|  |  | 
					
						
						|  | import math | 
					
						
						|  | from functools import lru_cache | 
					
						
						|  | import torch | 
					
						
						|  | from torch import nn | 
					
						
						|  | from torch.autograd import Function | 
					
						
						|  | from torch.autograd.function import once_differentiable | 
					
						
						|  | from torch.nn.modules.utils import _pair | 
					
						
						|  | from torchvision.ops import deform_conv2d | 
					
						
						|  |  | 
					
						
						|  | from detectron2.utils.develop import create_dummy_class, create_dummy_func | 
					
						
						|  |  | 
					
						
						|  | from .wrappers import _NewEmptyTensorOp | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class _DeformConv(Function): | 
					
						
						|  | @staticmethod | 
					
						
						|  | def forward( | 
					
						
						|  | ctx, | 
					
						
						|  | input, | 
					
						
						|  | offset, | 
					
						
						|  | weight, | 
					
						
						|  | stride=1, | 
					
						
						|  | padding=0, | 
					
						
						|  | dilation=1, | 
					
						
						|  | groups=1, | 
					
						
						|  | deformable_groups=1, | 
					
						
						|  | im2col_step=64, | 
					
						
						|  | ): | 
					
						
						|  | if input is not None and input.dim() != 4: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "Expected 4D tensor as input, got {}D tensor instead.".format(input.dim()) | 
					
						
						|  | ) | 
					
						
						|  | ctx.stride = _pair(stride) | 
					
						
						|  | ctx.padding = _pair(padding) | 
					
						
						|  | ctx.dilation = _pair(dilation) | 
					
						
						|  | ctx.groups = groups | 
					
						
						|  | ctx.deformable_groups = deformable_groups | 
					
						
						|  | ctx.im2col_step = im2col_step | 
					
						
						|  |  | 
					
						
						|  | ctx.save_for_backward(input, offset, weight) | 
					
						
						|  |  | 
					
						
						|  | output = input.new_empty( | 
					
						
						|  | _DeformConv._output_size(input, weight, ctx.padding, ctx.dilation, ctx.stride) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | ctx.bufs_ = [input.new_empty(0), input.new_empty(0)] | 
					
						
						|  |  | 
					
						
						|  | if not input.is_cuda: | 
					
						
						|  |  | 
					
						
						|  | if deformable_groups != 1: | 
					
						
						|  | raise NotImplementedError( | 
					
						
						|  | "Deformable Conv with deformable_groups != 1 is not supported on CPUs!" | 
					
						
						|  | ) | 
					
						
						|  | return deform_conv2d( | 
					
						
						|  | input, offset, weight, stride=stride, padding=padding, dilation=dilation | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | cur_im2col_step = _DeformConv._cal_im2col_step(input.shape[0], ctx.im2col_step) | 
					
						
						|  | assert (input.shape[0] % cur_im2col_step) == 0, "im2col step must divide batchsize" | 
					
						
						|  |  | 
					
						
						|  | _C.deform_conv_forward( | 
					
						
						|  | input, | 
					
						
						|  | weight, | 
					
						
						|  | offset, | 
					
						
						|  | output, | 
					
						
						|  | ctx.bufs_[0], | 
					
						
						|  | ctx.bufs_[1], | 
					
						
						|  | weight.size(3), | 
					
						
						|  | weight.size(2), | 
					
						
						|  | ctx.stride[1], | 
					
						
						|  | ctx.stride[0], | 
					
						
						|  | ctx.padding[1], | 
					
						
						|  | ctx.padding[0], | 
					
						
						|  | ctx.dilation[1], | 
					
						
						|  | ctx.dilation[0], | 
					
						
						|  | ctx.groups, | 
					
						
						|  | ctx.deformable_groups, | 
					
						
						|  | cur_im2col_step, | 
					
						
						|  | ) | 
					
						
						|  | return output | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | @once_differentiable | 
					
						
						|  | def backward(ctx, grad_output): | 
					
						
						|  | input, offset, weight = ctx.saved_tensors | 
					
						
						|  |  | 
					
						
						|  | grad_input = grad_offset = grad_weight = None | 
					
						
						|  |  | 
					
						
						|  | if not grad_output.is_cuda: | 
					
						
						|  | raise NotImplementedError("Deformable Conv is not supported on CPUs!") | 
					
						
						|  | else: | 
					
						
						|  | cur_im2col_step = _DeformConv._cal_im2col_step(input.shape[0], ctx.im2col_step) | 
					
						
						|  | assert (input.shape[0] % cur_im2col_step) == 0, "im2col step must divide batchsize" | 
					
						
						|  |  | 
					
						
						|  | if ctx.needs_input_grad[0] or ctx.needs_input_grad[1]: | 
					
						
						|  | grad_input = torch.zeros_like(input) | 
					
						
						|  | grad_offset = torch.zeros_like(offset) | 
					
						
						|  | _C.deform_conv_backward_input( | 
					
						
						|  | input, | 
					
						
						|  | offset, | 
					
						
						|  | grad_output, | 
					
						
						|  | grad_input, | 
					
						
						|  | grad_offset, | 
					
						
						|  | weight, | 
					
						
						|  | ctx.bufs_[0], | 
					
						
						|  | weight.size(3), | 
					
						
						|  | weight.size(2), | 
					
						
						|  | ctx.stride[1], | 
					
						
						|  | ctx.stride[0], | 
					
						
						|  | ctx.padding[1], | 
					
						
						|  | ctx.padding[0], | 
					
						
						|  | ctx.dilation[1], | 
					
						
						|  | ctx.dilation[0], | 
					
						
						|  | ctx.groups, | 
					
						
						|  | ctx.deformable_groups, | 
					
						
						|  | cur_im2col_step, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if ctx.needs_input_grad[2]: | 
					
						
						|  | grad_weight = torch.zeros_like(weight) | 
					
						
						|  | _C.deform_conv_backward_filter( | 
					
						
						|  | input, | 
					
						
						|  | offset, | 
					
						
						|  | grad_output, | 
					
						
						|  | grad_weight, | 
					
						
						|  | ctx.bufs_[0], | 
					
						
						|  | ctx.bufs_[1], | 
					
						
						|  | weight.size(3), | 
					
						
						|  | weight.size(2), | 
					
						
						|  | ctx.stride[1], | 
					
						
						|  | ctx.stride[0], | 
					
						
						|  | ctx.padding[1], | 
					
						
						|  | ctx.padding[0], | 
					
						
						|  | ctx.dilation[1], | 
					
						
						|  | ctx.dilation[0], | 
					
						
						|  | ctx.groups, | 
					
						
						|  | ctx.deformable_groups, | 
					
						
						|  | 1, | 
					
						
						|  | cur_im2col_step, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return grad_input, grad_offset, grad_weight, None, None, None, None, None, None | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | def _output_size(input, weight, padding, dilation, stride): | 
					
						
						|  | channels = weight.size(0) | 
					
						
						|  | output_size = (input.size(0), channels) | 
					
						
						|  | for d in range(input.dim() - 2): | 
					
						
						|  | in_size = input.size(d + 2) | 
					
						
						|  | pad = padding[d] | 
					
						
						|  | kernel = dilation[d] * (weight.size(d + 2) - 1) + 1 | 
					
						
						|  | stride_ = stride[d] | 
					
						
						|  | output_size += ((in_size + (2 * pad) - kernel) // stride_ + 1,) | 
					
						
						|  | if not all(map(lambda s: s > 0, output_size)): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "convolution input is too small (output would be {})".format( | 
					
						
						|  | "x".join(map(str, output_size)) | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | return output_size | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | @lru_cache(maxsize=128) | 
					
						
						|  | def _cal_im2col_step(input_size, default_size): | 
					
						
						|  | """ | 
					
						
						|  | Calculate proper im2col step size, which should be divisible by input_size and not larger | 
					
						
						|  | than prefer_size. Meanwhile the step size should be as large as possible to be more | 
					
						
						|  | efficient. So we choose the largest one among all divisors of input_size which are smaller | 
					
						
						|  | than prefer_size. | 
					
						
						|  | :param input_size: input batch size . | 
					
						
						|  | :param default_size: default preferred im2col step size. | 
					
						
						|  | :return: the largest proper step size. | 
					
						
						|  | """ | 
					
						
						|  | if input_size <= default_size: | 
					
						
						|  | return input_size | 
					
						
						|  | best_step = 1 | 
					
						
						|  | for step in range(2, min(int(math.sqrt(input_size)) + 1, default_size)): | 
					
						
						|  | if input_size % step == 0: | 
					
						
						|  | if input_size // step <= default_size: | 
					
						
						|  | return input_size // step | 
					
						
						|  | best_step = step | 
					
						
						|  |  | 
					
						
						|  | return best_step | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class _ModulatedDeformConv(Function): | 
					
						
						|  | @staticmethod | 
					
						
						|  | def forward( | 
					
						
						|  | ctx, | 
					
						
						|  | input, | 
					
						
						|  | offset, | 
					
						
						|  | mask, | 
					
						
						|  | weight, | 
					
						
						|  | bias=None, | 
					
						
						|  | stride=1, | 
					
						
						|  | padding=0, | 
					
						
						|  | dilation=1, | 
					
						
						|  | groups=1, | 
					
						
						|  | deformable_groups=1, | 
					
						
						|  | ): | 
					
						
						|  | ctx.stride = stride | 
					
						
						|  | ctx.padding = padding | 
					
						
						|  | ctx.dilation = dilation | 
					
						
						|  | ctx.groups = groups | 
					
						
						|  | ctx.deformable_groups = deformable_groups | 
					
						
						|  | ctx.with_bias = bias is not None | 
					
						
						|  | if not ctx.with_bias: | 
					
						
						|  | bias = input.new_empty(1) | 
					
						
						|  | if not input.is_cuda: | 
					
						
						|  | raise NotImplementedError("Deformable Conv is not supported on CPUs!") | 
					
						
						|  | if ( | 
					
						
						|  | weight.requires_grad | 
					
						
						|  | or mask.requires_grad | 
					
						
						|  | or offset.requires_grad | 
					
						
						|  | or input.requires_grad | 
					
						
						|  | ): | 
					
						
						|  | ctx.save_for_backward(input, offset, mask, weight, bias) | 
					
						
						|  | output = input.new_empty(_ModulatedDeformConv._infer_shape(ctx, input, weight)) | 
					
						
						|  | ctx._bufs = [input.new_empty(0), input.new_empty(0)] | 
					
						
						|  | _C.modulated_deform_conv_forward( | 
					
						
						|  | input, | 
					
						
						|  | weight, | 
					
						
						|  | bias, | 
					
						
						|  | ctx._bufs[0], | 
					
						
						|  | offset, | 
					
						
						|  | mask, | 
					
						
						|  | output, | 
					
						
						|  | ctx._bufs[1], | 
					
						
						|  | weight.shape[2], | 
					
						
						|  | weight.shape[3], | 
					
						
						|  | ctx.stride, | 
					
						
						|  | ctx.stride, | 
					
						
						|  | ctx.padding, | 
					
						
						|  | ctx.padding, | 
					
						
						|  | ctx.dilation, | 
					
						
						|  | ctx.dilation, | 
					
						
						|  | ctx.groups, | 
					
						
						|  | ctx.deformable_groups, | 
					
						
						|  | ctx.with_bias, | 
					
						
						|  | ) | 
					
						
						|  | return output | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | @once_differentiable | 
					
						
						|  | def backward(ctx, grad_output): | 
					
						
						|  | if not grad_output.is_cuda: | 
					
						
						|  | raise NotImplementedError("Deformable Conv is not supported on CPUs!") | 
					
						
						|  | input, offset, mask, weight, bias = ctx.saved_tensors | 
					
						
						|  | grad_input = torch.zeros_like(input) | 
					
						
						|  | grad_offset = torch.zeros_like(offset) | 
					
						
						|  | grad_mask = torch.zeros_like(mask) | 
					
						
						|  | grad_weight = torch.zeros_like(weight) | 
					
						
						|  | grad_bias = torch.zeros_like(bias) | 
					
						
						|  | _C.modulated_deform_conv_backward( | 
					
						
						|  | input, | 
					
						
						|  | weight, | 
					
						
						|  | bias, | 
					
						
						|  | ctx._bufs[0], | 
					
						
						|  | offset, | 
					
						
						|  | mask, | 
					
						
						|  | ctx._bufs[1], | 
					
						
						|  | grad_input, | 
					
						
						|  | grad_weight, | 
					
						
						|  | grad_bias, | 
					
						
						|  | grad_offset, | 
					
						
						|  | grad_mask, | 
					
						
						|  | grad_output, | 
					
						
						|  | weight.shape[2], | 
					
						
						|  | weight.shape[3], | 
					
						
						|  | ctx.stride, | 
					
						
						|  | ctx.stride, | 
					
						
						|  | ctx.padding, | 
					
						
						|  | ctx.padding, | 
					
						
						|  | ctx.dilation, | 
					
						
						|  | ctx.dilation, | 
					
						
						|  | ctx.groups, | 
					
						
						|  | ctx.deformable_groups, | 
					
						
						|  | ctx.with_bias, | 
					
						
						|  | ) | 
					
						
						|  | if not ctx.with_bias: | 
					
						
						|  | grad_bias = None | 
					
						
						|  |  | 
					
						
						|  | return ( | 
					
						
						|  | grad_input, | 
					
						
						|  | grad_offset, | 
					
						
						|  | grad_mask, | 
					
						
						|  | grad_weight, | 
					
						
						|  | grad_bias, | 
					
						
						|  | None, | 
					
						
						|  | None, | 
					
						
						|  | None, | 
					
						
						|  | None, | 
					
						
						|  | None, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | def _infer_shape(ctx, input, weight): | 
					
						
						|  | n = input.size(0) | 
					
						
						|  | channels_out = weight.size(0) | 
					
						
						|  | height, width = input.shape[2:4] | 
					
						
						|  | kernel_h, kernel_w = weight.shape[2:4] | 
					
						
						|  | height_out = ( | 
					
						
						|  | height + 2 * ctx.padding - (ctx.dilation * (kernel_h - 1) + 1) | 
					
						
						|  | ) // ctx.stride + 1 | 
					
						
						|  | width_out = ( | 
					
						
						|  | width + 2 * ctx.padding - (ctx.dilation * (kernel_w - 1) + 1) | 
					
						
						|  | ) // ctx.stride + 1 | 
					
						
						|  | return n, channels_out, height_out, width_out | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | deform_conv = _DeformConv.apply | 
					
						
						|  | modulated_deform_conv = _ModulatedDeformConv.apply | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class DeformConv(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | in_channels, | 
					
						
						|  | out_channels, | 
					
						
						|  | kernel_size, | 
					
						
						|  | stride=1, | 
					
						
						|  | padding=0, | 
					
						
						|  | dilation=1, | 
					
						
						|  | groups=1, | 
					
						
						|  | deformable_groups=1, | 
					
						
						|  | bias=False, | 
					
						
						|  | norm=None, | 
					
						
						|  | activation=None, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Deformable convolution from :paper:`deformconv`. | 
					
						
						|  |  | 
					
						
						|  | Arguments are similar to :class:`Conv2D`. Extra arguments: | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | deformable_groups (int): number of groups used in deformable convolution. | 
					
						
						|  | norm (nn.Module, optional): a normalization layer | 
					
						
						|  | activation (callable(Tensor) -> Tensor): a callable activation function | 
					
						
						|  | """ | 
					
						
						|  | super(DeformConv, self).__init__() | 
					
						
						|  |  | 
					
						
						|  | assert not bias | 
					
						
						|  | assert in_channels % groups == 0, "in_channels {} cannot be divisible by groups {}".format( | 
					
						
						|  | in_channels, groups | 
					
						
						|  | ) | 
					
						
						|  | assert ( | 
					
						
						|  | out_channels % groups == 0 | 
					
						
						|  | ), "out_channels {} cannot be divisible by groups {}".format(out_channels, groups) | 
					
						
						|  |  | 
					
						
						|  | self.in_channels = in_channels | 
					
						
						|  | self.out_channels = out_channels | 
					
						
						|  | self.kernel_size = _pair(kernel_size) | 
					
						
						|  | self.stride = _pair(stride) | 
					
						
						|  | self.padding = _pair(padding) | 
					
						
						|  | self.dilation = _pair(dilation) | 
					
						
						|  | self.groups = groups | 
					
						
						|  | self.deformable_groups = deformable_groups | 
					
						
						|  | self.norm = norm | 
					
						
						|  | self.activation = activation | 
					
						
						|  |  | 
					
						
						|  | self.weight = nn.Parameter( | 
					
						
						|  | torch.Tensor(out_channels, in_channels // self.groups, *self.kernel_size) | 
					
						
						|  | ) | 
					
						
						|  | self.bias = None | 
					
						
						|  |  | 
					
						
						|  | nn.init.kaiming_uniform_(self.weight, nonlinearity="relu") | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, offset): | 
					
						
						|  | if x.numel() == 0: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | output_shape = [ | 
					
						
						|  | (i + 2 * p - (di * (k - 1) + 1)) // s + 1 | 
					
						
						|  | for i, p, di, k, s in zip( | 
					
						
						|  | x.shape[-2:], self.padding, self.dilation, self.kernel_size, self.stride | 
					
						
						|  | ) | 
					
						
						|  | ] | 
					
						
						|  | output_shape = [x.shape[0], self.weight.shape[0]] + output_shape | 
					
						
						|  | return _NewEmptyTensorOp.apply(x, output_shape) | 
					
						
						|  |  | 
					
						
						|  | x = deform_conv( | 
					
						
						|  | x, | 
					
						
						|  | offset, | 
					
						
						|  | self.weight, | 
					
						
						|  | self.stride, | 
					
						
						|  | self.padding, | 
					
						
						|  | self.dilation, | 
					
						
						|  | self.groups, | 
					
						
						|  | self.deformable_groups, | 
					
						
						|  | ) | 
					
						
						|  | if self.norm is not None: | 
					
						
						|  | x = self.norm(x) | 
					
						
						|  | if self.activation is not None: | 
					
						
						|  | x = self.activation(x) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  | def extra_repr(self): | 
					
						
						|  | tmpstr = "in_channels=" + str(self.in_channels) | 
					
						
						|  | tmpstr += ", out_channels=" + str(self.out_channels) | 
					
						
						|  | tmpstr += ", kernel_size=" + str(self.kernel_size) | 
					
						
						|  | tmpstr += ", stride=" + str(self.stride) | 
					
						
						|  | tmpstr += ", padding=" + str(self.padding) | 
					
						
						|  | tmpstr += ", dilation=" + str(self.dilation) | 
					
						
						|  | tmpstr += ", groups=" + str(self.groups) | 
					
						
						|  | tmpstr += ", deformable_groups=" + str(self.deformable_groups) | 
					
						
						|  | tmpstr += ", bias=False" | 
					
						
						|  | return tmpstr | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class ModulatedDeformConv(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | in_channels, | 
					
						
						|  | out_channels, | 
					
						
						|  | kernel_size, | 
					
						
						|  | stride=1, | 
					
						
						|  | padding=0, | 
					
						
						|  | dilation=1, | 
					
						
						|  | groups=1, | 
					
						
						|  | deformable_groups=1, | 
					
						
						|  | bias=True, | 
					
						
						|  | norm=None, | 
					
						
						|  | activation=None, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Modulated deformable convolution from :paper:`deformconv2`. | 
					
						
						|  |  | 
					
						
						|  | Arguments are similar to :class:`Conv2D`. Extra arguments: | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | deformable_groups (int): number of groups used in deformable convolution. | 
					
						
						|  | norm (nn.Module, optional): a normalization layer | 
					
						
						|  | activation (callable(Tensor) -> Tensor): a callable activation function | 
					
						
						|  | """ | 
					
						
						|  | super(ModulatedDeformConv, self).__init__() | 
					
						
						|  | self.in_channels = in_channels | 
					
						
						|  | self.out_channels = out_channels | 
					
						
						|  | self.kernel_size = _pair(kernel_size) | 
					
						
						|  | self.stride = stride | 
					
						
						|  | self.padding = padding | 
					
						
						|  | self.dilation = dilation | 
					
						
						|  | self.groups = groups | 
					
						
						|  | self.deformable_groups = deformable_groups | 
					
						
						|  | self.with_bias = bias | 
					
						
						|  | self.norm = norm | 
					
						
						|  | self.activation = activation | 
					
						
						|  |  | 
					
						
						|  | self.weight = nn.Parameter( | 
					
						
						|  | torch.Tensor(out_channels, in_channels // groups, *self.kernel_size) | 
					
						
						|  | ) | 
					
						
						|  | if bias: | 
					
						
						|  | self.bias = nn.Parameter(torch.Tensor(out_channels)) | 
					
						
						|  | else: | 
					
						
						|  | self.bias = None | 
					
						
						|  |  | 
					
						
						|  | nn.init.kaiming_uniform_(self.weight, nonlinearity="relu") | 
					
						
						|  | if self.bias is not None: | 
					
						
						|  | nn.init.constant_(self.bias, 0) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, offset, mask): | 
					
						
						|  | if x.numel() == 0: | 
					
						
						|  | output_shape = [ | 
					
						
						|  | (i + 2 * p - (di * (k - 1) + 1)) // s + 1 | 
					
						
						|  | for i, p, di, k, s in zip( | 
					
						
						|  | x.shape[-2:], self.padding, self.dilation, self.kernel_size, self.stride | 
					
						
						|  | ) | 
					
						
						|  | ] | 
					
						
						|  | output_shape = [x.shape[0], self.weight.shape[0]] + output_shape | 
					
						
						|  | return _NewEmptyTensorOp.apply(x, output_shape) | 
					
						
						|  |  | 
					
						
						|  | x = modulated_deform_conv( | 
					
						
						|  | x, | 
					
						
						|  | offset, | 
					
						
						|  | mask, | 
					
						
						|  | self.weight, | 
					
						
						|  | self.bias, | 
					
						
						|  | self.stride, | 
					
						
						|  | self.padding, | 
					
						
						|  | self.dilation, | 
					
						
						|  | self.groups, | 
					
						
						|  | self.deformable_groups, | 
					
						
						|  | ) | 
					
						
						|  | if self.norm is not None: | 
					
						
						|  | x = self.norm(x) | 
					
						
						|  | if self.activation is not None: | 
					
						
						|  | x = self.activation(x) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  | def extra_repr(self): | 
					
						
						|  | tmpstr = "in_channels=" + str(self.in_channels) | 
					
						
						|  | tmpstr += ", out_channels=" + str(self.out_channels) | 
					
						
						|  | tmpstr += ", kernel_size=" + str(self.kernel_size) | 
					
						
						|  | tmpstr += ", stride=" + str(self.stride) | 
					
						
						|  | tmpstr += ", padding=" + str(self.padding) | 
					
						
						|  | tmpstr += ", dilation=" + str(self.dilation) | 
					
						
						|  | tmpstr += ", groups=" + str(self.groups) | 
					
						
						|  | tmpstr += ", deformable_groups=" + str(self.deformable_groups) | 
					
						
						|  | tmpstr += ", bias=" + str(self.with_bias) | 
					
						
						|  | return tmpstr | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | from detectron2 import _C | 
					
						
						|  | except ImportError: | 
					
						
						|  |  | 
					
						
						|  | _msg = "detectron2 is not compiled successfully, please build following the instructions!" | 
					
						
						|  | _args = ("detectron2._C", _msg) | 
					
						
						|  | DeformConv = create_dummy_class("DeformConv", *_args) | 
					
						
						|  | ModulatedDeformConv = create_dummy_class("ModulatedDeformConv", *_args) | 
					
						
						|  | deform_conv = create_dummy_func("deform_conv", *_args) | 
					
						
						|  | modulated_deform_conv = create_dummy_func("modulated_deform_conv", *_args) | 
					
						
						|  |  |