gprmax-support-gsoc25 / rag-db /generate_db.py
jfang's picture
Upload 7 files
3718631 verified
#!/usr/bin/env python3
"""
RAG Database Generation Script for gprMax Documentation
Generates a ChromaDB vector database from gprMax documentation
"""
import os
import sys
import shutil
import argparse
import logging
from pathlib import Path
from datetime import datetime
from typing import List, Dict, Any
import json
import hashlib
import chromadb
import git
from tqdm import tqdm
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
class GprMaxDocumentProcessor:
"""Process gprMax documentation files for vectorization"""
SUPPORTED_EXTENSIONS = {'.rst', '.md', '.txt'}
CHUNK_SIZE = 1000 # Characters per chunk
CHUNK_OVERLAP = 200 # Overlap between chunks
def __init__(self, repo_path: Path):
self.repo_path = repo_path
self.doc_path = repo_path / "docs"
def extract_documents(self) -> List[Dict[str, Any]]:
"""Extract and chunk all documentation files"""
documents = []
if not self.doc_path.exists():
logger.warning(f"Documentation path {self.doc_path} does not exist")
return documents
for file_path in self._find_doc_files():
try:
chunks = self._process_file(file_path)
documents.extend(chunks)
except Exception as e:
logger.error(f"Error processing {file_path}: {e}")
logger.info(f"Extracted {len(documents)} document chunks")
return documents
def _find_doc_files(self) -> List[Path]:
"""Find all documentation files"""
doc_files = []
for ext in self.SUPPORTED_EXTENSIONS:
doc_files.extend(self.doc_path.rglob(f"*{ext}"))
return doc_files
def _process_file(self, file_path: Path) -> List[Dict[str, Any]]:
"""Process a single file into chunks"""
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
content = f.read()
# Calculate relative path for metadata
rel_path = file_path.relative_to(self.repo_path)
# Create chunks with overlap
chunks = []
for i in range(0, len(content), self.CHUNK_SIZE - self.CHUNK_OVERLAP):
chunk_text = content[i:i + self.CHUNK_SIZE]
# Skip empty or very small chunks
if len(chunk_text.strip()) < 50:
continue
# Generate unique ID for chunk
chunk_id = hashlib.md5(f"{rel_path}_{i}_{chunk_text[:50]}".encode()).hexdigest()
chunks.append({
"id": chunk_id,
"text": chunk_text,
"metadata": {
"source": str(rel_path),
"file_type": file_path.suffix,
"chunk_index": len(chunks),
"char_start": i,
"char_end": min(i + self.CHUNK_SIZE, len(content))
}
})
return chunks
# Removed custom embedding model - using ChromaDB's default
class ChromaRAGDatabase:
"""ChromaDB-based RAG database"""
def __init__(self, db_path: Path):
self.db_path = db_path
# Initialize ChromaDB with persistent storage
self.client = chromadb.PersistentClient(path=str(db_path))
# Collection name with version for easy updates
self.collection_name = "gprmax_docs_v1"
def create_collection(self, recreate: bool = False):
"""Create or get the document collection"""
if recreate:
try:
self.client.delete_collection(self.collection_name)
logger.info(f"Deleted existing collection: {self.collection_name}")
except:
pass
# Let ChromaDB use its default embedding function
self.collection = self.client.create_collection(
name=self.collection_name,
metadata={"created_at": datetime.now().isoformat()}
)
logger.info(f"Created collection: {self.collection_name}")
def add_documents(self, documents: List[Dict[str, Any]]):
"""Add documents to the collection"""
if not documents:
logger.warning("No documents to add")
return
# Prepare data for ChromaDB
ids = [doc["id"] for doc in documents]
texts = [doc["text"] for doc in documents]
metadatas = [doc["metadata"] for doc in documents]
# Add to collection in batches (ChromaDB will generate embeddings automatically)
batch_size = 100
logger.info(f"Adding {len(documents)} documents to database...")
for i in tqdm(range(0, len(ids), batch_size), desc="Adding to database"):
end_idx = min(i + batch_size, len(ids))
self.collection.add(
ids=ids[i:end_idx],
documents=texts[i:end_idx],
metadatas=metadatas[i:end_idx]
# No embeddings parameter - ChromaDB will generate them
)
logger.info(f"Added {len(documents)} documents to database")
# Verify documents were added
actual_count = self.collection.count()
logger.info(f"Verified collection now contains {actual_count} documents")
def save_metadata(self):
"""Save database metadata for reference"""
# Get fresh count
doc_count = self.collection.count()
metadata = {
"created_at": datetime.now().isoformat(),
"embedding_model": "ChromaDB Default (all-MiniLM-L6-v2)",
"collection_name": self.collection_name,
"chunk_size": GprMaxDocumentProcessor.CHUNK_SIZE,
"chunk_overlap": GprMaxDocumentProcessor.CHUNK_OVERLAP,
"total_documents": doc_count
}
metadata_path = self.db_path / "metadata.json"
with open(metadata_path, 'w') as f:
json.dump(metadata, f, indent=2)
logger.info(f"Saved metadata to {metadata_path}")
def clone_gprmax_repo(target_dir: Path) -> Path:
"""Clone or update gprMax repository"""
repo_path = target_dir / "gprMax"
if repo_path.exists():
logger.info(f"Updating existing repository at {repo_path}")
repo = git.Repo(repo_path)
repo.remotes.origin.pull()
else:
logger.info(f"Cloning gprMax repository to {repo_path}")
git.Repo.clone_from(
"https://github.com/gprMax/gprMax.git",
repo_path,
depth=1 # Shallow clone for faster download
)
return repo_path
def main():
parser = argparse.ArgumentParser(description="Generate RAG database from gprMax documentation")
parser.add_argument(
"--db-path",
type=Path,
default=Path(__file__).parent / "chroma_db",
help="Path to store the ChromaDB database"
)
parser.add_argument(
"--temp-dir",
type=Path,
default=Path(__file__).parent / "temp",
help="Temporary directory for cloning repository"
)
parser.add_argument(
"--recreate",
action="store_true",
help="Recreate database from scratch (delete existing)"
)
args = parser.parse_args()
try:
# Step 1: Clone/update gprMax repository
logger.info("Step 1: Fetching gprMax repository...")
repo_path = clone_gprmax_repo(args.temp_dir)
# Step 2: Process documentation
logger.info("Step 2: Processing documentation files...")
processor = GprMaxDocumentProcessor(repo_path)
documents = processor.extract_documents()
if not documents:
logger.error("No documents found to process")
return 1
# Step 3: Create database
logger.info("Step 3: Creating vector database...")
db = ChromaRAGDatabase(args.db_path)
db.create_collection(recreate=args.recreate)
# Step 4: Add documents
logger.info("Step 4: Adding documents to database...")
db.add_documents(documents)
# Step 5: Save metadata
db.save_metadata()
logger.info(f"✅ Database successfully created at {args.db_path}")
logger.info(f"Total documents: {len(documents)}")
# Cleanup temp files if needed
if args.temp_dir.exists() and args.temp_dir != args.db_path.parent:
logger.info("Cleaning up temporary files...")
shutil.rmtree(args.temp_dir, ignore_errors=True)
return 0
except Exception as e:
logger.error(f"Failed to generate database: {e}")
return 1
if __name__ == "__main__":
sys.exit(main())