Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,29 +1,26 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from datasets import load_dataset
|
| 3 |
|
| 4 |
# --- Configuration ---
|
| 5 |
DATASET_NAME = "Cnam-LMSSC/vibravox-test"
|
| 6 |
DATASET_CONFIG = "speech_clean"
|
| 7 |
DATASET_SPLIT = "train"
|
| 8 |
TEXT_COLUMN = "raw_text"
|
|
|
|
|
|
|
| 9 |
AUDIO_COLUMNS = [
|
| 10 |
-
"audio.
|
| 11 |
-
"audio.
|
| 12 |
-
"audio.
|
| 13 |
-
"audio.
|
| 14 |
"audio.forehead_accelerometer",
|
| 15 |
"audio.temple_vibration_pickup"
|
| 16 |
]
|
| 17 |
|
| 18 |
# --- Load Dataset ---
|
| 19 |
try:
|
|
|
|
| 20 |
dataset = load_dataset(DATASET_NAME, DATASET_CONFIG, split=DATASET_SPLIT)
|
| 21 |
-
|
| 22 |
-
new_features = dataset.features.copy()
|
| 23 |
-
for col in AUDIO_COLUMNS:
|
| 24 |
-
new_features[col] = Audio(decode=False)
|
| 25 |
-
dataset = dataset.cast(new_features)
|
| 26 |
-
|
| 27 |
except Exception as e:
|
| 28 |
dataset = None
|
| 29 |
app_error = e
|
|
@@ -31,27 +28,23 @@ except Exception as e:
|
|
| 31 |
# --- App Logic ---
|
| 32 |
def get_audio_row(index: int):
|
| 33 |
"""
|
| 34 |
-
Retrieves a row and returns the text and the
|
| 35 |
"""
|
| 36 |
row_index = int(index)
|
| 37 |
sample = dataset[row_index]
|
| 38 |
|
| 39 |
sentence = sample[TEXT_COLUMN]
|
| 40 |
|
| 41 |
-
#
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
-
|
| 45 |
-
# We will print the first URL to the logs to see exactly what is being generated.
|
| 46 |
-
# This will help us find any hidden typos or path errors.
|
| 47 |
-
first_file_path = sample[AUDIO_COLUMNS[0]]['path']
|
| 48 |
-
first_full_url = f"{base_url}/{first_file_path}"
|
| 49 |
-
print(f"DEBUGGING URL: '{first_full_url}'")
|
| 50 |
-
# ----------------------------------------
|
| 51 |
-
|
| 52 |
-
audio_urls = [f"{base_url}/{sample[col]['path']}" for col in AUDIO_COLUMNS]
|
| 53 |
-
|
| 54 |
-
return [sentence] + audio_urls
|
| 55 |
|
| 56 |
# --- Build the Gradio Interface ---
|
| 57 |
with gr.Blocks(css="footer {display: none !important}") as demo:
|
|
@@ -61,15 +54,23 @@ with gr.Blocks(css="footer {display: none !important}") as demo:
|
|
| 61 |
gr.Markdown("## 💥 Application Error")
|
| 62 |
gr.Markdown(f"Could not load or process the dataset. Error: `{app_error}`")
|
| 63 |
else:
|
| 64 |
-
# The UI part remains the same
|
| 65 |
gr.Markdown("Select a row to listen to all corresponding audio sensor recordings.")
|
|
|
|
| 66 |
slider = gr.Slider(minimum=0, maximum=len(dataset) - 1, step=1, value=0, label="Select Data Row")
|
|
|
|
| 67 |
sentence_output = gr.Textbox(label="Raw Text", interactive=False)
|
|
|
|
| 68 |
with gr.Row():
|
| 69 |
-
audio1
|
|
|
|
|
|
|
| 70 |
with gr.Row():
|
| 71 |
-
audio4
|
|
|
|
|
|
|
|
|
|
| 72 |
outputs = [sentence_output, audio1, audio2, audio3, audio4, audio5, audio6]
|
|
|
|
| 73 |
demo.load(fn=get_audio_row, inputs=gr.State(0), outputs=outputs)
|
| 74 |
slider.change(fn=get_audio_row, inputs=slider, outputs=outputs)
|
| 75 |
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from datasets import load_dataset
|
| 3 |
|
| 4 |
# --- Configuration ---
|
| 5 |
DATASET_NAME = "Cnam-LMSSC/vibravox-test"
|
| 6 |
DATASET_CONFIG = "speech_clean"
|
| 7 |
DATASET_SPLIT = "train"
|
| 8 |
TEXT_COLUMN = "raw_text"
|
| 9 |
+
|
| 10 |
+
# The CORRECT column names, taken from your data instance example
|
| 11 |
AUDIO_COLUMNS = [
|
| 12 |
+
"audio.headset_mic",
|
| 13 |
+
"audio.laryngophone",
|
| 14 |
+
"audio.soft_in_ear_mic",
|
| 15 |
+
"audio.rigid_in_ear_mic",
|
| 16 |
"audio.forehead_accelerometer",
|
| 17 |
"audio.temple_vibration_pickup"
|
| 18 |
]
|
| 19 |
|
| 20 |
# --- Load Dataset ---
|
| 21 |
try:
|
| 22 |
+
# Load the dataset normally, without any 'cast' operation.
|
| 23 |
dataset = load_dataset(DATASET_NAME, DATASET_CONFIG, split=DATASET_SPLIT)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
except Exception as e:
|
| 25 |
dataset = None
|
| 26 |
app_error = e
|
|
|
|
| 28 |
# --- App Logic ---
|
| 29 |
def get_audio_row(index: int):
|
| 30 |
"""
|
| 31 |
+
Retrieves a row and returns the text and the RAW audio data.
|
| 32 |
"""
|
| 33 |
row_index = int(index)
|
| 34 |
sample = dataset[row_index]
|
| 35 |
|
| 36 |
sentence = sample[TEXT_COLUMN]
|
| 37 |
|
| 38 |
+
# --- THE FIX IS HERE ---
|
| 39 |
+
# We now extract the raw audio (NumPy array) and sampling rate directly.
|
| 40 |
+
# We return a list of tuples: (sampling_rate, audio_array).
|
| 41 |
+
# This is the most robust way and avoids all URL/path errors.
|
| 42 |
+
raw_audio_data = [
|
| 43 |
+
(sample[col]['sampling_rate'], sample[col]['array']) for col in AUDIO_COLUMNS
|
| 44 |
+
]
|
| 45 |
+
# --------------------
|
| 46 |
|
| 47 |
+
return [sentence] + raw_audio_data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
# --- Build the Gradio Interface ---
|
| 50 |
with gr.Blocks(css="footer {display: none !important}") as demo:
|
|
|
|
| 54 |
gr.Markdown("## 💥 Application Error")
|
| 55 |
gr.Markdown(f"Could not load or process the dataset. Error: `{app_error}`")
|
| 56 |
else:
|
|
|
|
| 57 |
gr.Markdown("Select a row to listen to all corresponding audio sensor recordings.")
|
| 58 |
+
|
| 59 |
slider = gr.Slider(minimum=0, maximum=len(dataset) - 1, step=1, value=0, label="Select Data Row")
|
| 60 |
+
|
| 61 |
sentence_output = gr.Textbox(label="Raw Text", interactive=False)
|
| 62 |
+
|
| 63 |
with gr.Row():
|
| 64 |
+
audio1 = gr.Audio(label="Headset Mic")
|
| 65 |
+
audio2 = gr.Audio(label="Laryngophone")
|
| 66 |
+
audio3 = gr.Audio(label="Soft In-Ear Mic")
|
| 67 |
with gr.Row():
|
| 68 |
+
audio4 = gr.Audio(label="Rigid In-Ear Mic")
|
| 69 |
+
audio5 = gr.Audio(label="Forehead Accelerometer")
|
| 70 |
+
audio6 = gr.Audio(label="Temple Pickup")
|
| 71 |
+
|
| 72 |
outputs = [sentence_output, audio1, audio2, audio3, audio4, audio5, audio6]
|
| 73 |
+
|
| 74 |
demo.load(fn=get_audio_row, inputs=gr.State(0), outputs=outputs)
|
| 75 |
slider.change(fn=get_audio_row, inputs=slider, outputs=outputs)
|
| 76 |
|