Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import joblib
|
| 3 |
+
import os
|
| 4 |
+
import re
|
| 5 |
+
import emoji
|
| 6 |
+
import demoji
|
| 7 |
+
import numpy as np
|
| 8 |
+
|
| 9 |
+
# ==========================================================
|
| 10 |
+
# 📦 Load all models
|
| 11 |
+
# ==========================================================
|
| 12 |
+
vectorizer_en = joblib.load("tfidf_vectorizer_en.pkl")
|
| 13 |
+
le_en = joblib.load("label_encoder_en.pkl")
|
| 14 |
+
stacking_en = joblib.load("stacking_en.pkl")
|
| 15 |
+
|
| 16 |
+
vectorizer_fa = joblib.load("tfidf_vectorizer_fa.pkl")
|
| 17 |
+
le_fa = joblib.load("label_encoder_fa.pkl")
|
| 18 |
+
stacking_fa = joblib.load("stacking_fa.pkl")
|
| 19 |
+
|
| 20 |
+
# ==========================================================
|
| 21 |
+
# 🧹 Text cleaning functions
|
| 22 |
+
# ==========================================================
|
| 23 |
+
import nltk
|
| 24 |
+
from nltk.corpus import stopwords
|
| 25 |
+
from nltk.tokenize import word_tokenize
|
| 26 |
+
from nltk.stem import WordNetLemmatizer
|
| 27 |
+
from hazm import Normalizer, Lemmatizer as HazmLemmatizer, word_tokenize as hazm_tokenize
|
| 28 |
+
nltk.download("punkt")
|
| 29 |
+
nltk.download("stopwords")
|
| 30 |
+
nltk.download("wordnet")
|
| 31 |
+
|
| 32 |
+
# English preprocess
|
| 33 |
+
lemmatizer = WordNetLemmatizer()
|
| 34 |
+
STOPWORDS = set(stopwords.words("english"))
|
| 35 |
+
RE_URL = re.compile(r"http\S+|www\.\S+")
|
| 36 |
+
RE_HTML = re.compile(r"<.*?>")
|
| 37 |
+
RE_NONALPHA = re.compile(r"[^a-zA-Z\s]")
|
| 38 |
+
|
| 39 |
+
def preprocess_english(text):
|
| 40 |
+
text = str(text).lower()
|
| 41 |
+
text = emoji.demojize(text)
|
| 42 |
+
text = demoji.replace(text, "")
|
| 43 |
+
text = RE_URL.sub(" ", text)
|
| 44 |
+
text = RE_HTML.sub(" ", text)
|
| 45 |
+
text = RE_NONALPHA.sub(" ", text)
|
| 46 |
+
text = re.sub(r"\s+", " ", text).strip()
|
| 47 |
+
tokens = word_tokenize(text)
|
| 48 |
+
tokens = [lemmatizer.lemmatize(t) for t in tokens if t not in STOPWORDS and len(t) > 2]
|
| 49 |
+
return " ".join(tokens)
|
| 50 |
+
|
| 51 |
+
# Persian preprocess
|
| 52 |
+
normalizer = Normalizer()
|
| 53 |
+
hazm_lemmatizer = HazmLemmatizer()
|
| 54 |
+
RE_URL_FA = re.compile(r"http\S+|www\.\S+")
|
| 55 |
+
RE_NONPERSIAN = re.compile(r"[^\u0600-\u06FFA-Za-z\s]")
|
| 56 |
+
|
| 57 |
+
def preprocess_persian(text):
|
| 58 |
+
text = str(text)
|
| 59 |
+
text = normalizer.normalize(text)
|
| 60 |
+
text = emoji.demojize(text)
|
| 61 |
+
text = demoji.replace(text, "")
|
| 62 |
+
text = RE_URL_FA.sub(" ", text)
|
| 63 |
+
text = re.sub(r"@\w+|#\w+|\d+", " ", text)
|
| 64 |
+
text = RE_NONPERSIAN.sub(" ", text)
|
| 65 |
+
text = re.sub(r"\s+", " ", text).strip()
|
| 66 |
+
tokens = hazm_tokenize(text)
|
| 67 |
+
tokens = [hazm_lemmatizer.lemmatize(t) for t in tokens if len(t) > 1]
|
| 68 |
+
return " ".join(tokens)
|
| 69 |
+
|
| 70 |
+
# ==========================================================
|
| 71 |
+
# 🔮 Prediction function
|
| 72 |
+
# ==========================================================
|
| 73 |
+
def predict_sentiment(comment, language):
|
| 74 |
+
if language == "English":
|
| 75 |
+
clean_text = preprocess_english(comment)
|
| 76 |
+
X = vectorizer_en.transform([clean_text])
|
| 77 |
+
pred = stacking_en.predict(X)[0]
|
| 78 |
+
probs = stacking_en.predict_proba(X)[0]
|
| 79 |
+
classes = le_en.classes_
|
| 80 |
+
else:
|
| 81 |
+
clean_text = preprocess_persian(comment)
|
| 82 |
+
X = vectorizer_fa.transform([clean_text])
|
| 83 |
+
pred = stacking_fa.predict(X)[0]
|
| 84 |
+
probs = stacking_fa.predict_proba(X)[0]
|
| 85 |
+
classes = le_fa.classes_
|
| 86 |
+
|
| 87 |
+
result_str = f"🔹 **Predicted Sentiment:** {pred}\n\n"
|
| 88 |
+
prob_table = "\n".join([f"{cls}: {round(p,3)}" for cls, p in zip(classes, probs)])
|
| 89 |
+
return f"🗣️ **Input:** {comment}\n\n{result_str}**Prediction Probabilities:**\n{prob_table}"
|
| 90 |
+
|
| 91 |
+
# ==========================================================
|
| 92 |
+
# 🎨 Gradio UI
|
| 93 |
+
# ==========================================================
|
| 94 |
+
lang_dropdown = gr.Dropdown(["English", "Persian"], label="Select Language", value="English")
|
| 95 |
+
input_box = gr.Textbox(label="Enter your comment here")
|
| 96 |
+
output_box = gr.Markdown()
|
| 97 |
+
|
| 98 |
+
iface = gr.Interface(
|
| 99 |
+
fn=predict_sentiment,
|
| 100 |
+
inputs=[input_box, lang_dropdown],
|
| 101 |
+
outputs=output_box,
|
| 102 |
+
title="🌍 Multilingual Sentiment Analyzer (English + Persian)",
|
| 103 |
+
description="Enter a comment in English or Persian to see the predicted sentiment and probabilities.",
|
| 104 |
+
examples=[
|
| 105 |
+
["I loved the show! It was amazing!", "English"],
|
| 106 |
+
["برنامه خیلی عالی بود و مجری هم خوب بود", "Persian"],
|
| 107 |
+
["It was an average episode, not too bad.", "English"],
|
| 108 |
+
]
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
if __name__ == "__main__":
|
| 112 |
+
iface.launch()
|