will stay on the screen.
|
| 625 |
+
|
| 626 |
+
allow_empty : bool, optional
|
| 627 |
+
Whether to allow the splitter to return an empty string. If False, the splitter
|
| 628 |
+
will return an empty list, which may cause issues if the tokenizer is not expecting
|
| 629 |
+
an empty list. If True, the splitter will return a list with a single empty string.
|
| 630 |
+
Note
|
| 631 |
+
-----
|
| 632 |
+
You may pass a single string or a list of strings. If you pass a single string,
|
| 633 |
+
this function will convert it to a list of strings with a single element.
|
| 634 |
+
"""
|
| 635 |
+
if isinstance(texts, str):
|
| 636 |
+
texts = [texts]
|
| 637 |
+
|
| 638 |
+
split_fn = re.compile(token_pattern).findall
|
| 639 |
+
stopwords = _infer_stopwords(stopwords)
|
| 640 |
+
|
| 641 |
+
# Step 1: Split the strings using the regex pattern
|
| 642 |
+
corpus_ids = []
|
| 643 |
+
token_to_index = {}
|
| 644 |
+
|
| 645 |
+
for text in tqdm(
|
| 646 |
+
texts, desc="Split strings", leave=leave, disable=not show_progress
|
| 647 |
+
):
|
| 648 |
+
stopwords_set = set(stopwords)
|
| 649 |
+
if lower:
|
| 650 |
+
text = text.lower()
|
| 651 |
+
|
| 652 |
+
splitted = split_fn(text)
|
| 653 |
+
|
| 654 |
+
if allow_empty is False and len(splitted) == 0:
|
| 655 |
+
splitted = [""]
|
| 656 |
+
|
| 657 |
+
doc_ids = []
|
| 658 |
+
|
| 659 |
+
for token in splitted:
|
| 660 |
+
if token in stopwords_set:
|
| 661 |
+
continue
|
| 662 |
+
|
| 663 |
+
if token not in token_to_index:
|
| 664 |
+
token_to_index[token] = len(token_to_index)
|
| 665 |
+
|
| 666 |
+
token_id = token_to_index[token]
|
| 667 |
+
doc_ids.append(token_id)
|
| 668 |
+
|
| 669 |
+
corpus_ids.append(doc_ids)
|
| 670 |
+
|
| 671 |
+
# Create a list of unique tokens that we will use to create the vocabulary
|
| 672 |
+
unique_tokens = list(token_to_index.keys())
|
| 673 |
+
|
| 674 |
+
# Step 2: Stem the tokens if a stemmer is provided
|
| 675 |
+
if stemmer is not None:
|
| 676 |
+
if hasattr(stemmer, "stemWords"):
|
| 677 |
+
stemmer_fn = stemmer.stemWords
|
| 678 |
+
elif callable(stemmer):
|
| 679 |
+
stemmer_fn = stemmer
|
| 680 |
+
else:
|
| 681 |
+
error_msg = "Stemmer must have a `stemWord` method, or be callable. For example, you can use the PyStemmer library."
|
| 682 |
+
raise ValueError(error_msg)
|
| 683 |
+
|
| 684 |
+
# Now, we use the stemmer on the token_to_index dictionary to get the stemmed tokens
|
| 685 |
+
tokens_stemmed = stemmer_fn(unique_tokens)
|
| 686 |
+
vocab = set(tokens_stemmed)
|
| 687 |
+
vocab_dict = {token: i for i, token in enumerate(vocab)}
|
| 688 |
+
stem_id_to_stem = {v: k for k, v in vocab_dict.items()}
|
| 689 |
+
# We create a dictionary mapping the stemmed tokens to their index
|
| 690 |
+
doc_id_to_stem_id = {
|
| 691 |
+
token_to_index[token]: vocab_dict[stem]
|
| 692 |
+
for token, stem in zip(unique_tokens, tokens_stemmed)
|
| 693 |
+
}
|
| 694 |
+
|
| 695 |
+
# Now, we simply need to replace the tokens in the corpus with the stemmed tokens
|
| 696 |
+
for i, doc_ids in enumerate(
|
| 697 |
+
tqdm(corpus_ids, desc="Stem Tokens", leave=leave, disable=not show_progress)
|
| 698 |
+
):
|
| 699 |
+
corpus_ids[i] = [doc_id_to_stem_id[doc_id] for doc_id in doc_ids]
|
| 700 |
+
else:
|
| 701 |
+
vocab_dict = token_to_index
|
| 702 |
+
|
| 703 |
+
# Step 3: Return the tokenized IDs and the vocab dictionary or the tokenized strings
|
| 704 |
+
if return_ids:
|
| 705 |
+
return Tokenized(ids=corpus_ids, vocab=vocab_dict)
|
| 706 |
+
else:
|
| 707 |
+
# We need a reverse dictionary to convert the token IDs back to tokens
|
| 708 |
+
reverse_dict = stem_id_to_stem if stemmer is not None else unique_tokens
|
| 709 |
+
# We convert the token IDs back to tokens in-place
|
| 710 |
+
for i, token_ids in enumerate(
|
| 711 |
+
tqdm(
|
| 712 |
+
corpus_ids,
|
| 713 |
+
desc="Reconstructing token strings",
|
| 714 |
+
leave=leave,
|
| 715 |
+
disable=not show_progress,
|
| 716 |
+
)
|
| 717 |
+
):
|
| 718 |
+
corpus_ids[i] = [reverse_dict[token_id] for token_id in token_ids]
|
| 719 |
+
return corpus_ids
|