Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import cv2 | |
| import torch | |
| import numpy as np | |
| # Load the YOLOv5 model | |
| model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True) | |
| # Function to run inference on an image | |
| def run_inference(image): | |
| # Convert the image from PIL format to a format compatible with OpenCV | |
| image = np.array(image) | |
| # Run YOLOv5 inference | |
| results = model(image) | |
| # Convert the annotated image from BGR to RGB for display | |
| annotated_image = results.render()[0] | |
| annotated_image = cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB) | |
| return annotated_image | |
| # Create the Gradio interface | |
| interface = gr.Interface( | |
| fn=run_inference, | |
| inputs=gr.Image(type="pil"), | |
| outputs=gr.Image(type="pil"), | |
| title="YOLOv5 Object Detection", | |
| description="Upload an image to run YOLOv5 object detection and see the results." | |
| ) | |
| # Launch the app | |
| interface.launch() | |