Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,221 +1,84 @@
|
|
| 1 |
-
|
| 2 |
-
# Gradio app: English + Persian sentiment with SHAP-based interpretability and word highlighting
|
| 3 |
-
|
| 4 |
import joblib
|
| 5 |
-
import numpy as np
|
| 6 |
-
import pandas as pd
|
| 7 |
import shap
|
|
|
|
| 8 |
import matplotlib.pyplot as plt
|
| 9 |
-
import
|
| 10 |
-
import
|
| 11 |
-
import html
|
| 12 |
-
from typing import Tuple, Dict, List
|
| 13 |
-
import math
|
| 14 |
-
|
| 15 |
-
import gradio as gr
|
| 16 |
-
|
| 17 |
-
# --------- Load models (replace filenames if you used different names) ----------
|
| 18 |
-
ENG_MODEL_PATH = "best_model.pkl"
|
| 19 |
-
ENG_VEC_PATH = "tfidf_vectorizer.pkl"
|
| 20 |
-
PER_MODEL_PATH = "logistic_regression.pkl"
|
| 21 |
-
PER_VEC_PATH = "tfidf_vectorizer_persian.pkl"
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
|
| 27 |
-
|
| 28 |
|
| 29 |
-
|
| 30 |
-
CLASS_NAMES_PER = ["منفی", "خنثی", "مثبت"]
|
| 31 |
|
| 32 |
-
#
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
|
|
|
|
|
|
| 36 |
|
| 37 |
-
# --------- Utility: create HTML highlight from SHAP values ----------
|
| 38 |
-
def make_html_highlight(original_text: str,
|
| 39 |
-
feature_names: np.ndarray,
|
| 40 |
-
shap_values_feature: np.ndarray,
|
| 41 |
-
vectorizer_vocab: dict,
|
| 42 |
-
max_display: int = 30) -> str:
|
| 43 |
-
"""
|
| 44 |
-
Simple token-level highlighting:
|
| 45 |
-
- Tokenize by whitespace (preserves original punctuation).
|
| 46 |
-
- For each token, attempt to map token.lower() to the vectorizer vocab;
|
| 47 |
-
if found, get SHAP impact for that feature name.
|
| 48 |
-
- Color red for positive contribution, blue for negative.
|
| 49 |
-
Returns an HTML-safe string.
|
| 50 |
-
"""
|
| 51 |
-
# Build mapping word -> shap value if present in vocabulary
|
| 52 |
-
# vectorizer_vocab maps token -> idx in feature_names
|
| 53 |
-
token_to_shap = {}
|
| 54 |
-
for idx, fname in enumerate(feature_names):
|
| 55 |
-
# Often fname is the token/ngram itself
|
| 56 |
-
token_to_shap[fname] = shap_values_feature[idx]
|
| 57 |
-
|
| 58 |
-
# Tokenize (simple)
|
| 59 |
-
tokens = original_text.split()
|
| 60 |
-
# Compute max magnitude for scaling opacity
|
| 61 |
-
mags = []
|
| 62 |
-
for t in tokens:
|
| 63 |
-
key = t.lower()
|
| 64 |
-
val = None
|
| 65 |
-
# Try several common variants: exact, lower, strip punctuation from ends
|
| 66 |
-
if key in vectorizer_vocab:
|
| 67 |
-
val = shap_values_feature[vectorizer_vocab[key]]
|
| 68 |
-
else:
|
| 69 |
-
key2 = ''.join(ch for ch in key if ch.isalnum())
|
| 70 |
-
if key2 in vectorizer_vocab:
|
| 71 |
-
val = shap_values_feature[vectorizer_vocab[key2]]
|
| 72 |
-
mags.append(abs(val) if val is not None else 0.0)
|
| 73 |
-
max_mag = max(mags) if mags else 1.0
|
| 74 |
-
if max_mag == 0:
|
| 75 |
-
max_mag = 1.0
|
| 76 |
-
|
| 77 |
-
# Build HTML with span coloring
|
| 78 |
-
html_tokens = []
|
| 79 |
-
for t in tokens:
|
| 80 |
-
display = html.escape(t)
|
| 81 |
-
key = t.lower()
|
| 82 |
-
val = None
|
| 83 |
-
if key in vectorizer_vocab:
|
| 84 |
-
val = shap_values_feature[vectorizer_vocab[key]]
|
| 85 |
-
else:
|
| 86 |
-
key2 = ''.join(ch for ch in key if ch.isalnum())
|
| 87 |
-
if key2 in vectorizer_vocab:
|
| 88 |
-
val = shap_values_feature[vectorizer_vocab[key2]]
|
| 89 |
-
if val is None or abs(val) < 1e-6:
|
| 90 |
-
html_tokens.append(f"<span style='padding:2px'>{display}</span>")
|
| 91 |
-
else:
|
| 92 |
-
sign = "pos" if val > 0 else "neg"
|
| 93 |
-
mag = min(1.0, abs(val) / max_mag) # scale 0..1
|
| 94 |
-
opacity = 0.15 + 0.85 * mag # avoid fully transparent
|
| 95 |
-
color = f"rgba(220,20,60,{opacity})" if sign == "pos" else f"rgba(30,144,255,{opacity})"
|
| 96 |
-
border = "1px solid rgba(0,0,0,0.04)"
|
| 97 |
-
html_tokens.append(
|
| 98 |
-
f"<span style='background:{color};padding:2px;margin:1px;border-radius:4px;display:inline-block;{border}'>"
|
| 99 |
-
f"{display}</span>"
|
| 100 |
-
)
|
| 101 |
-
|
| 102 |
-
highlighted_html = "<div style='line-height:1.6;font-size:16px'>" + " ".join(html_tokens) + "</div>"
|
| 103 |
-
return highlighted_html
|
| 104 |
-
|
| 105 |
-
# --------- Core function: predict + interpret ----------
|
| 106 |
-
def explain_and_predict(text: str, language: str):
|
| 107 |
-
text = text or ""
|
| 108 |
if language == "English":
|
| 109 |
-
model =
|
| 110 |
-
vectorizer = eng_vectorizer
|
| 111 |
-
class_names = CLASS_NAMES_EN
|
| 112 |
else:
|
| 113 |
-
model =
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
#
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
#
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
feature_names = np.array(vectorizer.get_feature_names_out())
|
| 168 |
-
vocab = {k: v for k, v in (getattr(vectorizer, "vocabulary_", {})).items()}
|
| 169 |
-
|
| 170 |
-
# Build top contributing words list (pairs)
|
| 171 |
-
# shap_per_feature length must match len(feature_names)
|
| 172 |
-
if len(shap_per_feature) != len(feature_names):
|
| 173 |
-
# try to align by vectorizer.vocabulary_
|
| 174 |
-
full_shap = np.zeros(len(feature_names))
|
| 175 |
-
# if shap_per_feature smaller, attempt to use indices from vocab
|
| 176 |
-
min_len = min(len(shap_per_feature), len(full_shap))
|
| 177 |
-
full_shap[:min_len] = shap_per_feature[:min_len]
|
| 178 |
-
shap_per_feature = full_shap
|
| 179 |
-
|
| 180 |
-
# Top positive and negative features
|
| 181 |
-
n = 10
|
| 182 |
-
idx_sorted = np.argsort(-np.abs(shap_per_feature))
|
| 183 |
-
top_idx = idx_sorted[:n]
|
| 184 |
-
top_words = feature_names[top_idx].tolist()
|
| 185 |
-
top_contribs = shap_per_feature[top_idx].tolist()
|
| 186 |
-
|
| 187 |
-
# Build word table for display
|
| 188 |
-
word_table = {"Word": top_words, "SHAP Impact": top_contribs}
|
| 189 |
-
|
| 190 |
-
# Build highlight HTML (token-level approx using unigram mapping)
|
| 191 |
-
highlight_html = make_html_highlight(text, feature_names, shap_per_feature, vocab)
|
| 192 |
-
|
| 193 |
-
# Return: label string, probabilities dict, table dict, html highlight
|
| 194 |
-
return f"🎯 **{label}** (confidence: {confidence:.2f})", probs_to_bar(probs.tolist(), language), word_table, highlight_html
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
# --------- Gradio UI build ----------
|
| 198 |
-
with gr.Blocks() as demo:
|
| 199 |
-
gr.Markdown("## 🌍 Multilingual Sentiment Analysis (English 🇬🇧 & Persian 🇮🇷) — Interpretable")
|
| 200 |
-
with gr.Row():
|
| 201 |
-
language = gr.Radio(["English", "Persian"], value="English", label="Choose language")
|
| 202 |
-
text_input = gr.Textbox(lines=4, placeholder="Type comment here...", label="Input text")
|
| 203 |
-
with gr.Row():
|
| 204 |
-
btn = gr.Button("Analyze")
|
| 205 |
-
with gr.Row():
|
| 206 |
-
pred_out = gr.Markdown()
|
| 207 |
-
with gr.Row():
|
| 208 |
-
bar = gr.BarPlot(label="Class probabilities")
|
| 209 |
-
table = gr.Dataframe(headers=["Word", "SHAP Impact"], label="Top contributing words")
|
| 210 |
-
with gr.Row():
|
| 211 |
-
html_out = gr.HTML(label="Word-level Highlight (red = pushes toward prediction, blue = pushes away)")
|
| 212 |
-
|
| 213 |
-
def run(text, lang):
|
| 214 |
-
label, probs, word_table, html_highlight = explain_and_predict(text, lang)
|
| 215 |
-
# format outputs for gradio
|
| 216 |
-
return label, probs, pd.DataFrame(word_table), html_highlight
|
| 217 |
-
|
| 218 |
-
btn.click(fn=run, inputs=[text_input, language], outputs=[pred_out, bar, table, html_out])
|
| 219 |
|
| 220 |
-
if __name__ == "__main__":
|
| 221 |
-
demo.launch(server_name="0.0.0.0", share=True)
|
|
|
|
| 1 |
+
import gradio as gr
|
|
|
|
|
|
|
| 2 |
import joblib
|
|
|
|
|
|
|
| 3 |
import shap
|
| 4 |
+
import numpy as np
|
| 5 |
import matplotlib.pyplot as plt
|
| 6 |
+
import tempfile
|
| 7 |
+
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+
# ---------------------------------------------------------
|
| 10 |
+
# Load both models and vectorizers
|
| 11 |
+
# ---------------------------------------------------------
|
| 12 |
+
english_model = joblib.load("models/english_model.pkl")
|
| 13 |
+
english_vec = joblib.load("models/english_vectorizer.pkl")
|
| 14 |
|
| 15 |
+
persian_model = joblib.load("models/persian_model.pkl")
|
| 16 |
+
persian_vec = joblib.load("models/persian_vectorizer.pkl")
|
| 17 |
|
| 18 |
+
class_names = ["Negative", "Neutral", "Positive"]
|
|
|
|
| 19 |
|
| 20 |
+
# ---------------------------------------------------------
|
| 21 |
+
# Prediction + Interpretability Function
|
| 22 |
+
# ---------------------------------------------------------
|
| 23 |
+
def predict_sentiment(text, language):
|
| 24 |
+
if not text.strip():
|
| 25 |
+
return "Please enter text!", None
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
if language == "English":
|
| 28 |
+
model, vec = english_model, english_vec
|
|
|
|
|
|
|
| 29 |
else:
|
| 30 |
+
model, vec = persian_model, persian_vec
|
| 31 |
+
|
| 32 |
+
X = vec.transform([text])
|
| 33 |
+
probs = model.predict_proba(X)[0]
|
| 34 |
+
pred_idx = np.argmax(probs)
|
| 35 |
+
label = class_names[pred_idx]
|
| 36 |
+
|
| 37 |
+
# --- SHAP interpretability ---
|
| 38 |
+
explainer = shap.LinearExplainer(model, vec.transform([text]))
|
| 39 |
+
shap_vals = explainer(X)
|
| 40 |
+
shap_values = shap_vals.values[0][:, pred_idx]
|
| 41 |
+
feature_names = vec.get_feature_names_out()
|
| 42 |
+
|
| 43 |
+
top_idx = np.argsort(-abs(shap_values))[:10]
|
| 44 |
+
tokens = [feature_names[i] for i in top_idx]
|
| 45 |
+
impacts = [shap_values[i] for i in top_idx]
|
| 46 |
+
|
| 47 |
+
# Save temporary bar chart
|
| 48 |
+
fig, ax = plt.subplots(figsize=(6, 3))
|
| 49 |
+
colors = ["crimson" if v > 0 else "steelblue" for v in impacts]
|
| 50 |
+
ax.barh(tokens, impacts, color=colors)
|
| 51 |
+
ax.invert_yaxis()
|
| 52 |
+
ax.set_title(f"Top Words driving {label} prediction")
|
| 53 |
+
tmp_path = tempfile.mktemp(suffix=".png")
|
| 54 |
+
plt.tight_layout()
|
| 55 |
+
plt.savefig(tmp_path)
|
| 56 |
+
plt.close(fig)
|
| 57 |
+
|
| 58 |
+
explanation = f"""
|
| 59 |
+
**Predicted Sentiment:** {label}\n
|
| 60 |
+
**Confidence:** {probs[pred_idx]:.2f}\n
|
| 61 |
+
**Top Influential Words:**\n
|
| 62 |
+
{', '.join(tokens)}
|
| 63 |
+
"""
|
| 64 |
+
return explanation, tmp_path
|
| 65 |
+
|
| 66 |
+
# ---------------------------------------------------------
|
| 67 |
+
# Gradio UI
|
| 68 |
+
# ---------------------------------------------------------
|
| 69 |
+
iface = gr.Interface(
|
| 70 |
+
fn=predict_sentiment,
|
| 71 |
+
inputs=[
|
| 72 |
+
gr.Textbox(lines=3, label="Enter comment"),
|
| 73 |
+
gr.Radio(["English", "Persian"], label="Choose Dataset/Language")
|
| 74 |
+
],
|
| 75 |
+
outputs=[
|
| 76 |
+
gr.Markdown(label="Prediction + Interpretation"),
|
| 77 |
+
gr.Image(label="Top Word Contributions")
|
| 78 |
+
],
|
| 79 |
+
title="🌍 Multi-Lingual Sentiment Analysis (English + Persian)",
|
| 80 |
+
description="Select a language, type a comment, and see both the prediction and SHAP interpretability."
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
|
|
|
|
|