Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from huggingface_hub import login
|
| 4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
login(os.environ["HF_TOKEN"])
|
| 8 |
+
model_id = "jimy26/Sherlock_Model"
|
| 9 |
+
|
| 10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=True)
|
| 11 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 12 |
+
model_id,
|
| 13 |
+
device_map="auto",
|
| 14 |
+
torch_dtype="auto",
|
| 15 |
+
use_auth_token=True
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
def chat(prompt):
|
| 19 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 20 |
+
outputs = model.generate(**inputs, max_new_tokens=150, temperature=0.7, top_p=0.9)
|
| 21 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 22 |
+
|
| 23 |
+
gr.Interface(
|
| 24 |
+
fn=chat,
|
| 25 |
+
inputs=gr.Textbox(lines=3, placeholder="Ask Sherlock Holmes something..."),
|
| 26 |
+
outputs="text",
|
| 27 |
+
title="🕵️ Chat with Sherlock Holmes",
|
| 28 |
+
description="A character-based chatbot fine-tuned to act like Sherlock Holmes."
|
| 29 |
+
).launch()
|