Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,14 +2,10 @@ import gradio as gr
|
|
| 2 |
from datasets import load_dataset
|
| 3 |
|
| 4 |
# --- Configuration ---
|
| 5 |
-
DATASET_NAME = "Cnam-LMSSC/vibravox
|
| 6 |
-
|
| 7 |
-
|
| 8 |
TEXT_COLUMN = "raw_text"
|
| 9 |
-
|
| 10 |
-
# --- THE FINAL, CORRECT COLUMN NAMES ---
|
| 11 |
-
# Based on the official dataset viewer on Hugging Face and the KeyError.
|
| 12 |
-
# This list is now definitive.
|
| 13 |
AUDIO_COLUMNS = [
|
| 14 |
"audio.headset_microphone",
|
| 15 |
"audio.throat_microphone",
|
|
@@ -19,60 +15,127 @@ AUDIO_COLUMNS = [
|
|
| 19 |
"audio.temple_vibration_pickup"
|
| 20 |
]
|
| 21 |
|
| 22 |
-
# ---
|
| 23 |
-
try:
|
| 24 |
-
# Load the dataset normally.
|
| 25 |
-
dataset = load_dataset(DATASET_NAME, DATASET_CONFIG, split=DATASET_SPLIT)
|
| 26 |
-
except Exception as e:
|
| 27 |
-
dataset = None
|
| 28 |
-
app_error = e
|
| 29 |
|
| 30 |
-
|
| 31 |
-
def get_audio_row(index: int):
|
| 32 |
"""
|
| 33 |
-
|
|
|
|
| 34 |
"""
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
-
# This will now work because we are using the correct column names.
|
| 41 |
-
# We extract the raw audio (NumPy array) and sampling rate directly.
|
| 42 |
raw_audio_data = [
|
| 43 |
(sample[col]['sampling_rate'], sample[col]['array']) for col in AUDIO_COLUMNS
|
| 44 |
]
|
| 45 |
|
| 46 |
return [sentence] + raw_audio_data
|
| 47 |
|
|
|
|
| 48 |
# --- Build the Gradio Interface ---
|
| 49 |
with gr.Blocks(css="footer {display: none !important}") as demo:
|
| 50 |
-
gr.Markdown("# Vibravox Multi-
|
| 51 |
-
|
| 52 |
-
if dataset is None:
|
| 53 |
-
gr.Markdown("## 💥 Application Error")
|
| 54 |
-
gr.Markdown(f"Could not load or process the dataset. Error: `{app_error}`")
|
| 55 |
-
else:
|
| 56 |
-
gr.Markdown("Select a row to listen to all corresponding audio sensor recordings.")
|
| 57 |
|
| 58 |
-
|
|
|
|
|
|
|
| 59 |
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
audio2 = gr.Audio(label="Laryngophone (Throat Mic)")
|
| 66 |
-
audio3 = gr.Audio(label="Soft In-Ear Microphone")
|
| 67 |
-
with gr.Row():
|
| 68 |
-
audio4 = gr.Audio(label="Rigid In-Ear Microphone")
|
| 69 |
-
audio5 = gr.Audio(label="Forehead Accelerometer")
|
| 70 |
-
audio6 = gr.Audio(label="Temple Vibration Pickup")
|
| 71 |
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
-
# Launch the application
|
| 78 |
demo.launch()
|
|
|
|
| 2 |
from datasets import load_dataset
|
| 3 |
|
| 4 |
# --- Configuration ---
|
| 5 |
+
DATASET_NAME = "Cnam-LMSSC/vibravox"
|
| 6 |
+
SUBSETS = ["speech_clean", "speech_noisy", "speechless_clean", "speechless_noisy"]
|
| 7 |
+
SPLITS = ["train", "validation", "test"]
|
| 8 |
TEXT_COLUMN = "raw_text"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
AUDIO_COLUMNS = [
|
| 10 |
"audio.headset_microphone",
|
| 11 |
"audio.throat_microphone",
|
|
|
|
| 15 |
"audio.temple_vibration_pickup"
|
| 16 |
]
|
| 17 |
|
| 18 |
+
# --- Main Application Logic ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
def load_and_update_all(subset, split):
|
|
|
|
| 21 |
"""
|
| 22 |
+
This is the main function. It loads a new dataset based on user selection
|
| 23 |
+
and returns updates for the entire UI, including the first row of data.
|
| 24 |
"""
|
| 25 |
+
try:
|
| 26 |
+
# Load the newly selected dataset
|
| 27 |
+
dataset = load_dataset(DATASET_NAME, name=subset, split=split)
|
| 28 |
+
|
| 29 |
+
# Check if the text column exists in this subset
|
| 30 |
+
has_text = TEXT_COLUMN in dataset.features
|
| 31 |
+
|
| 32 |
+
# Get the first row to display immediately
|
| 33 |
+
sample = dataset[0]
|
| 34 |
+
sentence = sample[TEXT_COLUMN] if has_text else None
|
| 35 |
+
raw_audio_data = [
|
| 36 |
+
(sample[col]['sampling_rate'], sample[col]['array']) for col in AUDIO_COLUMNS
|
| 37 |
+
]
|
| 38 |
+
|
| 39 |
+
# Return updates for all UI components
|
| 40 |
+
return (
|
| 41 |
+
dataset, # Update the state object
|
| 42 |
+
gr.update(maximum=len(dataset) - 1, value=0, visible=True, interactive=True), # Update slider
|
| 43 |
+
gr.update(value=sentence, visible=has_text), # Update and show/hide text box
|
| 44 |
+
*raw_audio_data, # Unpack audio data for all players
|
| 45 |
+
gr.update(value="", visible=False) # Hide any previous error messages
|
| 46 |
+
)
|
| 47 |
+
except Exception as e:
|
| 48 |
+
# If loading fails, show an error and hide the data components
|
| 49 |
+
error_message = f"Failed to load {subset}/{split}. Error: {e}"
|
| 50 |
+
empty_audio = (None, None)
|
| 51 |
+
return (
|
| 52 |
+
None, # Clear the state
|
| 53 |
+
gr.update(visible=False), # Hide slider
|
| 54 |
+
gr.update(visible=False), # Hide text box
|
| 55 |
+
*[empty_audio] * len(AUDIO_COLUMNS), # Clear all audio players
|
| 56 |
+
gr.update(value=error_message, visible=True) # Show the error message
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
|
| 60 |
+
def get_audio_row(dataset, index):
|
| 61 |
+
"""
|
| 62 |
+
This function is called ONLY when the slider changes.
|
| 63 |
+
It fetches a new row from the currently loaded dataset (held in the state).
|
| 64 |
+
"""
|
| 65 |
+
if dataset is None:
|
| 66 |
+
# This case handles when the initial load failed
|
| 67 |
+
return [None] * (1 + len(AUDIO_COLUMNS))
|
| 68 |
+
|
| 69 |
+
index = int(index)
|
| 70 |
+
sample = dataset[index]
|
| 71 |
+
|
| 72 |
+
has_text = TEXT_COLUMN in dataset.features
|
| 73 |
+
sentence = sample[TEXT_COLUMN] if has_text else None
|
| 74 |
|
|
|
|
|
|
|
| 75 |
raw_audio_data = [
|
| 76 |
(sample[col]['sampling_rate'], sample[col]['array']) for col in AUDIO_COLUMNS
|
| 77 |
]
|
| 78 |
|
| 79 |
return [sentence] + raw_audio_data
|
| 80 |
|
| 81 |
+
|
| 82 |
# --- Build the Gradio Interface ---
|
| 83 |
with gr.Blocks(css="footer {display: none !important}") as demo:
|
| 84 |
+
gr.Markdown("# Vibravox Multi-Sensor Explorer")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
+
# This state object holds the currently loaded dataset in memory
|
| 87 |
+
# It's invisible to the user but accessible by our functions
|
| 88 |
+
loaded_dataset_state = gr.State(None)
|
| 89 |
|
| 90 |
+
# --- INPUT CONTROLS ---
|
| 91 |
+
with gr.Row():
|
| 92 |
+
subset_dropdown = gr.Dropdown(SUBSETS, value="speech_clean", label="Select Subset")
|
| 93 |
+
split_dropdown = gr.Dropdown(SPLITS, value="train", label="Select Split")
|
| 94 |
+
|
| 95 |
+
# --- UI COMPONENTS FOR DATA ---
|
| 96 |
+
error_box = gr.Textbox(visible=False, interactive=False, container=False)
|
| 97 |
+
sentence_output = gr.Textbox(label="Raw Text", interactive=False, container=False)
|
| 98 |
+
slider = gr.Slider(label="Select Data Row", container=False)
|
| 99 |
+
|
| 100 |
+
with gr.Row():
|
| 101 |
+
audio1 = gr.Audio(label="Headset Microphone")
|
| 102 |
+
audio2 = gr.Audio(label="Laryngophone (Throat Mic)")
|
| 103 |
+
audio3 = gr.Audio(label="Soft In-Ear Microphone")
|
| 104 |
+
with gr.Row():
|
| 105 |
+
audio4 = gr.Audio(label="Rigid In-Ear Microphone")
|
| 106 |
+
audio5 = gr.Audio(label="Forehead Accelerometer")
|
| 107 |
+
audio6 = gr.Audio(label="Temple Vibration Pickup")
|
| 108 |
|
| 109 |
+
# A list of all the output components for easier reference
|
| 110 |
+
all_outputs = [loaded_dataset_state, slider, sentence_output, audio1, audio2, audio3, audio4, audio5, audio6, error_box]
|
| 111 |
+
audio_outputs = [sentence_output, audio1, audio2, audio3, audio4, audio5, audio6]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
+
# --- WIRING THE EVENT HANDLERS ---
|
| 114 |
+
|
| 115 |
+
# 1. When the app first loads, run the main function with default values
|
| 116 |
+
demo.load(
|
| 117 |
+
fn=load_and_update_all,
|
| 118 |
+
inputs=[subset_dropdown, split_dropdown],
|
| 119 |
+
outputs=all_outputs
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
# 2. When a dropdown value changes, re-run the main function
|
| 123 |
+
subset_dropdown.change(
|
| 124 |
+
fn=load_and_update_all,
|
| 125 |
+
inputs=[subset_dropdown, split_dropdown],
|
| 126 |
+
outputs=all_outputs
|
| 127 |
+
)
|
| 128 |
+
split_dropdown.change(
|
| 129 |
+
fn=load_and_update_all,
|
| 130 |
+
inputs=[subset_dropdown, split_dropdown],
|
| 131 |
+
outputs=all_outputs
|
| 132 |
+
)
|
| 133 |
|
| 134 |
+
# 3. When ONLY the slider changes, run the simpler function
|
| 135 |
+
slider.change(
|
| 136 |
+
fn=get_audio_row,
|
| 137 |
+
inputs=[loaded_dataset_state, slider],
|
| 138 |
+
outputs=audio_outputs
|
| 139 |
+
)
|
| 140 |
|
|
|
|
| 141 |
demo.launch()
|