jeevitha-app's picture
Update app.py
8ee79a3 verified
import gradio as gr
import pickle
import string
import nltk
from nltk.corpus import stopwords
from nltk.stem.porter import PorterStemmer
nltk.download('stopwords')
ps = PorterStemmer()
stop_words = set(stopwords.words('english'))
# Load model and vectorizer
model = pickle.load(open("model.pkl", "rb"))
vectorizer = pickle.load(open("vectorizer.pkl", "rb"))
# Text cleaning function
def clean_text(text):
text = text.lower()
text = ''.join([char for char in text if char not in string.punctuation])
tokens = text.split()
filtered = [ps.stem(word) for word in tokens if word not in stop_words]
return " ".join(filtered)
# Prediction function
def predict_news(news):
cleaned = clean_text(news)
vectorized = vectorizer.transform([cleaned])
prediction = model.predict(vectorized)[0]
return "πŸ”΄ Fake News" if prediction == 0 else "🟒 Real News"
# Gradio UI
interface = gr.Interface(
fn=predict_news,
inputs=gr.Textbox(lines=7, placeholder="Enter news text here..."),
outputs=gr.Textbox(label="Prediction"),
title="πŸ“° Fake News Detector",
description="Enter a news article and detect if it's real or fake using NLP and ML."
)
if __name__ == "__main__":
interface.launch()