Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Step 1: Install and import
|
| 2 |
+
!pip install gradio --quiet
|
| 3 |
+
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import numpy as np
|
| 6 |
+
import string
|
| 7 |
+
import re
|
| 8 |
+
import gradio as gr
|
| 9 |
+
|
| 10 |
+
import matplotlib.pyplot as plt
|
| 11 |
+
import seaborn as sns
|
| 12 |
+
|
| 13 |
+
from nltk.stem import PorterStemmer
|
| 14 |
+
from nltk.corpus import stopwords
|
| 15 |
+
import nltk
|
| 16 |
+
nltk.download('stopwords')
|
| 17 |
+
|
| 18 |
+
from sklearn.model_selection import train_test_split
|
| 19 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 20 |
+
|
| 21 |
+
from sklearn.linear_model import LogisticRegression
|
| 22 |
+
from sklearn.ensemble import RandomForestClassifier
|
| 23 |
+
from sklearn.svm import LinearSVC
|
| 24 |
+
|
| 25 |
+
from sklearn.metrics import accuracy_score, confusion_matrix
|
| 26 |
+
|
| 27 |
+
# Step 2: Load data
|
| 28 |
+
true = pd.read_csv('True.csv', on_bad_lines='skip')
|
| 29 |
+
fake = pd.read_csv('Fake.csv', on_bad_lines='skip')
|
| 30 |
+
|
| 31 |
+
true['label'] = 1 # real
|
| 32 |
+
fake['label'] = 0 # fake
|
| 33 |
+
|
| 34 |
+
df = pd.concat([true, fake]).sample(frac=1).reset_index(drop=True)
|
| 35 |
+
df = df[['title', 'text', 'label']]
|
| 36 |
+
|
| 37 |
+
# Combine title and text
|
| 38 |
+
df['content'] = df['title'] + " " + df['text']
|
| 39 |
+
|
| 40 |
+
# Step 3: NLP Cleaning
|
| 41 |
+
stop_words = set(stopwords.words('english'))
|
| 42 |
+
stemmer = PorterStemmer()
|
| 43 |
+
|
| 44 |
+
def clean_text(text):
|
| 45 |
+
text = text.lower()
|
| 46 |
+
text = re.sub(r'\[.*?\]', '', text) # remove brackets
|
| 47 |
+
text = re.sub(r'https?://\S+|www\.\S+', '', text) # remove links
|
| 48 |
+
text = re.sub(r'<.*?>+', '', text) # remove html tags
|
| 49 |
+
text = re.sub(r'[%s]' % re.escape(string.punctuation), '', text) # remove punctuation
|
| 50 |
+
text = re.sub(r'\n', '', text) # remove newlines
|
| 51 |
+
text = re.sub(r'\w*\d\w*', '', text) # remove words with digits
|
| 52 |
+
words = text.split()
|
| 53 |
+
words = [stemmer.stem(word) for word in words if word not in stop_words]
|
| 54 |
+
return ' '.join(words)
|
| 55 |
+
|
| 56 |
+
df['cleaned'] = df['content'].apply(clean_text)
|
| 57 |
+
|
| 58 |
+
# Step 4: Train-Test Split
|
| 59 |
+
X = df['cleaned']
|
| 60 |
+
y = df['label']
|
| 61 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
| 62 |
+
|
| 63 |
+
# Step 5: TF-IDF Vectorizer
|
| 64 |
+
vectorizer = TfidfVectorizer(max_df=0.7)
|
| 65 |
+
X_train_tfidf = vectorizer.fit_transform(X_train)
|
| 66 |
+
X_test_tfidf = vectorizer.transform(X_test)
|
| 67 |
+
|
| 68 |
+
# Step 6: Models
|
| 69 |
+
models = {
|
| 70 |
+
"Logistic Regression": LogisticRegression(),
|
| 71 |
+
"Random Forest": RandomForestClassifier(n_estimators=100),
|
| 72 |
+
"SVM": LinearSVC()
|
| 73 |
+
}
|
| 74 |
+
|
| 75 |
+
# Train and evaluate
|
| 76 |
+
results = {}
|
| 77 |
+
for name, model in models.items():
|
| 78 |
+
model.fit(X_train_tfidf, y_train)
|
| 79 |
+
preds = model.predict(X_test_tfidf)
|
| 80 |
+
acc = accuracy_score(y_test, preds)
|
| 81 |
+
results[name] = {"model": model, "accuracy": acc}
|
| 82 |
+
print(f"{name} Accuracy: {acc:.4f}")
|
| 83 |
+
|
| 84 |
+
# Plot confusion matrix for best model
|
| 85 |
+
best_model_name = max(results, key=lambda x: results[x]['accuracy'])
|
| 86 |
+
best_model = results[best_model_name]['model']
|
| 87 |
+
y_pred = best_model.predict(X_test_tfidf)
|
| 88 |
+
cm = confusion_matrix(y_test, y_pred)
|
| 89 |
+
|
| 90 |
+
plt.figure(figsize=(5, 4))
|
| 91 |
+
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
|
| 92 |
+
plt.title(f"Confusion Matrix - {best_model_name}")
|
| 93 |
+
plt.xlabel('Predicted')
|
| 94 |
+
plt.ylabel('Actual')
|
| 95 |
+
plt.show()
|
| 96 |
+
|
| 97 |
+
# Step 7: Gradio Web App
|
| 98 |
+
def predict_news(text):
|
| 99 |
+
cleaned_text = clean_text(text)
|
| 100 |
+
vectorized = vectorizer.transform([cleaned_text])
|
| 101 |
+
prediction = best_model.predict(vectorized)[0]
|
| 102 |
+
return "Real News 🟢" if prediction == 1 else "Fake News 🔴"
|
| 103 |
+
|
| 104 |
+
iface = gr.Interface(
|
| 105 |
+
fn=predict_news,
|
| 106 |
+
inputs="text",
|
| 107 |
+
outputs="text",
|
| 108 |
+
title="📰 Fake News Detector",
|
| 109 |
+
description="Enter a news headline or content to check if it's real or fake."
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
iface.launch()
|