Spaces:
Sleeping
Sleeping
| """文本基础规范化器,用于减轻针对水印的简单攻击。 | |
| 这个实现不太可能是所有可能的Unicode标准中的所有漏洞的完整列表, | |
| 它代表了我们在撰写时的最佳努力。 | |
| 这些规范化器可以作为独立的规范化器使用。它们可以被制作成符合HF分词器标准的规范化器, | |
| 但这将需要涉及tokenizers.NormalizedString的有限Rust接口。 | |
| """ | |
| from collections import defaultdict | |
| from functools import cache | |
| import re | |
| import unicodedata | |
| import homoglyphs as hg | |
| def normalization_strategy_lookup(strategy_name: str) -> object: | |
| if strategy_name == "unicode": | |
| return UnicodeSanitizer() | |
| elif strategy_name == "homoglyphs": | |
| return HomoglyphCanonizer() | |
| elif strategy_name == "truecase": | |
| return TrueCaser() | |
| class HomoglyphCanonizer: | |
| """尝试检测同形字攻击并找到一致的标准形式。 | |
| 这个函数是在ISO分类级别上进行的。也可以在语言级别上进行(参见注释掉的代码)。 | |
| """ | |
| def __init__(self): | |
| self.homoglyphs = None | |
| def __call__(self, homoglyphed_str: str) -> str: | |
| # find canon: | |
| target_category, all_categories = self._categorize_text(homoglyphed_str) | |
| homoglyph_table = self._select_canon_category_and_load(target_category, all_categories) | |
| return self._sanitize_text(target_category, homoglyph_table, homoglyphed_str) | |
| def _categorize_text(self, text: str) -> dict: | |
| iso_categories = defaultdict(int) | |
| # self.iso_languages = defaultdict(int) | |
| for char in text: | |
| iso_categories[hg.Categories.detect(char)] += 1 | |
| # for lang in hg.Languages.detect(char): | |
| # self.iso_languages[lang] += 1 | |
| target_category = max(iso_categories, key=iso_categories.get) | |
| all_categories = tuple(iso_categories) | |
| return target_category, all_categories | |
| def _select_canon_category_and_load( | |
| self, target_category: str, all_categories: tuple[str] | |
| ) -> dict: | |
| homoglyph_table = hg.Homoglyphs( | |
| categories=(target_category, "COMMON") | |
| ) # 从文件中加载到此处的字母表 | |
| source_alphabet = hg.Categories.get_alphabet(all_categories) | |
| restricted_table = homoglyph_table.get_restricted_table( | |
| source_alphabet, homoglyph_table.alphabet | |
| ) # 从文件中加载到此处的表 | |
| return restricted_table | |
| def _sanitize_text( | |
| self, target_category: str, homoglyph_table: dict, homoglyphed_str: str | |
| ) -> str: | |
| sanitized_text = "" | |
| for char in homoglyphed_str: | |
| # langs = hg.Languages.detect(char) | |
| cat = hg.Categories.detect(char) | |
| if target_category in cat or "COMMON" in cat or len(cat) == 0: | |
| sanitized_text += char | |
| else: | |
| sanitized_text += list(homoglyph_table[char])[0] | |
| return sanitized_text | |
| class UnicodeSanitizer: | |
| def __init__(self, ruleset="whitespaces"): | |
| if ruleset == "whitespaces": | |
| """Documentation: | |
| \u00A0: Non-breaking space | |
| \u1680: Ogham space mark | |
| \u180E: Mongolian vowel separator | |
| \u2000-\u200B: Various space characters, including en space, em space, thin space, hair space, zero-width space, and zero-width non-joiner | |
| \u200C\u200D: Zero-width non-joiner and zero-width joiner | |
| \u200E,\u200F: Left-to-right-mark, Right-to-left-mark | |
| \u2060: Word joiner | |
| \u2063: Invisible separator | |
| \u202F: Narrow non-breaking space | |
| \u205F: Medium mathematical space | |
| \u3000: Ideographic space | |
| \uFEFF: Zero-width non-breaking space | |
| \uFFA0: Halfwidth hangul filler | |
| \uFFF9\uFFFA\uFFFB: Interlinear annotation characters | |
| \uFE00-\uFE0F: Variation selectors | |
| \u202A-\u202F: Embedding characters | |
| \u3164: Korean hangul filler. | |
| """ | |
| self.pattern = re.compile( | |
| r"[\u00A0\u1680\u180E\u2000-\u200B\u200C\u200D\u200E\u200F\u2060\u2063\u202F\u205F\u3000\uFEFF\uFFA0\uFFF9\uFFFA\uFFFB" | |
| r"\uFE00\uFE01\uFE02\uFE03\uFE04\uFE05\uFE06\uFE07\uFE08\uFE09\uFE0A\uFE0B\uFE0C\uFE0D\uFE0E\uFE0F\u3164\u202A\u202B\u202C\u202D" | |
| r"\u202E\u202F]" | |
| ) | |
| elif ruleset == "IDN.blacklist": | |
| """Documentation: | |
| [\u00A0\u1680\u180E\u2000-\u200B\u202F\u205F\u2060\u2063\uFEFF]: Matches any whitespace characters in the Unicode character | |
| set that are included in the IDN blacklist. | |
| \uFFF9-\uFFFB: Matches characters that are not defined in Unicode but are used as language tags in various legacy encodings. | |
| These characters are not allowed in domain names. | |
| \uD800-\uDB7F: Matches the first part of a surrogate pair. Surrogate pairs are used to represent characters in the Unicode character | |
| set that cannot be represented by a single 16-bit value. The first part of a surrogate pair is in the range U+D800 to U+DBFF, | |
| and the second part is in the range U+DC00 to U+DFFF. | |
| \uDB80-\uDBFF][\uDC00-\uDFFF]?: Matches the second part of a surrogate pair. The second part of a surrogate pair is in the range U+DC00 | |
| to U+DFFF, and is optional. | |
| [\uDB40\uDC20-\uDB40\uDC7F][\uDC00-\uDFFF]: Matches certain invalid UTF-16 sequences which should not appear in IDNs. | |
| """ | |
| self.pattern = re.compile( | |
| r"[\u00A0\u1680\u180E\u2000-\u200B\u202F\u205F\u2060\u2063\uFEFF\uFFF9-\uFFFB\uD800-\uDB7F\uDB80-\uDBFF]" | |
| r"[\uDC00-\uDFFF]?|[\uDB40\uDC20-\uDB40\uDC7F][\uDC00-\uDFFF]" | |
| ) | |
| else: | |
| """Documentation: | |
| This is a simple restriction to "no-unicode", using only ascii characters. Control characters are included. | |
| """ | |
| self.pattern = re.compile(r"[^\x00-\x7F]+") | |
| def __call__(self, text: str) -> str: | |
| text = unicodedata.normalize("NFC", text) # canon forms | |
| text = self.pattern.sub(" ", text) # pattern match | |
| text = re.sub(" +", " ", text) # collapse whitespaces | |
| text = "".join( | |
| c for c in text if unicodedata.category(c) != "Cc" | |
| ) # 删除所有剩余的不可打印字符 | |
| return text | |
| class TrueCaser: | |
| """真大小写还原,是一种将文本还原为其原始大小写形式的大小写规范化处理。 | |
| 这可以防御那些像 spOngBoB 那样随机大小写的攻击。 | |
| 这里使用了简单的词性标注器。 | |
| """ | |
| uppercase_pos = ["PROPN"] # 应使用大写字母命名POS | |
| def __init__(self, backend="spacy"): | |
| if backend == "spacy": | |
| import spacy | |
| self.nlp = spacy.load("en_core_web_sm") | |
| self.normalize_fn = self._spacy_truecasing | |
| else: | |
| from nltk import pos_tag, word_tokenize # noqa | |
| import nltk | |
| nltk.download("punkt") | |
| nltk.download("averaged_perceptron_tagger") | |
| nltk.download("universal_tagset") | |
| self.normalize_fn = self._nltk_truecasing | |
| def __call__(self, random_capitalized_string: str) -> str: | |
| truecased_str = self.normalize_fn(random_capitalized_string) | |
| return truecased_str | |
| def _spacy_truecasing(self, random_capitalized_string: str): | |
| doc = self.nlp(random_capitalized_string.lower()) | |
| POS = self.uppercase_pos | |
| truecased_str = "".join( | |
| [ | |
| w.text_with_ws.capitalize() if w.pos_ in POS or w.is_sent_start else w.text_with_ws | |
| for w in doc | |
| ] | |
| ) | |
| return truecased_str | |
| def _nltk_truecasing(self, random_capitalized_string: str): | |
| from nltk import pos_tag, word_tokenize | |
| import nltk | |
| nltk.download("punkt") | |
| nltk.download("averaged_perceptron_tagger") | |
| nltk.download("universal_tagset") | |
| POS = ["NNP", "NNPS"] | |
| tagged_text = pos_tag(word_tokenize(random_capitalized_string.lower())) | |
| truecased_str = " ".join([w.capitalize() if p in POS else w for (w, p) in tagged_text]) | |
| return truecased_str | |