Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	
		jhshao
		
	commited on
		
		
					Commit 
							
							·
						
						02f6d94
	
1
								Parent(s):
							
							8bd250a
								
add app
Browse files- .gitattributes copy +37 -0
- README.md +18 -6
- app.py +362 -0
- chronodepth_pipeline.py +530 -0
- gradio_patches/examples.py +13 -0
- requirements.txt +14 -0
    	
        .gitattributes copy
    ADDED
    
    | @@ -0,0 +1,37 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            *.7z filter=lfs diff=lfs merge=lfs -text
         | 
| 2 | 
            +
            *.arrow filter=lfs diff=lfs merge=lfs -text
         | 
| 3 | 
            +
            *.bin filter=lfs diff=lfs merge=lfs -text
         | 
| 4 | 
            +
            *.bz2 filter=lfs diff=lfs merge=lfs -text
         | 
| 5 | 
            +
            *.ckpt filter=lfs diff=lfs merge=lfs -text
         | 
| 6 | 
            +
            *.ftz filter=lfs diff=lfs merge=lfs -text
         | 
| 7 | 
            +
            *.gz filter=lfs diff=lfs merge=lfs -text
         | 
| 8 | 
            +
            *.h5 filter=lfs diff=lfs merge=lfs -text
         | 
| 9 | 
            +
            *.joblib filter=lfs diff=lfs merge=lfs -text
         | 
| 10 | 
            +
            *.lfs.* filter=lfs diff=lfs merge=lfs -text
         | 
| 11 | 
            +
            *.mlmodel filter=lfs diff=lfs merge=lfs -text
         | 
| 12 | 
            +
            *.model filter=lfs diff=lfs merge=lfs -text
         | 
| 13 | 
            +
            *.msgpack filter=lfs diff=lfs merge=lfs -text
         | 
| 14 | 
            +
            *.npy filter=lfs diff=lfs merge=lfs -text
         | 
| 15 | 
            +
            *.npz filter=lfs diff=lfs merge=lfs -text
         | 
| 16 | 
            +
            *.onnx filter=lfs diff=lfs merge=lfs -text
         | 
| 17 | 
            +
            *.ot filter=lfs diff=lfs merge=lfs -text
         | 
| 18 | 
            +
            *.parquet filter=lfs diff=lfs merge=lfs -text
         | 
| 19 | 
            +
            *.pb filter=lfs diff=lfs merge=lfs -text
         | 
| 20 | 
            +
            *.pickle filter=lfs diff=lfs merge=lfs -text
         | 
| 21 | 
            +
            *.pkl filter=lfs diff=lfs merge=lfs -text
         | 
| 22 | 
            +
            *.pt filter=lfs diff=lfs merge=lfs -text
         | 
| 23 | 
            +
            *.pth filter=lfs diff=lfs merge=lfs -text
         | 
| 24 | 
            +
            *.rar filter=lfs diff=lfs merge=lfs -text
         | 
| 25 | 
            +
            *.safetensors filter=lfs diff=lfs merge=lfs -text
         | 
| 26 | 
            +
            saved_model/**/* filter=lfs diff=lfs merge=lfs -text
         | 
| 27 | 
            +
            *.tar.* filter=lfs diff=lfs merge=lfs -text
         | 
| 28 | 
            +
            *.tar filter=lfs diff=lfs merge=lfs -text
         | 
| 29 | 
            +
            *.tflite filter=lfs diff=lfs merge=lfs -text
         | 
| 30 | 
            +
            *.tgz filter=lfs diff=lfs merge=lfs -text
         | 
| 31 | 
            +
            *.wasm filter=lfs diff=lfs merge=lfs -text
         | 
| 32 | 
            +
            *.xz filter=lfs diff=lfs merge=lfs -text
         | 
| 33 | 
            +
            *.zip filter=lfs diff=lfs merge=lfs -text
         | 
| 34 | 
            +
            *.zst filter=lfs diff=lfs merge=lfs -text
         | 
| 35 | 
            +
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         | 
| 36 | 
            +
            files/sora_1764106507569053773.mp4 filter=lfs diff=lfs merge=lfs -text
         | 
| 37 | 
            +
            files/sora_e2.mp4 filter=lfs diff=lfs merge=lfs -text
         | 
    	
        README.md
    CHANGED
    
    | @@ -1,13 +1,25 @@ | |
| 1 | 
             
            ---
         | 
| 2 | 
             
            title: ChronoDepth
         | 
| 3 | 
            -
            emoji:  | 
| 4 | 
            -
            colorFrom:  | 
| 5 | 
            -
            colorTo:  | 
| 6 | 
             
            sdk: gradio
         | 
| 7 | 
            -
            sdk_version: 4.36. | 
| 8 | 
             
            app_file: app.py
         | 
| 9 | 
             
            pinned: false
         | 
| 10 | 
            -
            license:  | 
| 11 | 
             
            ---
         | 
| 12 |  | 
| 13 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
             
            ---
         | 
| 2 | 
             
            title: ChronoDepth
         | 
| 3 | 
            +
            emoji: 🔥
         | 
| 4 | 
            +
            colorFrom: pink
         | 
| 5 | 
            +
            colorTo: blue
         | 
| 6 | 
             
            sdk: gradio
         | 
| 7 | 
            +
            sdk_version: 4.36.0
         | 
| 8 | 
             
            app_file: app.py
         | 
| 9 | 
             
            pinned: false
         | 
| 10 | 
            +
            license: cc-by-4.0
         | 
| 11 | 
             
            ---
         | 
| 12 |  | 
| 13 | 
            +
             | 
| 14 | 
            +
            This is a demo of the monocular video depth estimation pipeline, described in the paper titled ["Learning Temporally Consistent Video Depth from Video Diffusion Priors"](https://arxiv.org/abs/2406.01493).
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            ```bibtex
         | 
| 17 | 
            +
            @misc{shao2024learning,
         | 
| 18 | 
            +
                  title={Learning Temporally Consistent Video Depth from Video Diffusion Priors}, 
         | 
| 19 | 
            +
                  author={Jiahao Shao and Yuanbo Yang and Hongyu Zhou and Youmin Zhang and Yujun Shen and Matteo Poggi and Yiyi Liao},
         | 
| 20 | 
            +
                  year={2024},
         | 
| 21 | 
            +
                  eprint={2406.01493},
         | 
| 22 | 
            +
                  archivePrefix={arXiv},
         | 
| 23 | 
            +
                  primaryClass={cs.CV}
         | 
| 24 | 
            +
            }
         | 
| 25 | 
            +
            ```
         | 
    	
        app.py
    ADDED
    
    | @@ -0,0 +1,362 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # MIT License
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            # Copyright (c) 2024 Jiahao Shao
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            # Permission is hereby granted, free of charge, to any person obtaining a copy
         | 
| 6 | 
            +
            # of this software and associated documentation files (the "Software"), to deal
         | 
| 7 | 
            +
            # in the Software without restriction, including without limitation the rights
         | 
| 8 | 
            +
            # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
         | 
| 9 | 
            +
            # copies of the Software, and to permit persons to whom the Software is
         | 
| 10 | 
            +
            # furnished to do so, subject to the following conditions:
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            # The above copyright notice and this permission notice shall be included in all
         | 
| 13 | 
            +
            # copies or substantial portions of the Software.
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
         | 
| 16 | 
            +
            # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
         | 
| 17 | 
            +
            # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
         | 
| 18 | 
            +
            # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
         | 
| 19 | 
            +
            # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
         | 
| 20 | 
            +
            # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
         | 
| 21 | 
            +
            # SOFTWARE.
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            import functools
         | 
| 24 | 
            +
            import os
         | 
| 25 | 
            +
            import zipfile
         | 
| 26 | 
            +
            import tempfile
         | 
| 27 | 
            +
            from io import BytesIO
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            import spaces
         | 
| 30 | 
            +
            import gradio as gr
         | 
| 31 | 
            +
            import numpy as np
         | 
| 32 | 
            +
            import torch as torch
         | 
| 33 | 
            +
            from PIL import Image
         | 
| 34 | 
            +
            from tqdm import tqdm
         | 
| 35 | 
            +
            import mediapy as media
         | 
| 36 | 
            +
             | 
| 37 | 
            +
            from huggingface_hub import login
         | 
| 38 | 
            +
             | 
| 39 | 
            +
            from chronodepth_pipeline import ChronoDepthPipeline
         | 
| 40 | 
            +
            from gradio_patches.examples import Examples
         | 
| 41 | 
            +
             | 
| 42 | 
            +
            default_seed = 2024
         | 
| 43 | 
            +
             | 
| 44 | 
            +
            default_num_inference_steps = 5
         | 
| 45 | 
            +
            default_num_frames = 10
         | 
| 46 | 
            +
            default_window_size = 9
         | 
| 47 | 
            +
            default_video_processing_resolution = 768
         | 
| 48 | 
            +
            default_video_out_max_frames = 10
         | 
| 49 | 
            +
            default_decode_chunk_size = 10
         | 
| 50 | 
            +
             | 
| 51 | 
            +
            def process_video(
         | 
| 52 | 
            +
                pipe,
         | 
| 53 | 
            +
                path_input,
         | 
| 54 | 
            +
                num_inference_steps=default_num_inference_steps,
         | 
| 55 | 
            +
                num_frames=default_num_frames,
         | 
| 56 | 
            +
                window_size=default_window_size,
         | 
| 57 | 
            +
                out_max_frames=default_video_out_max_frames,
         | 
| 58 | 
            +
                progress=gr.Progress(),
         | 
| 59 | 
            +
            ):
         | 
| 60 | 
            +
                if path_input is None:
         | 
| 61 | 
            +
                    raise gr.Error(
         | 
| 62 | 
            +
                        "Missing video in the first pane: upload a file or use one from the gallery below."
         | 
| 63 | 
            +
                    )
         | 
| 64 | 
            +
             | 
| 65 | 
            +
                name_base, name_ext = os.path.splitext(os.path.basename(path_input))
         | 
| 66 | 
            +
                print(f"Processing video {name_base}{name_ext}")
         | 
| 67 | 
            +
             | 
| 68 | 
            +
                path_output_dir = tempfile.mkdtemp()
         | 
| 69 | 
            +
                path_out_vis = os.path.join(path_output_dir, f"{name_base}_depth_colored.mp4")
         | 
| 70 | 
            +
                path_out_16bit = os.path.join(path_output_dir, f"{name_base}_depth_16bit.zip")
         | 
| 71 | 
            +
             | 
| 72 | 
            +
                generator = torch.Generator(device=pipe.device).manual_seed(default_seed)
         | 
| 73 | 
            +
             | 
| 74 | 
            +
                import time
         | 
| 75 | 
            +
                start_time = time.time()
         | 
| 76 | 
            +
                zipf = None
         | 
| 77 | 
            +
                try:
         | 
| 78 | 
            +
                    if window_size is None or window_size == num_frames:
         | 
| 79 | 
            +
                        inpaint_inference = False
         | 
| 80 | 
            +
                    else:
         | 
| 81 | 
            +
                        inpaint_inference = True
         | 
| 82 | 
            +
                    data_ls = []
         | 
| 83 | 
            +
                    video_data = media.read_video(path_input)
         | 
| 84 | 
            +
                    video_length = len(video_data)
         | 
| 85 | 
            +
                    fps = video_data.metadata.fps
         | 
| 86 | 
            +
             | 
| 87 | 
            +
                    duration_sec = video_length / fps
         | 
| 88 | 
            +
             | 
| 89 | 
            +
                    out_duration_sec = out_max_frames / fps
         | 
| 90 | 
            +
                    if duration_sec > out_duration_sec:
         | 
| 91 | 
            +
                        gr.Warning(
         | 
| 92 | 
            +
                            f"Only the first ~{int(out_duration_sec)} seconds will be processed; "
         | 
| 93 | 
            +
                            f"use alternative setups such as ChronoDepth on github for full processing"
         | 
| 94 | 
            +
                        )
         | 
| 95 | 
            +
                        video_length = out_max_frames
         | 
| 96 | 
            +
             | 
| 97 | 
            +
                    for i in tqdm(range(video_length-num_frames+1)):
         | 
| 98 | 
            +
                        is_first_clip = i == 0
         | 
| 99 | 
            +
                        is_last_clip = i == video_length - num_frames
         | 
| 100 | 
            +
                        is_new_clip = (
         | 
| 101 | 
            +
                            (inpaint_inference and i % window_size == 0)
         | 
| 102 | 
            +
                            or (inpaint_inference == False and i % num_frames == 0)
         | 
| 103 | 
            +
                        )
         | 
| 104 | 
            +
                        if is_first_clip or is_last_clip or is_new_clip:
         | 
| 105 | 
            +
                            data_ls.append(np.array(video_data[i: i+num_frames])) # [t, H, W, 3]
         | 
| 106 | 
            +
             | 
| 107 | 
            +
                    zipf = zipfile.ZipFile(path_out_16bit, "w", zipfile.ZIP_DEFLATED)
         | 
| 108 | 
            +
             | 
| 109 | 
            +
                    depth_colored_pred = []
         | 
| 110 | 
            +
                    depth_pred = []
         | 
| 111 | 
            +
                    # -------------------- Inference and saving --------------------
         | 
| 112 | 
            +
                    with torch.no_grad():
         | 
| 113 | 
            +
                        for iter, batch in enumerate(tqdm(data_ls)):
         | 
| 114 | 
            +
                            rgb_int = batch
         | 
| 115 | 
            +
                            input_images = [Image.fromarray(rgb_int[i]) for i in range(num_frames)]
         | 
| 116 | 
            +
             | 
| 117 | 
            +
                            # Predict depth
         | 
| 118 | 
            +
                            if iter == 0: # First clip
         | 
| 119 | 
            +
                                pipe_out = pipe(
         | 
| 120 | 
            +
                                    input_images,
         | 
| 121 | 
            +
                                    num_frames=len(input_images),
         | 
| 122 | 
            +
                                    num_inference_steps=num_inference_steps,
         | 
| 123 | 
            +
                                    decode_chunk_size=default_decode_chunk_size,
         | 
| 124 | 
            +
                                    motion_bucket_id=127,
         | 
| 125 | 
            +
                                    fps=7,
         | 
| 126 | 
            +
                                    noise_aug_strength=0.0,
         | 
| 127 | 
            +
                                    generator=generator,
         | 
| 128 | 
            +
                                )
         | 
| 129 | 
            +
                            elif inpaint_inference and (iter == len(data_ls) - 1): # temporal inpaint inference for last clip
         | 
| 130 | 
            +
                                last_window_size = window_size if video_length%window_size == 0 else video_length%window_size
         | 
| 131 | 
            +
                                pipe_out = pipe(
         | 
| 132 | 
            +
                                    input_images,
         | 
| 133 | 
            +
                                    num_frames=num_frames,
         | 
| 134 | 
            +
                                    num_inference_steps=num_inference_steps,
         | 
| 135 | 
            +
                                    decode_chunk_size=default_decode_chunk_size,
         | 
| 136 | 
            +
                                    motion_bucket_id=127,
         | 
| 137 | 
            +
                                    fps=7,
         | 
| 138 | 
            +
                                    noise_aug_strength=0.0,
         | 
| 139 | 
            +
                                    generator=generator,
         | 
| 140 | 
            +
                                    depth_pred_last=depth_frames_pred_ts[last_window_size:],
         | 
| 141 | 
            +
                                )
         | 
| 142 | 
            +
                            elif inpaint_inference and iter > 0: # temporal inpaint inference
         | 
| 143 | 
            +
                                pipe_out = pipe(
         | 
| 144 | 
            +
                                    input_images,
         | 
| 145 | 
            +
                                    num_frames=num_frames,
         | 
| 146 | 
            +
                                    num_inference_steps=num_inference_steps,
         | 
| 147 | 
            +
                                    decode_chunk_size=default_decode_chunk_size,
         | 
| 148 | 
            +
                                    motion_bucket_id=127,
         | 
| 149 | 
            +
                                    fps=7,
         | 
| 150 | 
            +
                                    noise_aug_strength=0.0,
         | 
| 151 | 
            +
                                    generator=generator,
         | 
| 152 | 
            +
                                    depth_pred_last=depth_frames_pred_ts[window_size:],
         | 
| 153 | 
            +
                                )
         | 
| 154 | 
            +
                            else: # separate inference
         | 
| 155 | 
            +
                                pipe_out = pipe(
         | 
| 156 | 
            +
                                    input_images,
         | 
| 157 | 
            +
                                    num_frames=num_frames,
         | 
| 158 | 
            +
                                    num_inference_steps=num_inference_steps,
         | 
| 159 | 
            +
                                    decode_chunk_size=default_decode_chunk_size,
         | 
| 160 | 
            +
                                    motion_bucket_id=127,
         | 
| 161 | 
            +
                                    fps=7,
         | 
| 162 | 
            +
                                    noise_aug_strength=0.0,
         | 
| 163 | 
            +
                                    generator=generator,
         | 
| 164 | 
            +
                                )
         | 
| 165 | 
            +
             | 
| 166 | 
            +
                            depth_frames_pred = [pipe_out.depth_np[i] for i in range(num_frames)]
         | 
| 167 | 
            +
             | 
| 168 | 
            +
                            depth_frames_colored_pred = []
         | 
| 169 | 
            +
                            for i in range(num_frames):
         | 
| 170 | 
            +
                                depth_frame_colored_pred = np.array(pipe_out.depth_colored[i])
         | 
| 171 | 
            +
                                depth_frames_colored_pred.append(depth_frame_colored_pred)
         | 
| 172 | 
            +
                            depth_frames_colored_pred = np.stack(depth_frames_colored_pred, axis=0)
         | 
| 173 | 
            +
             | 
| 174 | 
            +
                            depth_frames_pred = np.stack(depth_frames_pred, axis=0)
         | 
| 175 | 
            +
                            depth_frames_pred_ts = torch.from_numpy(depth_frames_pred).to(pipe.device)
         | 
| 176 | 
            +
                            depth_frames_pred_ts = depth_frames_pred_ts * 2 - 1
         | 
| 177 | 
            +
             | 
| 178 | 
            +
                            if inpaint_inference == False:
         | 
| 179 | 
            +
                                if iter == len(data_ls) - 1:
         | 
| 180 | 
            +
                                    last_window_size = num_frames if video_length%num_frames == 0 else video_length%num_frames
         | 
| 181 | 
            +
                                    depth_colored_pred.append(depth_frames_colored_pred[-last_window_size:])
         | 
| 182 | 
            +
                                    depth_pred.append(depth_frames_pred[-last_window_size:])
         | 
| 183 | 
            +
                                else:
         | 
| 184 | 
            +
                                    depth_colored_pred.append(depth_frames_colored_pred)
         | 
| 185 | 
            +
                                    depth_pred.append(depth_frames_pred)
         | 
| 186 | 
            +
                            else:
         | 
| 187 | 
            +
                                if iter == 0:
         | 
| 188 | 
            +
                                    depth_colored_pred.append(depth_frames_colored_pred)
         | 
| 189 | 
            +
                                    depth_pred.append(depth_frames_pred)
         | 
| 190 | 
            +
                                elif iter == len(data_ls) - 1:
         | 
| 191 | 
            +
                                    depth_colored_pred.append(depth_frames_colored_pred[-last_window_size:])
         | 
| 192 | 
            +
                                    depth_pred.append(depth_frames_pred[-last_window_size:])
         | 
| 193 | 
            +
                                else:
         | 
| 194 | 
            +
                                    depth_colored_pred.append(depth_frames_colored_pred[-window_size:])
         | 
| 195 | 
            +
                                    depth_pred.append(depth_frames_pred[-window_size:])
         | 
| 196 | 
            +
             | 
| 197 | 
            +
                    depth_colored_pred = np.concatenate(depth_colored_pred, axis=0)
         | 
| 198 | 
            +
                    depth_pred = np.concatenate(depth_pred, axis=0)
         | 
| 199 | 
            +
             | 
| 200 | 
            +
                    # -------------------- Save results --------------------
         | 
| 201 | 
            +
                    # Save images
         | 
| 202 | 
            +
                    for i in tqdm(range(len(depth_pred))):
         | 
| 203 | 
            +
                        archive_path = os.path.join(
         | 
| 204 | 
            +
                            f"{name_base}_depth_16bit", f"{i:05d}.png"
         | 
| 205 | 
            +
                        )
         | 
| 206 | 
            +
                        img_byte_arr = BytesIO()
         | 
| 207 | 
            +
                        depth_16bit = Image.fromarray((depth_pred[i] * 65535.0).astype(np.uint16))
         | 
| 208 | 
            +
                        depth_16bit.save(img_byte_arr, format="png")
         | 
| 209 | 
            +
                        img_byte_arr.seek(0)
         | 
| 210 | 
            +
                        zipf.writestr(archive_path, img_byte_arr.read())
         | 
| 211 | 
            +
             | 
| 212 | 
            +
                    # Export to video
         | 
| 213 | 
            +
                    media.write_video(path_out_vis, depth_colored_pred, fps=fps)
         | 
| 214 | 
            +
                finally:
         | 
| 215 | 
            +
                    if zipf is not None:
         | 
| 216 | 
            +
                        zipf.close()
         | 
| 217 | 
            +
             | 
| 218 | 
            +
                end_time = time.time()
         | 
| 219 | 
            +
                print(f"Processing time: {end_time - start_time} seconds")
         | 
| 220 | 
            +
                return (
         | 
| 221 | 
            +
                    path_out_vis,
         | 
| 222 | 
            +
                    [path_out_vis, path_out_16bit],
         | 
| 223 | 
            +
                )
         | 
| 224 | 
            +
             | 
| 225 | 
            +
             | 
| 226 | 
            +
            def run_demo_server(pipe):
         | 
| 227 | 
            +
                process_pipe_video = spaces.GPU(
         | 
| 228 | 
            +
                    functools.partial(process_video, pipe), duration=210
         | 
| 229 | 
            +
                )
         | 
| 230 | 
            +
                os.environ["GRADIO_ALLOW_FLAGGING"] = "never"
         | 
| 231 | 
            +
             | 
| 232 | 
            +
                with gr.Blocks(
         | 
| 233 | 
            +
                    analytics_enabled=False,
         | 
| 234 | 
            +
                    title="ChronoDepth Video Depth Estimation",
         | 
| 235 | 
            +
                    css="""
         | 
| 236 | 
            +
                        #download {
         | 
| 237 | 
            +
                            height: 118px;
         | 
| 238 | 
            +
                        }
         | 
| 239 | 
            +
                        .slider .inner {
         | 
| 240 | 
            +
                            width: 5px;
         | 
| 241 | 
            +
                            background: #FFF;
         | 
| 242 | 
            +
                        }
         | 
| 243 | 
            +
                        .viewport {
         | 
| 244 | 
            +
                            aspect-ratio: 4/3;
         | 
| 245 | 
            +
                        }
         | 
| 246 | 
            +
                        h1 {
         | 
| 247 | 
            +
                            text-align: center;
         | 
| 248 | 
            +
                            display: block;
         | 
| 249 | 
            +
                        }
         | 
| 250 | 
            +
                        h2 {
         | 
| 251 | 
            +
                            text-align: center;
         | 
| 252 | 
            +
                            display: block;
         | 
| 253 | 
            +
                        }
         | 
| 254 | 
            +
                        h3 {
         | 
| 255 | 
            +
                            text-align: center;
         | 
| 256 | 
            +
                            display: block;
         | 
| 257 | 
            +
                        }
         | 
| 258 | 
            +
                    """,
         | 
| 259 | 
            +
                ) as demo:
         | 
| 260 | 
            +
                    gr.Markdown(
         | 
| 261 | 
            +
                        """
         | 
| 262 | 
            +
                        # ChronoDepth Video Depth Estimation
         | 
| 263 | 
            +
             | 
| 264 | 
            +
                        <p align="center">
         | 
| 265 | 
            +
                        <a title="Website" href="https://jhaoshao.github.io/ChronoDepth/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
         | 
| 266 | 
            +
                            <img src="https://img.shields.io/website?url=https%3A%2F%2Fjhaoshao.github.io%2FChronoDepth%2F&up_message=ChronoDepth&up_color=blue&style=flat&logo=timescale&logoColor=%23FFDC0F">
         | 
| 267 | 
            +
                        </a>
         | 
| 268 | 
            +
                        <a title="arXiv" href="https://arxiv.org/abs/2312.02145" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
         | 
| 269 | 
            +
                            <img src="https://img.shields.io/badge/arXiv-PDF-b31b1b">
         | 
| 270 | 
            +
                        </a>
         | 
| 271 | 
            +
                        <a title="Github" href="https://github.com/jhaoshao/ChronoDepth" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
         | 
| 272 | 
            +
                            <img src="https://img.shields.io/github/stars/jhaoshao/ChronoDepth?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="badge-github-stars">
         | 
| 273 | 
            +
                        </a>
         | 
| 274 | 
            +
                        </p>
         | 
| 275 | 
            +
             | 
| 276 | 
            +
                        ChronoDepth is the state-of-the-art video depth estimator for videos in the wild. 
         | 
| 277 | 
            +
                        Upload your video and have a try!<br>
         | 
| 278 | 
            +
                        We set denoising steps to 5, number of frames for each video clip to 10, and overlap between clips to 1.
         | 
| 279 | 
            +
             | 
| 280 | 
            +
                    """
         | 
| 281 | 
            +
                    )
         | 
| 282 | 
            +
             | 
| 283 | 
            +
                    with gr.Row():
         | 
| 284 | 
            +
                        with gr.Column():
         | 
| 285 | 
            +
                            video_input = gr.Video(
         | 
| 286 | 
            +
                                label="Input Video",
         | 
| 287 | 
            +
                                sources=["upload"],
         | 
| 288 | 
            +
                            )
         | 
| 289 | 
            +
                            with gr.Row():
         | 
| 290 | 
            +
                                video_submit_btn = gr.Button(
         | 
| 291 | 
            +
                                    value="Compute Depth", variant="primary"
         | 
| 292 | 
            +
                                )
         | 
| 293 | 
            +
                                video_reset_btn = gr.Button(value="Reset")
         | 
| 294 | 
            +
                        with gr.Column():
         | 
| 295 | 
            +
                            video_output_video = gr.Video(
         | 
| 296 | 
            +
                                label="Output video depth (red-near, blue-far)",
         | 
| 297 | 
            +
                                interactive=False,
         | 
| 298 | 
            +
                            )
         | 
| 299 | 
            +
                            video_output_files = gr.Files(
         | 
| 300 | 
            +
                                label="Depth outputs",
         | 
| 301 | 
            +
                                elem_id="download",
         | 
| 302 | 
            +
                                interactive=False,
         | 
| 303 | 
            +
                            )
         | 
| 304 | 
            +
                    Examples(
         | 
| 305 | 
            +
                        fn=process_pipe_video,
         | 
| 306 | 
            +
                        examples=[
         | 
| 307 | 
            +
                            os.path.join("files", name)
         | 
| 308 | 
            +
                            for name in [
         | 
| 309 | 
            +
                                "sora_e2.mp4",
         | 
| 310 | 
            +
                                "sora_1758192960116785459.mp4",
         | 
| 311 | 
            +
                            ]
         | 
| 312 | 
            +
                        ],
         | 
| 313 | 
            +
                        inputs=[video_input],
         | 
| 314 | 
            +
                        outputs=[video_output_video, video_output_files],
         | 
| 315 | 
            +
                        cache_examples=True,
         | 
| 316 | 
            +
                        directory_name="examples_video",
         | 
| 317 | 
            +
                    )
         | 
| 318 | 
            +
             | 
| 319 | 
            +
                    video_submit_btn.click(
         | 
| 320 | 
            +
                        fn=process_pipe_video,
         | 
| 321 | 
            +
                        inputs=[video_input],
         | 
| 322 | 
            +
                        outputs=[video_output_video, video_output_files],
         | 
| 323 | 
            +
                        concurrency_limit=1,
         | 
| 324 | 
            +
                    )
         | 
| 325 | 
            +
             | 
| 326 | 
            +
                    video_reset_btn.click(
         | 
| 327 | 
            +
                        fn=lambda: (None, None, None),
         | 
| 328 | 
            +
                        inputs=[],
         | 
| 329 | 
            +
                        outputs=[video_input, video_output_video],
         | 
| 330 | 
            +
                        concurrency_limit=1,
         | 
| 331 | 
            +
                    )
         | 
| 332 | 
            +
             | 
| 333 | 
            +
                    demo.queue(
         | 
| 334 | 
            +
                        api_open=False,
         | 
| 335 | 
            +
                    ).launch(
         | 
| 336 | 
            +
                        server_name="0.0.0.0",
         | 
| 337 | 
            +
                        server_port=7860,
         | 
| 338 | 
            +
                    )
         | 
| 339 | 
            +
             | 
| 340 | 
            +
             | 
| 341 | 
            +
            def main():
         | 
| 342 | 
            +
                CHECKPOINT = "jhshao/ChronoDepth"
         | 
| 343 | 
            +
             | 
| 344 | 
            +
                if "HF_TOKEN_LOGIN" in os.environ:
         | 
| 345 | 
            +
                    login(token=os.environ["HF_TOKEN_LOGIN"])
         | 
| 346 | 
            +
             | 
| 347 | 
            +
                device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
         | 
| 348 | 
            +
                print(f"Running on device: {device}")
         | 
| 349 | 
            +
                pipe = ChronoDepthPipeline.from_pretrained(CHECKPOINT)
         | 
| 350 | 
            +
                try:
         | 
| 351 | 
            +
                    import xformers
         | 
| 352 | 
            +
             | 
| 353 | 
            +
                    pipe.enable_xformers_memory_efficient_attention()
         | 
| 354 | 
            +
                except:
         | 
| 355 | 
            +
                    pass  # run without xformers
         | 
| 356 | 
            +
             | 
| 357 | 
            +
                pipe = pipe.to(device)
         | 
| 358 | 
            +
                run_demo_server(pipe)
         | 
| 359 | 
            +
             | 
| 360 | 
            +
             | 
| 361 | 
            +
            if __name__ == "__main__":
         | 
| 362 | 
            +
                main()
         | 
    	
        chronodepth_pipeline.py
    ADDED
    
    | @@ -0,0 +1,530 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Adapted from Marigold: https://github.com/prs-eth/Marigold and diffusers
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import inspect
         | 
| 4 | 
            +
            from typing import Union, Optional, List
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            import torch
         | 
| 7 | 
            +
            import numpy as np
         | 
| 8 | 
            +
            import matplotlib.pyplot as plt
         | 
| 9 | 
            +
            from tqdm.auto import tqdm
         | 
| 10 | 
            +
            import PIL
         | 
| 11 | 
            +
            from PIL import Image
         | 
| 12 | 
            +
            from diffusers import (
         | 
| 13 | 
            +
                DiffusionPipeline,
         | 
| 14 | 
            +
                EulerDiscreteScheduler,
         | 
| 15 | 
            +
                UNetSpatioTemporalConditionModel,
         | 
| 16 | 
            +
                AutoencoderKLTemporalDecoder,
         | 
| 17 | 
            +
            )
         | 
| 18 | 
            +
            from diffusers.image_processor import VaeImageProcessor
         | 
| 19 | 
            +
            from diffusers.utils import BaseOutput
         | 
| 20 | 
            +
            from diffusers.utils.torch_utils import is_compiled_module, randn_tensor
         | 
| 21 | 
            +
            from transformers import (
         | 
| 22 | 
            +
                CLIPVisionModelWithProjection,
         | 
| 23 | 
            +
                CLIPImageProcessor,
         | 
| 24 | 
            +
            )
         | 
| 25 | 
            +
            from einops import rearrange, repeat
         | 
| 26 | 
            +
             | 
| 27 | 
            +
             | 
| 28 | 
            +
            class ChronoDepthOutput(BaseOutput):
         | 
| 29 | 
            +
                r"""
         | 
| 30 | 
            +
                Output class for zero-shot text-to-video pipeline.
         | 
| 31 | 
            +
             | 
| 32 | 
            +
                Args:
         | 
| 33 | 
            +
                    frames (`[List[PIL.Image.Image]`, `np.ndarray`]):
         | 
| 34 | 
            +
                        List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
         | 
| 35 | 
            +
                        num_channels)`.
         | 
| 36 | 
            +
                """
         | 
| 37 | 
            +
                depth_np: np.ndarray
         | 
| 38 | 
            +
                depth_colored: Union[List[PIL.Image.Image], np.ndarray]
         | 
| 39 | 
            +
             | 
| 40 | 
            +
             | 
| 41 | 
            +
            class ChronoDepthPipeline(DiffusionPipeline):
         | 
| 42 | 
            +
                model_cpu_offload_seq = "image_encoder->unet->vae"
         | 
| 43 | 
            +
                _callback_tensor_inputs = ["latents"]
         | 
| 44 | 
            +
                rgb_latent_scale_factor = 0.18215
         | 
| 45 | 
            +
                depth_latent_scale_factor = 0.18215
         | 
| 46 | 
            +
             | 
| 47 | 
            +
                def __init__(
         | 
| 48 | 
            +
                    self,
         | 
| 49 | 
            +
                    vae: AutoencoderKLTemporalDecoder,
         | 
| 50 | 
            +
                    image_encoder: CLIPVisionModelWithProjection,
         | 
| 51 | 
            +
                    unet: UNetSpatioTemporalConditionModel,
         | 
| 52 | 
            +
                    scheduler: EulerDiscreteScheduler,
         | 
| 53 | 
            +
                    feature_extractor: CLIPImageProcessor,
         | 
| 54 | 
            +
                ):
         | 
| 55 | 
            +
                    super().__init__()
         | 
| 56 | 
            +
             | 
| 57 | 
            +
                    self.register_modules(
         | 
| 58 | 
            +
                        vae=vae,
         | 
| 59 | 
            +
                        image_encoder=image_encoder,
         | 
| 60 | 
            +
                        unet=unet,
         | 
| 61 | 
            +
                        scheduler=scheduler,
         | 
| 62 | 
            +
                        feature_extractor=feature_extractor,
         | 
| 63 | 
            +
                    )
         | 
| 64 | 
            +
                    self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
         | 
| 65 | 
            +
                    self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
         | 
| 66 | 
            +
                    if not hasattr(self, "dtype"):
         | 
| 67 | 
            +
                        self.dtype = self.unet.dtype
         | 
| 68 | 
            +
             | 
| 69 | 
            +
                def encode_RGB(self,
         | 
| 70 | 
            +
                               image: torch.Tensor,
         | 
| 71 | 
            +
                               ):
         | 
| 72 | 
            +
                    video_length = image.shape[1]
         | 
| 73 | 
            +
                    image = rearrange(image, "b f c h w -> (b f) c h w")
         | 
| 74 | 
            +
                    latents = self.vae.encode(image).latent_dist.sample()
         | 
| 75 | 
            +
                    latents = rearrange(latents, "(b f) c h w -> b f c h w", f=video_length)
         | 
| 76 | 
            +
                    latents = latents * self.vae.config.scaling_factor
         | 
| 77 | 
            +
                    
         | 
| 78 | 
            +
                    return latents
         | 
| 79 | 
            +
                
         | 
| 80 | 
            +
                def _encode_image(self, image, device, discard=True):
         | 
| 81 | 
            +
                    '''
         | 
| 82 | 
            +
                    set image to zero tensor discards the image embeddings if discard is True
         | 
| 83 | 
            +
                    '''
         | 
| 84 | 
            +
                    dtype = next(self.image_encoder.parameters()).dtype
         | 
| 85 | 
            +
             | 
| 86 | 
            +
                    if not isinstance(image, torch.Tensor):
         | 
| 87 | 
            +
                        image = self.image_processor.pil_to_numpy(image)
         | 
| 88 | 
            +
                        if discard:
         | 
| 89 | 
            +
                            image = np.zeros_like(image)
         | 
| 90 | 
            +
                        image = self.image_processor.numpy_to_pt(image)
         | 
| 91 | 
            +
             | 
| 92 | 
            +
                        # We normalize the image before resizing to match with the original implementation.
         | 
| 93 | 
            +
                        # Then we unnormalize it after resizing.
         | 
| 94 | 
            +
                        image = image * 2.0 - 1.0
         | 
| 95 | 
            +
                        image = _resize_with_antialiasing(image, (224, 224))
         | 
| 96 | 
            +
                        image = (image + 1.0) / 2.0
         | 
| 97 | 
            +
             | 
| 98 | 
            +
                        # Normalize the image with for CLIP input
         | 
| 99 | 
            +
                        image = self.feature_extractor(
         | 
| 100 | 
            +
                            images=image,
         | 
| 101 | 
            +
                            do_normalize=True,
         | 
| 102 | 
            +
                            do_center_crop=False,
         | 
| 103 | 
            +
                            do_resize=False,
         | 
| 104 | 
            +
                            do_rescale=False,
         | 
| 105 | 
            +
                            return_tensors="pt",
         | 
| 106 | 
            +
                        ).pixel_values
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                    image = image.to(device=device, dtype=dtype)
         | 
| 109 | 
            +
                    image_embeddings = self.image_encoder(image).image_embeds
         | 
| 110 | 
            +
                    image_embeddings = image_embeddings.unsqueeze(1)
         | 
| 111 | 
            +
             | 
| 112 | 
            +
                    return image_embeddings
         | 
| 113 | 
            +
                
         | 
| 114 | 
            +
                def decode_depth(self, depth_latent: torch.Tensor, decode_chunk_size=5) -> torch.Tensor:
         | 
| 115 | 
            +
                    num_frames = depth_latent.shape[1]
         | 
| 116 | 
            +
                    depth_latent = rearrange(depth_latent, "b f c h w -> (b f) c h w")
         | 
| 117 | 
            +
             | 
| 118 | 
            +
                    depth_latent = depth_latent / self.vae.config.scaling_factor
         | 
| 119 | 
            +
             | 
| 120 | 
            +
                    forward_vae_fn = self.vae._orig_mod.forward if is_compiled_module(self.vae) else self.vae.forward
         | 
| 121 | 
            +
                    accepts_num_frames = "num_frames" in set(inspect.signature(forward_vae_fn).parameters.keys())
         | 
| 122 | 
            +
                    
         | 
| 123 | 
            +
                    depth_frames = []
         | 
| 124 | 
            +
                    for i in range(0, depth_latent.shape[0], decode_chunk_size):
         | 
| 125 | 
            +
                        num_frames_in = depth_latent[i : i + decode_chunk_size].shape[0]
         | 
| 126 | 
            +
                        decode_kwargs = {}
         | 
| 127 | 
            +
                        if accepts_num_frames:
         | 
| 128 | 
            +
                            # we only pass num_frames_in if it's expected
         | 
| 129 | 
            +
                            decode_kwargs["num_frames"] = num_frames_in
         | 
| 130 | 
            +
             | 
| 131 | 
            +
                        depth_frame = self.vae.decode(depth_latent[i : i + decode_chunk_size], **decode_kwargs).sample
         | 
| 132 | 
            +
                        depth_frames.append(depth_frame)
         | 
| 133 | 
            +
             | 
| 134 | 
            +
                    depth_frames = torch.cat(depth_frames, dim=0)
         | 
| 135 | 
            +
                    depth_frames = depth_frames.reshape(-1, num_frames, *depth_frames.shape[1:])
         | 
| 136 | 
            +
                    depth_mean = depth_frames.mean(dim=2, keepdim=True)
         | 
| 137 | 
            +
                    
         | 
| 138 | 
            +
                    return depth_mean
         | 
| 139 | 
            +
             | 
| 140 | 
            +
                def _get_add_time_ids(self,
         | 
| 141 | 
            +
                                      fps,
         | 
| 142 | 
            +
                                      motion_bucket_id,
         | 
| 143 | 
            +
                                      noise_aug_strength,
         | 
| 144 | 
            +
                                      dtype,
         | 
| 145 | 
            +
                                      batch_size,
         | 
| 146 | 
            +
                                      ):
         | 
| 147 | 
            +
                    add_time_ids = [fps, motion_bucket_id, noise_aug_strength]
         | 
| 148 | 
            +
             | 
| 149 | 
            +
                    passed_add_embed_dim = self.unet.config.addition_time_embed_dim * \
         | 
| 150 | 
            +
                        len(add_time_ids)
         | 
| 151 | 
            +
                    expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
         | 
| 152 | 
            +
             | 
| 153 | 
            +
                    if expected_add_embed_dim != passed_add_embed_dim:
         | 
| 154 | 
            +
                        raise ValueError(
         | 
| 155 | 
            +
                            f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
         | 
| 156 | 
            +
                        )
         | 
| 157 | 
            +
             | 
| 158 | 
            +
                    add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
         | 
| 159 | 
            +
                    add_time_ids = add_time_ids.repeat(batch_size, 1)
         | 
| 160 | 
            +
                    return add_time_ids
         | 
| 161 | 
            +
             | 
| 162 | 
            +
                def decode_latents(self, latents, num_frames, decode_chunk_size=14):
         | 
| 163 | 
            +
                    # [batch, frames, channels, height, width] -> [batch*frames, channels, height, width]
         | 
| 164 | 
            +
                    latents = latents.flatten(0, 1)
         | 
| 165 | 
            +
             | 
| 166 | 
            +
                    latents = 1 / self.vae.config.scaling_factor * latents
         | 
| 167 | 
            +
             | 
| 168 | 
            +
                    forward_vae_fn = self.vae._orig_mod.forward if is_compiled_module(self.vae) else self.vae.forward
         | 
| 169 | 
            +
                    accepts_num_frames = "num_frames" in set(inspect.signature(forward_vae_fn).parameters.keys())
         | 
| 170 | 
            +
             | 
| 171 | 
            +
                    # decode decode_chunk_size frames at a time to avoid OOM
         | 
| 172 | 
            +
                    frames = []
         | 
| 173 | 
            +
                    for i in range(0, latents.shape[0], decode_chunk_size):
         | 
| 174 | 
            +
                        num_frames_in = latents[i : i + decode_chunk_size].shape[0]
         | 
| 175 | 
            +
                        decode_kwargs = {}
         | 
| 176 | 
            +
                        if accepts_num_frames:
         | 
| 177 | 
            +
                            # we only pass num_frames_in if it's expected
         | 
| 178 | 
            +
                            decode_kwargs["num_frames"] = num_frames_in
         | 
| 179 | 
            +
             | 
| 180 | 
            +
                        frame = self.vae.decode(latents[i : i + decode_chunk_size], **decode_kwargs).sample
         | 
| 181 | 
            +
                        frames.append(frame)
         | 
| 182 | 
            +
                    frames = torch.cat(frames, dim=0)
         | 
| 183 | 
            +
             | 
| 184 | 
            +
                    # [batch*frames, channels, height, width] -> [batch, channels, frames, height, width]
         | 
| 185 | 
            +
                    frames = frames.reshape(-1, num_frames, *frames.shape[1:]).permute(0, 2, 1, 3, 4)
         | 
| 186 | 
            +
             | 
| 187 | 
            +
                    # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
         | 
| 188 | 
            +
                    frames = frames.float()
         | 
| 189 | 
            +
                    return frames
         | 
| 190 | 
            +
             | 
| 191 | 
            +
                def check_inputs(self, image, height, width):
         | 
| 192 | 
            +
                    if (
         | 
| 193 | 
            +
                        not isinstance(image, torch.Tensor)
         | 
| 194 | 
            +
                        and not isinstance(image, PIL.Image.Image)
         | 
| 195 | 
            +
                        and not isinstance(image, list)
         | 
| 196 | 
            +
                    ):
         | 
| 197 | 
            +
                        raise ValueError(
         | 
| 198 | 
            +
                            "`image` has to be of type `torch.FloatTensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is"
         | 
| 199 | 
            +
                            f" {type(image)}"
         | 
| 200 | 
            +
                        )
         | 
| 201 | 
            +
             | 
| 202 | 
            +
                    if height % 64 != 0 or width % 64 != 0:
         | 
| 203 | 
            +
                        raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
         | 
| 204 | 
            +
             | 
| 205 | 
            +
                def prepare_latents(
         | 
| 206 | 
            +
                    self,
         | 
| 207 | 
            +
                    shape,
         | 
| 208 | 
            +
                    dtype,
         | 
| 209 | 
            +
                    device,
         | 
| 210 | 
            +
                    generator,
         | 
| 211 | 
            +
                    latent=None,
         | 
| 212 | 
            +
                ):
         | 
| 213 | 
            +
                    if isinstance(generator, list) and len(generator) != shape[0]:
         | 
| 214 | 
            +
                        raise ValueError(
         | 
| 215 | 
            +
                            f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
         | 
| 216 | 
            +
                            f" size of {shape[0]}. Make sure the batch size matches the length of the generators."
         | 
| 217 | 
            +
                        )
         | 
| 218 | 
            +
             | 
| 219 | 
            +
                    if latent is None:
         | 
| 220 | 
            +
                        latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
         | 
| 221 | 
            +
                    else:
         | 
| 222 | 
            +
                        latents = latents.to(device)
         | 
| 223 | 
            +
             | 
| 224 | 
            +
                    # scale the initial noise by the standard deviation required by the scheduler
         | 
| 225 | 
            +
                    latents = latents * self.scheduler.init_noise_sigma
         | 
| 226 | 
            +
                    return latents
         | 
| 227 | 
            +
             | 
| 228 | 
            +
                @property
         | 
| 229 | 
            +
                def num_timesteps(self):
         | 
| 230 | 
            +
                    return self._num_timesteps
         | 
| 231 | 
            +
             | 
| 232 | 
            +
                @torch.no_grad()
         | 
| 233 | 
            +
                def __call__(
         | 
| 234 | 
            +
                    self,
         | 
| 235 | 
            +
                    input_image: Union[List[PIL.Image.Image], torch.FloatTensor],
         | 
| 236 | 
            +
                    height: int = 576,
         | 
| 237 | 
            +
                    width: int = 768,
         | 
| 238 | 
            +
                    num_frames: Optional[int] = None,
         | 
| 239 | 
            +
                    num_inference_steps: int = 10,
         | 
| 240 | 
            +
                    fps: int = 7,
         | 
| 241 | 
            +
                    motion_bucket_id: int = 127,
         | 
| 242 | 
            +
                    noise_aug_strength: float = 0.02,
         | 
| 243 | 
            +
                    decode_chunk_size: Optional[int] = None,
         | 
| 244 | 
            +
                    color_map: str="Spectral",
         | 
| 245 | 
            +
                    generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
         | 
| 246 | 
            +
                    show_progress_bar: bool = True,
         | 
| 247 | 
            +
                    match_input_res: bool = True,
         | 
| 248 | 
            +
                    depth_pred_last: Optional[torch.FloatTensor] = None,
         | 
| 249 | 
            +
                ):
         | 
| 250 | 
            +
                    assert height >= 0 and width >=0
         | 
| 251 | 
            +
                    assert num_inference_steps >=1
         | 
| 252 | 
            +
             | 
| 253 | 
            +
                    num_frames = num_frames if num_frames is not None else self.unet.config.num_frames
         | 
| 254 | 
            +
                    decode_chunk_size = decode_chunk_size if decode_chunk_size is not None else num_frames
         | 
| 255 | 
            +
             | 
| 256 | 
            +
                    # 1. Check inputs. Raise error if not correct
         | 
| 257 | 
            +
                    self.check_inputs(input_image, height, width)
         | 
| 258 | 
            +
             | 
| 259 | 
            +
                    # 2. Define call parameters
         | 
| 260 | 
            +
                    if isinstance(input_image, list):
         | 
| 261 | 
            +
                        batch_size = 1
         | 
| 262 | 
            +
                        input_size = input_image[0].size
         | 
| 263 | 
            +
                    elif isinstance(input_image, torch.Tensor):
         | 
| 264 | 
            +
                        batch_size = input_image.shape[0]
         | 
| 265 | 
            +
                        input_size = input_image.shape[:-3:-1]
         | 
| 266 | 
            +
                    assert batch_size == 1, "Batch size must be 1 for now"
         | 
| 267 | 
            +
                    device = self._execution_device
         | 
| 268 | 
            +
             | 
| 269 | 
            +
                    # 3. Encode input image
         | 
| 270 | 
            +
                    image_embeddings = self._encode_image(input_image[0], device)
         | 
| 271 | 
            +
                    image_embeddings = image_embeddings.repeat((batch_size, 1, 1))
         | 
| 272 | 
            +
             | 
| 273 | 
            +
                    # NOTE: Stable Diffusion Video was conditioned on fps - 1, which
         | 
| 274 | 
            +
                    # is why it is reduced here.
         | 
| 275 | 
            +
                    # See: https://github.com/Stability-AI/generative-models/blob/ed0997173f98eaf8f4edf7ba5fe8f15c6b877fd3/scripts/sampling/simple_video_sample.py#L188
         | 
| 276 | 
            +
                    fps = fps - 1
         | 
| 277 | 
            +
             | 
| 278 | 
            +
                    # 4. Encode input image using VAE
         | 
| 279 | 
            +
                    input_image = self.image_processor.preprocess(input_image, height=height, width=width).to(device)
         | 
| 280 | 
            +
                    assert input_image.min() >= -1.0 and input_image.max() <= 1.0
         | 
| 281 | 
            +
                    noise = randn_tensor(input_image.shape, generator=generator, device=device, dtype=input_image.dtype)
         | 
| 282 | 
            +
                    input_image = input_image + noise_aug_strength * noise
         | 
| 283 | 
            +
                    if depth_pred_last is not None:
         | 
| 284 | 
            +
                        depth_pred_last = depth_pred_last.to(device)
         | 
| 285 | 
            +
                        # resize depth
         | 
| 286 | 
            +
                        from torchvision.transforms import InterpolationMode
         | 
| 287 | 
            +
                        from torchvision.transforms.functional import resize
         | 
| 288 | 
            +
                        depth_pred_last = resize(depth_pred_last.unsqueeze(1), (height, width), InterpolationMode.NEAREST_EXACT, antialias=True)
         | 
| 289 | 
            +
                        depth_pred_last = repeat(depth_pred_last, 'f c h w ->b f c h w', b=batch_size)
         | 
| 290 | 
            +
             | 
| 291 | 
            +
                    rgb_batch = repeat(input_image, 'f c h w ->b f c h w', b=batch_size)
         | 
| 292 | 
            +
             | 
| 293 | 
            +
                    added_time_ids = self._get_add_time_ids(
         | 
| 294 | 
            +
                        fps,
         | 
| 295 | 
            +
                        motion_bucket_id,
         | 
| 296 | 
            +
                        noise_aug_strength,
         | 
| 297 | 
            +
                        image_embeddings.dtype,
         | 
| 298 | 
            +
                        batch_size,
         | 
| 299 | 
            +
                    )
         | 
| 300 | 
            +
                    added_time_ids = added_time_ids.to(device)
         | 
| 301 | 
            +
             | 
| 302 | 
            +
                    depth_pred_raw = self.single_infer(rgb_batch, 
         | 
| 303 | 
            +
                                                       image_embeddings,
         | 
| 304 | 
            +
                                                       added_time_ids,
         | 
| 305 | 
            +
                                                       num_inference_steps,
         | 
| 306 | 
            +
                                                       show_progress_bar,
         | 
| 307 | 
            +
                                                       generator,
         | 
| 308 | 
            +
                                                       depth_pred_last=depth_pred_last,
         | 
| 309 | 
            +
                                                       decode_chunk_size=decode_chunk_size)
         | 
| 310 | 
            +
                    
         | 
| 311 | 
            +
                    depth_colored_img_list = []
         | 
| 312 | 
            +
                    depth_frames = []
         | 
| 313 | 
            +
                    for i in range(num_frames):
         | 
| 314 | 
            +
                        depth_frame = depth_pred_raw[:, i].squeeze()
         | 
| 315 | 
            +
                    
         | 
| 316 | 
            +
                        # Convert to numpy
         | 
| 317 | 
            +
                        depth_frame = depth_frame.cpu().numpy().astype(np.float32)
         | 
| 318 | 
            +
             | 
| 319 | 
            +
                        if match_input_res:
         | 
| 320 | 
            +
                            pred_img = Image.fromarray(depth_frame)
         | 
| 321 | 
            +
                            pred_img = pred_img.resize(input_size, resample=Image.NEAREST)
         | 
| 322 | 
            +
                            depth_frame = np.asarray(pred_img)
         | 
| 323 | 
            +
             | 
| 324 | 
            +
                        # Clip output range: current size is the original size
         | 
| 325 | 
            +
                        depth_frame = depth_frame.clip(0, 1)
         | 
| 326 | 
            +
                    
         | 
| 327 | 
            +
                        # Colorize
         | 
| 328 | 
            +
                        depth_colored = plt.get_cmap(color_map)(depth_frame, bytes=True)[..., :3]
         | 
| 329 | 
            +
                        depth_colored_img = Image.fromarray(depth_colored)
         | 
| 330 | 
            +
                        
         | 
| 331 | 
            +
                        depth_colored_img_list.append(depth_colored_img)
         | 
| 332 | 
            +
                        depth_frames.append(depth_frame)
         | 
| 333 | 
            +
                    
         | 
| 334 | 
            +
                    depth_frame = np.stack(depth_frames)
         | 
| 335 | 
            +
             | 
| 336 | 
            +
                    self.maybe_free_model_hooks()
         | 
| 337 | 
            +
             | 
| 338 | 
            +
                    return ChronoDepthOutput(
         | 
| 339 | 
            +
                        depth_np = depth_frames,
         | 
| 340 | 
            +
                        depth_colored = depth_colored_img_list,
         | 
| 341 | 
            +
                    )
         | 
| 342 | 
            +
             | 
| 343 | 
            +
                @torch.no_grad()
         | 
| 344 | 
            +
                def single_infer(self,
         | 
| 345 | 
            +
                                 input_rgb: torch.Tensor,
         | 
| 346 | 
            +
                                 image_embeddings: torch.Tensor,
         | 
| 347 | 
            +
                                 added_time_ids: torch.Tensor,
         | 
| 348 | 
            +
                                 num_inference_steps: int,
         | 
| 349 | 
            +
                                 show_pbar: bool,
         | 
| 350 | 
            +
                                 generator: Optional[Union[torch.Generator, List[torch.Generator]]],
         | 
| 351 | 
            +
                                 depth_pred_last: Optional[torch.Tensor] = None,
         | 
| 352 | 
            +
                                 decode_chunk_size=1,
         | 
| 353 | 
            +
                                 ):
         | 
| 354 | 
            +
                    device = input_rgb.device
         | 
| 355 | 
            +
             | 
| 356 | 
            +
                    needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
         | 
| 357 | 
            +
                    if needs_upcasting:
         | 
| 358 | 
            +
                        self.vae.to(dtype=torch.float32)
         | 
| 359 | 
            +
             | 
| 360 | 
            +
                    rgb_latent = self.encode_RGB(input_rgb)
         | 
| 361 | 
            +
                    rgb_latent = rgb_latent.to(image_embeddings.dtype)
         | 
| 362 | 
            +
                    if depth_pred_last is not None:
         | 
| 363 | 
            +
                        depth_pred_last = depth_pred_last.repeat(1, 1, 3, 1, 1)
         | 
| 364 | 
            +
                        depth_pred_last_latent = self.encode_RGB(depth_pred_last)
         | 
| 365 | 
            +
                        depth_pred_last_latent = depth_pred_last_latent.to(image_embeddings.dtype)
         | 
| 366 | 
            +
                    else:
         | 
| 367 | 
            +
                        depth_pred_last_latent = None
         | 
| 368 | 
            +
                    
         | 
| 369 | 
            +
                    # cast back to fp16 if needed
         | 
| 370 | 
            +
                    if needs_upcasting:
         | 
| 371 | 
            +
                        self.vae.to(dtype=torch.float16)
         | 
| 372 | 
            +
             | 
| 373 | 
            +
                    # Prepare timesteps
         | 
| 374 | 
            +
                    self.scheduler.set_timesteps(num_inference_steps, device=device)
         | 
| 375 | 
            +
                    timesteps = self.scheduler.timesteps
         | 
| 376 | 
            +
             | 
| 377 | 
            +
                    depth_latent = self.prepare_latents(
         | 
| 378 | 
            +
                        rgb_latent.shape,
         | 
| 379 | 
            +
                        image_embeddings.dtype,
         | 
| 380 | 
            +
                        device,
         | 
| 381 | 
            +
                        generator
         | 
| 382 | 
            +
                    )
         | 
| 383 | 
            +
             | 
| 384 | 
            +
                    if show_pbar:
         | 
| 385 | 
            +
                        iterable = tqdm(
         | 
| 386 | 
            +
                            enumerate(timesteps),
         | 
| 387 | 
            +
                            total=len(timesteps),
         | 
| 388 | 
            +
                            leave=False,
         | 
| 389 | 
            +
                            desc=" " * 4 + "Diffusion denoising",
         | 
| 390 | 
            +
                        )
         | 
| 391 | 
            +
                    else:
         | 
| 392 | 
            +
                        iterable = enumerate(timesteps)
         | 
| 393 | 
            +
                    
         | 
| 394 | 
            +
                    for i, t in iterable:
         | 
| 395 | 
            +
                        if depth_pred_last_latent is not None:
         | 
| 396 | 
            +
                            known_frames_num = depth_pred_last_latent.shape[1]
         | 
| 397 | 
            +
                            epsilon = randn_tensor(
         | 
| 398 | 
            +
                                depth_pred_last_latent.shape, 
         | 
| 399 | 
            +
                                generator=generator, 
         | 
| 400 | 
            +
                                device=device, 
         | 
| 401 | 
            +
                                dtype=image_embeddings.dtype
         | 
| 402 | 
            +
                                )
         | 
| 403 | 
            +
                            depth_latent[:, :known_frames_num] = depth_pred_last_latent + epsilon * self.scheduler.sigmas[i]
         | 
| 404 | 
            +
                        depth_latent = self.scheduler.scale_model_input(depth_latent, t)
         | 
| 405 | 
            +
                        unet_input = torch.cat([rgb_latent, depth_latent], dim=2)
         | 
| 406 | 
            +
                        
         | 
| 407 | 
            +
                        noise_pred = self.unet(
         | 
| 408 | 
            +
                            unet_input, t, image_embeddings, added_time_ids=added_time_ids
         | 
| 409 | 
            +
                        )[0]
         | 
| 410 | 
            +
             | 
| 411 | 
            +
                        # compute the previous noisy sample x_t -> x_t-1
         | 
| 412 | 
            +
                        depth_latent = self.scheduler.step(noise_pred, t, depth_latent).prev_sample
         | 
| 413 | 
            +
                    
         | 
| 414 | 
            +
                    torch.cuda.empty_cache()
         | 
| 415 | 
            +
                    if needs_upcasting:
         | 
| 416 | 
            +
                        self.vae.to(dtype=torch.float16)
         | 
| 417 | 
            +
                    depth = self.decode_depth(depth_latent, decode_chunk_size=decode_chunk_size)
         | 
| 418 | 
            +
                    # clip prediction
         | 
| 419 | 
            +
                    depth = torch.clip(depth, -1.0, 1.0)
         | 
| 420 | 
            +
                    # shift to [0, 1]
         | 
| 421 | 
            +
                    depth = (depth + 1.0) / 2.0
         | 
| 422 | 
            +
             | 
| 423 | 
            +
                    return depth
         | 
| 424 | 
            +
                
         | 
| 425 | 
            +
            # resizing utils
         | 
| 426 | 
            +
            def _resize_with_antialiasing(input, size, interpolation="bicubic", align_corners=True):
         | 
| 427 | 
            +
                h, w = input.shape[-2:]
         | 
| 428 | 
            +
                factors = (h / size[0], w / size[1])
         | 
| 429 | 
            +
             | 
| 430 | 
            +
                # First, we have to determine sigma
         | 
| 431 | 
            +
                # Taken from skimage: https://github.com/scikit-image/scikit-image/blob/v0.19.2/skimage/transform/_warps.py#L171
         | 
| 432 | 
            +
                sigmas = (
         | 
| 433 | 
            +
                    max((factors[0] - 1.0) / 2.0, 0.001),
         | 
| 434 | 
            +
                    max((factors[1] - 1.0) / 2.0, 0.001),
         | 
| 435 | 
            +
                )
         | 
| 436 | 
            +
             | 
| 437 | 
            +
                # Now kernel size. Good results are for 3 sigma, but that is kind of slow. Pillow uses 1 sigma
         | 
| 438 | 
            +
                # https://github.com/python-pillow/Pillow/blob/master/src/libImaging/Resample.c#L206
         | 
| 439 | 
            +
                # But they do it in the 2 passes, which gives better results. Let's try 2 sigmas for now
         | 
| 440 | 
            +
                ks = int(max(2.0 * 2 * sigmas[0], 3)), int(max(2.0 * 2 * sigmas[1], 3))
         | 
| 441 | 
            +
             | 
| 442 | 
            +
                # Make sure it is odd
         | 
| 443 | 
            +
                if (ks[0] % 2) == 0:
         | 
| 444 | 
            +
                    ks = ks[0] + 1, ks[1]
         | 
| 445 | 
            +
             | 
| 446 | 
            +
                if (ks[1] % 2) == 0:
         | 
| 447 | 
            +
                    ks = ks[0], ks[1] + 1
         | 
| 448 | 
            +
             | 
| 449 | 
            +
                input = _gaussian_blur2d(input, ks, sigmas)
         | 
| 450 | 
            +
             | 
| 451 | 
            +
                output = torch.nn.functional.interpolate(input, size=size, mode=interpolation, align_corners=align_corners)
         | 
| 452 | 
            +
                return output
         | 
| 453 | 
            +
             | 
| 454 | 
            +
             | 
| 455 | 
            +
            def _compute_padding(kernel_size):
         | 
| 456 | 
            +
                """Compute padding tuple."""
         | 
| 457 | 
            +
                # 4 or 6 ints:  (padding_left, padding_right,padding_top,padding_bottom)
         | 
| 458 | 
            +
                # https://pytorch.org/docs/stable/nn.html#torch.nn.functional.pad
         | 
| 459 | 
            +
                if len(kernel_size) < 2:
         | 
| 460 | 
            +
                    raise AssertionError(kernel_size)
         | 
| 461 | 
            +
                computed = [k - 1 for k in kernel_size]
         | 
| 462 | 
            +
             | 
| 463 | 
            +
                # for even kernels we need to do asymmetric padding :(
         | 
| 464 | 
            +
                out_padding = 2 * len(kernel_size) * [0]
         | 
| 465 | 
            +
             | 
| 466 | 
            +
                for i in range(len(kernel_size)):
         | 
| 467 | 
            +
                    computed_tmp = computed[-(i + 1)]
         | 
| 468 | 
            +
             | 
| 469 | 
            +
                    pad_front = computed_tmp // 2
         | 
| 470 | 
            +
                    pad_rear = computed_tmp - pad_front
         | 
| 471 | 
            +
             | 
| 472 | 
            +
                    out_padding[2 * i + 0] = pad_front
         | 
| 473 | 
            +
                    out_padding[2 * i + 1] = pad_rear
         | 
| 474 | 
            +
             | 
| 475 | 
            +
                return out_padding
         | 
| 476 | 
            +
             | 
| 477 | 
            +
             | 
| 478 | 
            +
            def _filter2d(input, kernel):
         | 
| 479 | 
            +
                # prepare kernel
         | 
| 480 | 
            +
                b, c, h, w = input.shape
         | 
| 481 | 
            +
                tmp_kernel = kernel[:, None, ...].to(device=input.device, dtype=input.dtype)
         | 
| 482 | 
            +
             | 
| 483 | 
            +
                tmp_kernel = tmp_kernel.expand(-1, c, -1, -1)
         | 
| 484 | 
            +
             | 
| 485 | 
            +
                height, width = tmp_kernel.shape[-2:]
         | 
| 486 | 
            +
             | 
| 487 | 
            +
                padding_shape: list[int] = _compute_padding([height, width])
         | 
| 488 | 
            +
                input = torch.nn.functional.pad(input, padding_shape, mode="reflect")
         | 
| 489 | 
            +
             | 
| 490 | 
            +
                # kernel and input tensor reshape to align element-wise or batch-wise params
         | 
| 491 | 
            +
                tmp_kernel = tmp_kernel.reshape(-1, 1, height, width)
         | 
| 492 | 
            +
                input = input.view(-1, tmp_kernel.size(0), input.size(-2), input.size(-1))
         | 
| 493 | 
            +
             | 
| 494 | 
            +
                # convolve the tensor with the kernel.
         | 
| 495 | 
            +
                output = torch.nn.functional.conv2d(input, tmp_kernel, groups=tmp_kernel.size(0), padding=0, stride=1)
         | 
| 496 | 
            +
             | 
| 497 | 
            +
                out = output.view(b, c, h, w)
         | 
| 498 | 
            +
                return out
         | 
| 499 | 
            +
             | 
| 500 | 
            +
             | 
| 501 | 
            +
            def _gaussian(window_size: int, sigma):
         | 
| 502 | 
            +
                if isinstance(sigma, float):
         | 
| 503 | 
            +
                    sigma = torch.tensor([[sigma]])
         | 
| 504 | 
            +
             | 
| 505 | 
            +
                batch_size = sigma.shape[0]
         | 
| 506 | 
            +
             | 
| 507 | 
            +
                x = (torch.arange(window_size, device=sigma.device, dtype=sigma.dtype) - window_size // 2).expand(batch_size, -1)
         | 
| 508 | 
            +
             | 
| 509 | 
            +
                if window_size % 2 == 0:
         | 
| 510 | 
            +
                    x = x + 0.5
         | 
| 511 | 
            +
             | 
| 512 | 
            +
                gauss = torch.exp(-x.pow(2.0) / (2 * sigma.pow(2.0)))
         | 
| 513 | 
            +
             | 
| 514 | 
            +
                return gauss / gauss.sum(-1, keepdim=True)
         | 
| 515 | 
            +
             | 
| 516 | 
            +
             | 
| 517 | 
            +
            def _gaussian_blur2d(input, kernel_size, sigma):
         | 
| 518 | 
            +
                if isinstance(sigma, tuple):
         | 
| 519 | 
            +
                    sigma = torch.tensor([sigma], dtype=input.dtype)
         | 
| 520 | 
            +
                else:
         | 
| 521 | 
            +
                    sigma = sigma.to(dtype=input.dtype)
         | 
| 522 | 
            +
             | 
| 523 | 
            +
                ky, kx = int(kernel_size[0]), int(kernel_size[1])
         | 
| 524 | 
            +
                bs = sigma.shape[0]
         | 
| 525 | 
            +
                kernel_x = _gaussian(kx, sigma[:, 1].view(bs, 1))
         | 
| 526 | 
            +
                kernel_y = _gaussian(ky, sigma[:, 0].view(bs, 1))
         | 
| 527 | 
            +
                out_x = _filter2d(input, kernel_x[..., None, :])
         | 
| 528 | 
            +
                out = _filter2d(out_x, kernel_y[..., None])
         | 
| 529 | 
            +
             | 
| 530 | 
            +
                return out
         | 
    	
        gradio_patches/examples.py
    ADDED
    
    | @@ -0,0 +1,13 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from pathlib import Path
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import gradio
         | 
| 4 | 
            +
            from gradio.utils import get_cache_folder
         | 
| 5 | 
            +
             | 
| 6 | 
            +
             | 
| 7 | 
            +
            class Examples(gradio.helpers.Examples):
         | 
| 8 | 
            +
                def __init__(self, *args, directory_name=None, **kwargs):
         | 
| 9 | 
            +
                    super().__init__(*args, **kwargs, _initiated_directly=False)
         | 
| 10 | 
            +
                    if directory_name is not None:
         | 
| 11 | 
            +
                        self.cached_folder = get_cache_folder() / directory_name
         | 
| 12 | 
            +
                        self.cached_file = Path(self.cached_folder) / "log.csv"
         | 
| 13 | 
            +
                    self.create()
         | 
    	
        requirements.txt
    ADDED
    
    | @@ -0,0 +1,14 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            spaces
         | 
| 2 | 
            +
            gradio>=4.32.1
         | 
| 3 | 
            +
            diffusers==0.26.0
         | 
| 4 | 
            +
            easydict==1.13
         | 
| 5 | 
            +
            einops==0.8.0
         | 
| 6 | 
            +
            matplotlib==3.8.4
         | 
| 7 | 
            +
            mediapy==1.2.2
         | 
| 8 | 
            +
            numpy==1.26.4
         | 
| 9 | 
            +
            Pillow==10.3.0
         | 
| 10 | 
            +
            torch==2.0.1
         | 
| 11 | 
            +
            torchvision==0.15.2
         | 
| 12 | 
            +
            tqdm==4.66.2
         | 
| 13 | 
            +
            accelerate==0.28.0
         | 
| 14 | 
            +
            transformers==4.36.2
         |