Spaces:
Sleeping
Sleeping
Update bert_explainer.py
Browse files- bert_explainer.py +41 -14
bert_explainer.py
CHANGED
|
@@ -1,18 +1,18 @@
|
|
| 1 |
import torch
|
|
|
|
| 2 |
from AI_Model_architecture import BertLSTM_CNN_Classifier
|
| 3 |
-
from transformers import BertTokenizer
|
| 4 |
import re
|
| 5 |
import os
|
| 6 |
import requests
|
| 7 |
|
| 8 |
-
# ✅ 使用 CPU
|
| 9 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 10 |
|
| 11 |
-
# ✅
|
| 12 |
model_path = "/tmp/model.pth"
|
| 13 |
model_url = "https://huggingface.co/jerrynnms/scam-model/resolve/main/model.pth"
|
| 14 |
|
| 15 |
-
# ✅
|
| 16 |
if not os.path.exists(model_path):
|
| 17 |
print("📦 下載 model.pth 中...")
|
| 18 |
response = requests.get(model_url)
|
|
@@ -21,20 +21,26 @@ if not os.path.exists(model_path):
|
|
| 21 |
f.write(response.content)
|
| 22 |
print("✅ 模型下載完成")
|
| 23 |
else:
|
| 24 |
-
raise FileNotFoundError("❌ 無法下載 model.pth
|
| 25 |
|
| 26 |
-
# ✅
|
|
|
|
|
|
|
|
|
|
| 27 |
model = BertLSTM_CNN_Classifier()
|
| 28 |
model.load_state_dict(torch.load(model_path, map_location=device))
|
| 29 |
model.to(device)
|
| 30 |
model.eval()
|
| 31 |
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
-
# ✅
|
| 35 |
def predict_single_sentence(text: str, max_len=256):
|
| 36 |
-
text = re.sub(r"\s+", "", text)
|
| 37 |
-
text = re.sub(r"[^\u4e00-\u9fffA-Za-z0-9。,!?:/.\-]", "", text)
|
| 38 |
|
| 39 |
encoded = tokenizer(text, return_tensors="pt", truncation=True, padding="max_length", max_length=max_len)
|
| 40 |
input_ids = encoded["input_ids"].to(device)
|
|
@@ -48,11 +54,32 @@ def predict_single_sentence(text: str, max_len=256):
|
|
| 48 |
|
| 49 |
return label, prob
|
| 50 |
|
| 51 |
-
# ✅
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
def analyze_text(text: str):
|
| 53 |
label, prob = predict_single_sentence(text)
|
| 54 |
prob_percent = round(prob * 100, 2)
|
|
|
|
| 55 |
|
|
|
|
| 56 |
if prob > 0.9:
|
| 57 |
risk = "🔴 高風險(極可能是詐騙)"
|
| 58 |
elif prob > 0.5:
|
|
@@ -60,11 +87,11 @@ def analyze_text(text: str):
|
|
| 60 |
else:
|
| 61 |
risk = "🟢 低風險(正常)"
|
| 62 |
|
| 63 |
-
|
|
|
|
| 64 |
|
| 65 |
return {
|
| 66 |
"status": status,
|
| 67 |
"confidence": prob_percent,
|
| 68 |
-
"suspicious_keywords": [risk]
|
| 69 |
}
|
| 70 |
-
|
|
|
|
| 1 |
import torch
|
| 2 |
+
from transformers import BertTokenizer, BertModel
|
| 3 |
from AI_Model_architecture import BertLSTM_CNN_Classifier
|
|
|
|
| 4 |
import re
|
| 5 |
import os
|
| 6 |
import requests
|
| 7 |
|
| 8 |
+
# ✅ 使用 CPU 模式(部署環境通用)
|
| 9 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 10 |
|
| 11 |
+
# ✅ 模型權重與儲存位置
|
| 12 |
model_path = "/tmp/model.pth"
|
| 13 |
model_url = "https://huggingface.co/jerrynnms/scam-model/resolve/main/model.pth"
|
| 14 |
|
| 15 |
+
# ✅ 初次下載模型(如果不存在)
|
| 16 |
if not os.path.exists(model_path):
|
| 17 |
print("📦 下載 model.pth 中...")
|
| 18 |
response = requests.get(model_url)
|
|
|
|
| 21 |
f.write(response.content)
|
| 22 |
print("✅ 模型下載完成")
|
| 23 |
else:
|
| 24 |
+
raise FileNotFoundError("❌ 無法下載 model.pth,請檢查網址是否正確")
|
| 25 |
|
| 26 |
+
# ✅ 初始化 tokenizer
|
| 27 |
+
tokenizer = BertTokenizer.from_pretrained("ckiplab/bert-base-chinese")
|
| 28 |
+
|
| 29 |
+
# ✅ 初始化自訂分類模型
|
| 30 |
model = BertLSTM_CNN_Classifier()
|
| 31 |
model.load_state_dict(torch.load(model_path, map_location=device))
|
| 32 |
model.to(device)
|
| 33 |
model.eval()
|
| 34 |
|
| 35 |
+
# ✅ 初始化 ckiplab BERT 模型,用於抽取 attention 可疑詞(與分類模型無關)
|
| 36 |
+
bert_model = BertModel.from_pretrained("ckiplab/bert-base-chinese", output_attentions=True)
|
| 37 |
+
bert_model.to(device)
|
| 38 |
+
bert_model.eval()
|
| 39 |
|
| 40 |
+
# ✅ 單句推論(輸出預測結果與信心值)
|
| 41 |
def predict_single_sentence(text: str, max_len=256):
|
| 42 |
+
text = re.sub(r"\s+", "", text)
|
| 43 |
+
text = re.sub(r"[^\u4e00-\u9fffA-Za-z0-9。,!?:/.\-]", "", text)
|
| 44 |
|
| 45 |
encoded = tokenizer(text, return_tensors="pt", truncation=True, padding="max_length", max_length=max_len)
|
| 46 |
input_ids = encoded["input_ids"].to(device)
|
|
|
|
| 54 |
|
| 55 |
return label, prob
|
| 56 |
|
| 57 |
+
# ✅ 擷取 BERT attention 權重最高的詞(作為可疑詞)
|
| 58 |
+
def extract_attention_keywords(text, top_k=5):
|
| 59 |
+
cleaned = re.sub(r"\s+", "", text)
|
| 60 |
+
inputs = tokenizer(cleaned, return_tensors="pt", truncation=True, padding="max_length", max_length=128)
|
| 61 |
+
input_ids = inputs["input_ids"].to(device)
|
| 62 |
+
attention_mask = inputs["attention_mask"].to(device)
|
| 63 |
+
|
| 64 |
+
with torch.no_grad():
|
| 65 |
+
outputs = bert_model(input_ids=input_ids, attention_mask=attention_mask)
|
| 66 |
+
attentions = outputs.attentions # [layers][batch, heads, seq, seq]
|
| 67 |
+
|
| 68 |
+
# 取最後一層,平均所有 head 與所有 attention 給 token 的權重
|
| 69 |
+
attn = attentions[-1][0].mean(dim=0).mean(dim=0) # [seq]
|
| 70 |
+
tokens = tokenizer.convert_ids_to_tokens(input_ids[0])
|
| 71 |
+
top_indices = attn.topk(top_k).indices.tolist()
|
| 72 |
+
top_tokens = [tokens[i] for i in top_indices if tokens[i] not in ["[CLS]", "[SEP]", "[PAD]"]]
|
| 73 |
+
|
| 74 |
+
return top_tokens
|
| 75 |
+
|
| 76 |
+
# ✅ 主函式:整合推論與關鍵詞標註
|
| 77 |
def analyze_text(text: str):
|
| 78 |
label, prob = predict_single_sentence(text)
|
| 79 |
prob_percent = round(prob * 100, 2)
|
| 80 |
+
status = "詐騙" if label == 1 else "正常"
|
| 81 |
|
| 82 |
+
# 風險說明(僅作為備用顯示)
|
| 83 |
if prob > 0.9:
|
| 84 |
risk = "🔴 高風險(極可能是詐騙)"
|
| 85 |
elif prob > 0.5:
|
|
|
|
| 87 |
else:
|
| 88 |
risk = "🟢 低風險(正常)"
|
| 89 |
|
| 90 |
+
# 自動抽取可疑詞
|
| 91 |
+
attention_keywords = extract_attention_keywords(text)
|
| 92 |
|
| 93 |
return {
|
| 94 |
"status": status,
|
| 95 |
"confidence": prob_percent,
|
| 96 |
+
"suspicious_keywords": attention_keywords or [risk]
|
| 97 |
}
|
|
|