|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | from typing import Any, Dict, Optional, Tuple, Union | 
					
						
						|  |  | 
					
						
						|  | import numpy as np | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  | from torch import nn | 
					
						
						|  |  | 
					
						
						|  | from diffusers.utils import is_torch_version, logging | 
					
						
						|  | from diffusers.utils.torch_utils import apply_freeu | 
					
						
						|  | from diffusers.models.activations import get_activation | 
					
						
						|  | from diffusers.models.attention_processor import Attention, AttnAddedKVProcessor, AttnAddedKVProcessor2_0 | 
					
						
						|  | from diffusers.models.dual_transformer_2d import DualTransformer2DModel | 
					
						
						|  | from diffusers.models.normalization import AdaGroupNorm | 
					
						
						|  | from diffusers.models.resnet import Downsample2D, FirDownsample2D, FirUpsample2D, KDownsample2D, KUpsample2D, ResnetBlock2D, Upsample2D | 
					
						
						|  | from src.transformerhacked_tryon import Transformer2DModel | 
					
						
						|  | from einops import rearrange | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_down_block( | 
					
						
						|  | down_block_type: str, | 
					
						
						|  | num_layers: int, | 
					
						
						|  | in_channels: int, | 
					
						
						|  | out_channels: int, | 
					
						
						|  | temb_channels: int, | 
					
						
						|  | add_downsample: bool, | 
					
						
						|  | resnet_eps: float, | 
					
						
						|  | resnet_act_fn: str, | 
					
						
						|  | transformer_layers_per_block: int = 1, | 
					
						
						|  | num_attention_heads: Optional[int] = None, | 
					
						
						|  | resnet_groups: Optional[int] = None, | 
					
						
						|  | cross_attention_dim: Optional[int] = None, | 
					
						
						|  | downsample_padding: Optional[int] = None, | 
					
						
						|  | dual_cross_attention: bool = False, | 
					
						
						|  | use_linear_projection: bool = False, | 
					
						
						|  | only_cross_attention: bool = False, | 
					
						
						|  | upcast_attention: bool = False, | 
					
						
						|  | resnet_time_scale_shift: str = "default", | 
					
						
						|  | attention_type: str = "default", | 
					
						
						|  | resnet_skip_time_act: bool = False, | 
					
						
						|  | resnet_out_scale_factor: float = 1.0, | 
					
						
						|  | cross_attention_norm: Optional[str] = None, | 
					
						
						|  | attention_head_dim: Optional[int] = None, | 
					
						
						|  | downsample_type: Optional[str] = None, | 
					
						
						|  | dropout: float = 0.0, | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  | if attention_head_dim is None: | 
					
						
						|  | logger.warn( | 
					
						
						|  | f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}." | 
					
						
						|  | ) | 
					
						
						|  | attention_head_dim = num_attention_heads | 
					
						
						|  |  | 
					
						
						|  | down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type | 
					
						
						|  | if down_block_type == "DownBlock2D": | 
					
						
						|  | return DownBlock2D( | 
					
						
						|  | num_layers=num_layers, | 
					
						
						|  | in_channels=in_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | add_downsample=add_downsample, | 
					
						
						|  | resnet_eps=resnet_eps, | 
					
						
						|  | resnet_act_fn=resnet_act_fn, | 
					
						
						|  | resnet_groups=resnet_groups, | 
					
						
						|  | downsample_padding=downsample_padding, | 
					
						
						|  | resnet_time_scale_shift=resnet_time_scale_shift, | 
					
						
						|  | ) | 
					
						
						|  | elif down_block_type == "ResnetDownsampleBlock2D": | 
					
						
						|  | return ResnetDownsampleBlock2D( | 
					
						
						|  | num_layers=num_layers, | 
					
						
						|  | in_channels=in_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | add_downsample=add_downsample, | 
					
						
						|  | resnet_eps=resnet_eps, | 
					
						
						|  | resnet_act_fn=resnet_act_fn, | 
					
						
						|  | resnet_groups=resnet_groups, | 
					
						
						|  | resnet_time_scale_shift=resnet_time_scale_shift, | 
					
						
						|  | skip_time_act=resnet_skip_time_act, | 
					
						
						|  | output_scale_factor=resnet_out_scale_factor, | 
					
						
						|  | ) | 
					
						
						|  | elif down_block_type == "AttnDownBlock2D": | 
					
						
						|  | if add_downsample is False: | 
					
						
						|  | downsample_type = None | 
					
						
						|  | else: | 
					
						
						|  | downsample_type = downsample_type or "conv" | 
					
						
						|  | return AttnDownBlock2D( | 
					
						
						|  | num_layers=num_layers, | 
					
						
						|  | in_channels=in_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | resnet_eps=resnet_eps, | 
					
						
						|  | resnet_act_fn=resnet_act_fn, | 
					
						
						|  | resnet_groups=resnet_groups, | 
					
						
						|  | downsample_padding=downsample_padding, | 
					
						
						|  | attention_head_dim=attention_head_dim, | 
					
						
						|  | resnet_time_scale_shift=resnet_time_scale_shift, | 
					
						
						|  | downsample_type=downsample_type, | 
					
						
						|  | ) | 
					
						
						|  | elif down_block_type == "CrossAttnDownBlock2D": | 
					
						
						|  | if cross_attention_dim is None: | 
					
						
						|  | raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D") | 
					
						
						|  | return CrossAttnDownBlock2D( | 
					
						
						|  | num_layers=num_layers, | 
					
						
						|  | transformer_layers_per_block=transformer_layers_per_block, | 
					
						
						|  | in_channels=in_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | add_downsample=add_downsample, | 
					
						
						|  | resnet_eps=resnet_eps, | 
					
						
						|  | resnet_act_fn=resnet_act_fn, | 
					
						
						|  | resnet_groups=resnet_groups, | 
					
						
						|  | downsample_padding=downsample_padding, | 
					
						
						|  | cross_attention_dim=cross_attention_dim, | 
					
						
						|  | num_attention_heads=num_attention_heads, | 
					
						
						|  | dual_cross_attention=dual_cross_attention, | 
					
						
						|  | use_linear_projection=use_linear_projection, | 
					
						
						|  | only_cross_attention=only_cross_attention, | 
					
						
						|  | upcast_attention=upcast_attention, | 
					
						
						|  | resnet_time_scale_shift=resnet_time_scale_shift, | 
					
						
						|  | attention_type=attention_type, | 
					
						
						|  | ) | 
					
						
						|  | elif down_block_type == "SimpleCrossAttnDownBlock2D": | 
					
						
						|  | if cross_attention_dim is None: | 
					
						
						|  | raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnDownBlock2D") | 
					
						
						|  | return SimpleCrossAttnDownBlock2D( | 
					
						
						|  | num_layers=num_layers, | 
					
						
						|  | in_channels=in_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | add_downsample=add_downsample, | 
					
						
						|  | resnet_eps=resnet_eps, | 
					
						
						|  | resnet_act_fn=resnet_act_fn, | 
					
						
						|  | resnet_groups=resnet_groups, | 
					
						
						|  | cross_attention_dim=cross_attention_dim, | 
					
						
						|  | attention_head_dim=attention_head_dim, | 
					
						
						|  | resnet_time_scale_shift=resnet_time_scale_shift, | 
					
						
						|  | skip_time_act=resnet_skip_time_act, | 
					
						
						|  | output_scale_factor=resnet_out_scale_factor, | 
					
						
						|  | only_cross_attention=only_cross_attention, | 
					
						
						|  | cross_attention_norm=cross_attention_norm, | 
					
						
						|  | ) | 
					
						
						|  | elif down_block_type == "SkipDownBlock2D": | 
					
						
						|  | return SkipDownBlock2D( | 
					
						
						|  | num_layers=num_layers, | 
					
						
						|  | in_channels=in_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | add_downsample=add_downsample, | 
					
						
						|  | resnet_eps=resnet_eps, | 
					
						
						|  | resnet_act_fn=resnet_act_fn, | 
					
						
						|  | downsample_padding=downsample_padding, | 
					
						
						|  | resnet_time_scale_shift=resnet_time_scale_shift, | 
					
						
						|  | ) | 
					
						
						|  | elif down_block_type == "AttnSkipDownBlock2D": | 
					
						
						|  | return AttnSkipDownBlock2D( | 
					
						
						|  | num_layers=num_layers, | 
					
						
						|  | in_channels=in_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | add_downsample=add_downsample, | 
					
						
						|  | resnet_eps=resnet_eps, | 
					
						
						|  | resnet_act_fn=resnet_act_fn, | 
					
						
						|  | attention_head_dim=attention_head_dim, | 
					
						
						|  | resnet_time_scale_shift=resnet_time_scale_shift, | 
					
						
						|  | ) | 
					
						
						|  | elif down_block_type == "DownEncoderBlock2D": | 
					
						
						|  | return DownEncoderBlock2D( | 
					
						
						|  | num_layers=num_layers, | 
					
						
						|  | in_channels=in_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | add_downsample=add_downsample, | 
					
						
						|  | resnet_eps=resnet_eps, | 
					
						
						|  | resnet_act_fn=resnet_act_fn, | 
					
						
						|  | resnet_groups=resnet_groups, | 
					
						
						|  | downsample_padding=downsample_padding, | 
					
						
						|  | resnet_time_scale_shift=resnet_time_scale_shift, | 
					
						
						|  | ) | 
					
						
						|  | elif down_block_type == "AttnDownEncoderBlock2D": | 
					
						
						|  | return AttnDownEncoderBlock2D( | 
					
						
						|  | num_layers=num_layers, | 
					
						
						|  | in_channels=in_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | add_downsample=add_downsample, | 
					
						
						|  | resnet_eps=resnet_eps, | 
					
						
						|  | resnet_act_fn=resnet_act_fn, | 
					
						
						|  | resnet_groups=resnet_groups, | 
					
						
						|  | downsample_padding=downsample_padding, | 
					
						
						|  | attention_head_dim=attention_head_dim, | 
					
						
						|  | resnet_time_scale_shift=resnet_time_scale_shift, | 
					
						
						|  | ) | 
					
						
						|  | elif down_block_type == "KDownBlock2D": | 
					
						
						|  | return KDownBlock2D( | 
					
						
						|  | num_layers=num_layers, | 
					
						
						|  | in_channels=in_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | add_downsample=add_downsample, | 
					
						
						|  | resnet_eps=resnet_eps, | 
					
						
						|  | resnet_act_fn=resnet_act_fn, | 
					
						
						|  | ) | 
					
						
						|  | elif down_block_type == "KCrossAttnDownBlock2D": | 
					
						
						|  | return KCrossAttnDownBlock2D( | 
					
						
						|  | num_layers=num_layers, | 
					
						
						|  | in_channels=in_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | add_downsample=add_downsample, | 
					
						
						|  | resnet_eps=resnet_eps, | 
					
						
						|  | resnet_act_fn=resnet_act_fn, | 
					
						
						|  | cross_attention_dim=cross_attention_dim, | 
					
						
						|  | attention_head_dim=attention_head_dim, | 
					
						
						|  | add_self_attention=True if not add_downsample else False, | 
					
						
						|  | ) | 
					
						
						|  | raise ValueError(f"{down_block_type} does not exist.") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_up_block( | 
					
						
						|  | up_block_type: str, | 
					
						
						|  | num_layers: int, | 
					
						
						|  | in_channels: int, | 
					
						
						|  | out_channels: int, | 
					
						
						|  | prev_output_channel: int, | 
					
						
						|  | temb_channels: int, | 
					
						
						|  | add_upsample: bool, | 
					
						
						|  | resnet_eps: float, | 
					
						
						|  | resnet_act_fn: str, | 
					
						
						|  | resolution_idx: Optional[int] = None, | 
					
						
						|  | transformer_layers_per_block: int = 1, | 
					
						
						|  | num_attention_heads: Optional[int] = None, | 
					
						
						|  | resnet_groups: Optional[int] = None, | 
					
						
						|  | cross_attention_dim: Optional[int] = None, | 
					
						
						|  | dual_cross_attention: bool = False, | 
					
						
						|  | use_linear_projection: bool = False, | 
					
						
						|  | only_cross_attention: bool = False, | 
					
						
						|  | upcast_attention: bool = False, | 
					
						
						|  | resnet_time_scale_shift: str = "default", | 
					
						
						|  | attention_type: str = "default", | 
					
						
						|  | resnet_skip_time_act: bool = False, | 
					
						
						|  | resnet_out_scale_factor: float = 1.0, | 
					
						
						|  | cross_attention_norm: Optional[str] = None, | 
					
						
						|  | attention_head_dim: Optional[int] = None, | 
					
						
						|  | upsample_type: Optional[str] = None, | 
					
						
						|  | dropout: float = 0.0, | 
					
						
						|  | ) -> nn.Module: | 
					
						
						|  |  | 
					
						
						|  | if attention_head_dim is None: | 
					
						
						|  | logger.warn( | 
					
						
						|  | f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}." | 
					
						
						|  | ) | 
					
						
						|  | attention_head_dim = num_attention_heads | 
					
						
						|  |  | 
					
						
						|  | up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type | 
					
						
						|  | if up_block_type == "UpBlock2D": | 
					
						
						|  | return UpBlock2D( | 
					
						
						|  | num_layers=num_layers, | 
					
						
						|  | in_channels=in_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | prev_output_channel=prev_output_channel, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | resolution_idx=resolution_idx, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | add_upsample=add_upsample, | 
					
						
						|  | resnet_eps=resnet_eps, | 
					
						
						|  | resnet_act_fn=resnet_act_fn, | 
					
						
						|  | resnet_groups=resnet_groups, | 
					
						
						|  | resnet_time_scale_shift=resnet_time_scale_shift, | 
					
						
						|  | ) | 
					
						
						|  | elif up_block_type == "ResnetUpsampleBlock2D": | 
					
						
						|  | return ResnetUpsampleBlock2D( | 
					
						
						|  | num_layers=num_layers, | 
					
						
						|  | in_channels=in_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | prev_output_channel=prev_output_channel, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | resolution_idx=resolution_idx, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | add_upsample=add_upsample, | 
					
						
						|  | resnet_eps=resnet_eps, | 
					
						
						|  | resnet_act_fn=resnet_act_fn, | 
					
						
						|  | resnet_groups=resnet_groups, | 
					
						
						|  | resnet_time_scale_shift=resnet_time_scale_shift, | 
					
						
						|  | skip_time_act=resnet_skip_time_act, | 
					
						
						|  | output_scale_factor=resnet_out_scale_factor, | 
					
						
						|  | ) | 
					
						
						|  | elif up_block_type == "CrossAttnUpBlock2D": | 
					
						
						|  | if cross_attention_dim is None: | 
					
						
						|  | raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D") | 
					
						
						|  | return CrossAttnUpBlock2D( | 
					
						
						|  | num_layers=num_layers, | 
					
						
						|  | transformer_layers_per_block=transformer_layers_per_block, | 
					
						
						|  | in_channels=in_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | prev_output_channel=prev_output_channel, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | resolution_idx=resolution_idx, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | add_upsample=add_upsample, | 
					
						
						|  | resnet_eps=resnet_eps, | 
					
						
						|  | resnet_act_fn=resnet_act_fn, | 
					
						
						|  | resnet_groups=resnet_groups, | 
					
						
						|  | cross_attention_dim=cross_attention_dim, | 
					
						
						|  | num_attention_heads=num_attention_heads, | 
					
						
						|  | dual_cross_attention=dual_cross_attention, | 
					
						
						|  | use_linear_projection=use_linear_projection, | 
					
						
						|  | only_cross_attention=only_cross_attention, | 
					
						
						|  | upcast_attention=upcast_attention, | 
					
						
						|  | resnet_time_scale_shift=resnet_time_scale_shift, | 
					
						
						|  | attention_type=attention_type, | 
					
						
						|  | ) | 
					
						
						|  | elif up_block_type == "SimpleCrossAttnUpBlock2D": | 
					
						
						|  | if cross_attention_dim is None: | 
					
						
						|  | raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnUpBlock2D") | 
					
						
						|  | return SimpleCrossAttnUpBlock2D( | 
					
						
						|  | num_layers=num_layers, | 
					
						
						|  | in_channels=in_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | prev_output_channel=prev_output_channel, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | resolution_idx=resolution_idx, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | add_upsample=add_upsample, | 
					
						
						|  | resnet_eps=resnet_eps, | 
					
						
						|  | resnet_act_fn=resnet_act_fn, | 
					
						
						|  | resnet_groups=resnet_groups, | 
					
						
						|  | cross_attention_dim=cross_attention_dim, | 
					
						
						|  | attention_head_dim=attention_head_dim, | 
					
						
						|  | resnet_time_scale_shift=resnet_time_scale_shift, | 
					
						
						|  | skip_time_act=resnet_skip_time_act, | 
					
						
						|  | output_scale_factor=resnet_out_scale_factor, | 
					
						
						|  | only_cross_attention=only_cross_attention, | 
					
						
						|  | cross_attention_norm=cross_attention_norm, | 
					
						
						|  | ) | 
					
						
						|  | elif up_block_type == "AttnUpBlock2D": | 
					
						
						|  | if add_upsample is False: | 
					
						
						|  | upsample_type = None | 
					
						
						|  | else: | 
					
						
						|  | upsample_type = upsample_type or "conv" | 
					
						
						|  |  | 
					
						
						|  | return AttnUpBlock2D( | 
					
						
						|  | num_layers=num_layers, | 
					
						
						|  | in_channels=in_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | prev_output_channel=prev_output_channel, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | resolution_idx=resolution_idx, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | resnet_eps=resnet_eps, | 
					
						
						|  | resnet_act_fn=resnet_act_fn, | 
					
						
						|  | resnet_groups=resnet_groups, | 
					
						
						|  | attention_head_dim=attention_head_dim, | 
					
						
						|  | resnet_time_scale_shift=resnet_time_scale_shift, | 
					
						
						|  | upsample_type=upsample_type, | 
					
						
						|  | ) | 
					
						
						|  | elif up_block_type == "SkipUpBlock2D": | 
					
						
						|  | return SkipUpBlock2D( | 
					
						
						|  | num_layers=num_layers, | 
					
						
						|  | in_channels=in_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | prev_output_channel=prev_output_channel, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | resolution_idx=resolution_idx, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | add_upsample=add_upsample, | 
					
						
						|  | resnet_eps=resnet_eps, | 
					
						
						|  | resnet_act_fn=resnet_act_fn, | 
					
						
						|  | resnet_time_scale_shift=resnet_time_scale_shift, | 
					
						
						|  | ) | 
					
						
						|  | elif up_block_type == "AttnSkipUpBlock2D": | 
					
						
						|  | return AttnSkipUpBlock2D( | 
					
						
						|  | num_layers=num_layers, | 
					
						
						|  | in_channels=in_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | prev_output_channel=prev_output_channel, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | resolution_idx=resolution_idx, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | add_upsample=add_upsample, | 
					
						
						|  | resnet_eps=resnet_eps, | 
					
						
						|  | resnet_act_fn=resnet_act_fn, | 
					
						
						|  | attention_head_dim=attention_head_dim, | 
					
						
						|  | resnet_time_scale_shift=resnet_time_scale_shift, | 
					
						
						|  | ) | 
					
						
						|  | elif up_block_type == "UpDecoderBlock2D": | 
					
						
						|  | return UpDecoderBlock2D( | 
					
						
						|  | num_layers=num_layers, | 
					
						
						|  | in_channels=in_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | resolution_idx=resolution_idx, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | add_upsample=add_upsample, | 
					
						
						|  | resnet_eps=resnet_eps, | 
					
						
						|  | resnet_act_fn=resnet_act_fn, | 
					
						
						|  | resnet_groups=resnet_groups, | 
					
						
						|  | resnet_time_scale_shift=resnet_time_scale_shift, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | ) | 
					
						
						|  | elif up_block_type == "AttnUpDecoderBlock2D": | 
					
						
						|  | return AttnUpDecoderBlock2D( | 
					
						
						|  | num_layers=num_layers, | 
					
						
						|  | in_channels=in_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | resolution_idx=resolution_idx, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | add_upsample=add_upsample, | 
					
						
						|  | resnet_eps=resnet_eps, | 
					
						
						|  | resnet_act_fn=resnet_act_fn, | 
					
						
						|  | resnet_groups=resnet_groups, | 
					
						
						|  | attention_head_dim=attention_head_dim, | 
					
						
						|  | resnet_time_scale_shift=resnet_time_scale_shift, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | ) | 
					
						
						|  | elif up_block_type == "KUpBlock2D": | 
					
						
						|  | return KUpBlock2D( | 
					
						
						|  | num_layers=num_layers, | 
					
						
						|  | in_channels=in_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | resolution_idx=resolution_idx, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | add_upsample=add_upsample, | 
					
						
						|  | resnet_eps=resnet_eps, | 
					
						
						|  | resnet_act_fn=resnet_act_fn, | 
					
						
						|  | ) | 
					
						
						|  | elif up_block_type == "KCrossAttnUpBlock2D": | 
					
						
						|  | return KCrossAttnUpBlock2D( | 
					
						
						|  | num_layers=num_layers, | 
					
						
						|  | in_channels=in_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | resolution_idx=resolution_idx, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | add_upsample=add_upsample, | 
					
						
						|  | resnet_eps=resnet_eps, | 
					
						
						|  | resnet_act_fn=resnet_act_fn, | 
					
						
						|  | cross_attention_dim=cross_attention_dim, | 
					
						
						|  | attention_head_dim=attention_head_dim, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | raise ValueError(f"{up_block_type} does not exist.") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class AutoencoderTinyBlock(nn.Module): | 
					
						
						|  | """ | 
					
						
						|  | Tiny Autoencoder block used in [`AutoencoderTiny`]. It is a mini residual module consisting of plain conv + ReLU | 
					
						
						|  | blocks. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | in_channels (`int`): The number of input channels. | 
					
						
						|  | out_channels (`int`): The number of output channels. | 
					
						
						|  | act_fn (`str`): | 
					
						
						|  | ` The activation function to use. Supported values are `"swish"`, `"mish"`, `"gelu"`, and `"relu"`. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | `torch.FloatTensor`: A tensor with the same shape as the input tensor, but with the number of channels equal to | 
					
						
						|  | `out_channels`. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, in_channels: int, out_channels: int, act_fn: str): | 
					
						
						|  | super().__init__() | 
					
						
						|  | act_fn = get_activation(act_fn) | 
					
						
						|  | self.conv = nn.Sequential( | 
					
						
						|  | nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), | 
					
						
						|  | act_fn, | 
					
						
						|  | nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1), | 
					
						
						|  | act_fn, | 
					
						
						|  | nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1), | 
					
						
						|  | ) | 
					
						
						|  | self.skip = ( | 
					
						
						|  | nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False) | 
					
						
						|  | if in_channels != out_channels | 
					
						
						|  | else nn.Identity() | 
					
						
						|  | ) | 
					
						
						|  | self.fuse = nn.ReLU() | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x: torch.FloatTensor) -> torch.FloatTensor: | 
					
						
						|  | return self.fuse(self.conv(x) + self.skip(x)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class UNetMidBlock2D(nn.Module): | 
					
						
						|  | """ | 
					
						
						|  | A 2D UNet mid-block [`UNetMidBlock2D`] with multiple residual blocks and optional attention blocks. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | in_channels (`int`): The number of input channels. | 
					
						
						|  | temb_channels (`int`): The number of temporal embedding channels. | 
					
						
						|  | dropout (`float`, *optional*, defaults to 0.0): The dropout rate. | 
					
						
						|  | num_layers (`int`, *optional*, defaults to 1): The number of residual blocks. | 
					
						
						|  | resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks. | 
					
						
						|  | resnet_time_scale_shift (`str`, *optional*, defaults to `default`): | 
					
						
						|  | The type of normalization to apply to the time embeddings. This can help to improve the performance of the | 
					
						
						|  | model on tasks with long-range temporal dependencies. | 
					
						
						|  | resnet_act_fn (`str`, *optional*, defaults to `swish`): The activation function for the resnet blocks. | 
					
						
						|  | resnet_groups (`int`, *optional*, defaults to 32): | 
					
						
						|  | The number of groups to use in the group normalization layers of the resnet blocks. | 
					
						
						|  | attn_groups (`Optional[int]`, *optional*, defaults to None): The number of groups for the attention blocks. | 
					
						
						|  | resnet_pre_norm (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether to use pre-normalization for the resnet blocks. | 
					
						
						|  | add_attention (`bool`, *optional*, defaults to `True`): Whether to add attention blocks. | 
					
						
						|  | attention_head_dim (`int`, *optional*, defaults to 1): | 
					
						
						|  | Dimension of a single attention head. The number of attention heads is determined based on this value and | 
					
						
						|  | the number of input channels. | 
					
						
						|  | output_scale_factor (`float`, *optional*, defaults to 1.0): The output scale factor. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | `torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size, | 
					
						
						|  | in_channels, height, width)`. | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | in_channels: int, | 
					
						
						|  | temb_channels: int, | 
					
						
						|  | dropout: float = 0.0, | 
					
						
						|  | num_layers: int = 1, | 
					
						
						|  | resnet_eps: float = 1e-6, | 
					
						
						|  | resnet_time_scale_shift: str = "default", | 
					
						
						|  | resnet_act_fn: str = "swish", | 
					
						
						|  | resnet_groups: int = 32, | 
					
						
						|  | attn_groups: Optional[int] = None, | 
					
						
						|  | resnet_pre_norm: bool = True, | 
					
						
						|  | add_attention: bool = True, | 
					
						
						|  | attention_head_dim: int = 1, | 
					
						
						|  | output_scale_factor: float = 1.0, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) | 
					
						
						|  | self.add_attention = add_attention | 
					
						
						|  |  | 
					
						
						|  | if attn_groups is None: | 
					
						
						|  | attn_groups = resnet_groups if resnet_time_scale_shift == "default" else None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | resnets = [ | 
					
						
						|  | ResnetBlock2D( | 
					
						
						|  | in_channels=in_channels, | 
					
						
						|  | out_channels=in_channels, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | eps=resnet_eps, | 
					
						
						|  | groups=resnet_groups, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | time_embedding_norm=resnet_time_scale_shift, | 
					
						
						|  | non_linearity=resnet_act_fn, | 
					
						
						|  | output_scale_factor=output_scale_factor, | 
					
						
						|  | pre_norm=resnet_pre_norm, | 
					
						
						|  | ) | 
					
						
						|  | ] | 
					
						
						|  | attentions = [] | 
					
						
						|  |  | 
					
						
						|  | if attention_head_dim is None: | 
					
						
						|  | logger.warn( | 
					
						
						|  | f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}." | 
					
						
						|  | ) | 
					
						
						|  | attention_head_dim = in_channels | 
					
						
						|  |  | 
					
						
						|  | for _ in range(num_layers): | 
					
						
						|  | if self.add_attention: | 
					
						
						|  | attentions.append( | 
					
						
						|  | Attention( | 
					
						
						|  | in_channels, | 
					
						
						|  | heads=in_channels // attention_head_dim, | 
					
						
						|  | dim_head=attention_head_dim, | 
					
						
						|  | rescale_output_factor=output_scale_factor, | 
					
						
						|  | eps=resnet_eps, | 
					
						
						|  | norm_num_groups=attn_groups, | 
					
						
						|  | spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None, | 
					
						
						|  | residual_connection=True, | 
					
						
						|  | bias=True, | 
					
						
						|  | upcast_softmax=True, | 
					
						
						|  | _from_deprecated_attn_block=True, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | attentions.append(None) | 
					
						
						|  |  | 
					
						
						|  | resnets.append( | 
					
						
						|  | ResnetBlock2D( | 
					
						
						|  | in_channels=in_channels, | 
					
						
						|  | out_channels=in_channels, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | eps=resnet_eps, | 
					
						
						|  | groups=resnet_groups, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | time_embedding_norm=resnet_time_scale_shift, | 
					
						
						|  | non_linearity=resnet_act_fn, | 
					
						
						|  | output_scale_factor=output_scale_factor, | 
					
						
						|  | pre_norm=resnet_pre_norm, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.attentions = nn.ModuleList(attentions) | 
					
						
						|  | self.resnets = nn.ModuleList(resnets) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor: | 
					
						
						|  | hidden_states = self.resnets[0](hidden_states, temb) | 
					
						
						|  | for attn, resnet in zip(self.attentions, self.resnets[1:]): | 
					
						
						|  | if attn is not None: | 
					
						
						|  | hidden_states = attn(hidden_states, temb=temb) | 
					
						
						|  | hidden_states = resnet(hidden_states, temb) | 
					
						
						|  |  | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class UNetMidBlock2DCrossAttn(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | in_channels: int, | 
					
						
						|  | temb_channels: int, | 
					
						
						|  | dropout: float = 0.0, | 
					
						
						|  | num_layers: int = 1, | 
					
						
						|  | transformer_layers_per_block: Union[int, Tuple[int]] = 1, | 
					
						
						|  | resnet_eps: float = 1e-6, | 
					
						
						|  | resnet_time_scale_shift: str = "default", | 
					
						
						|  | resnet_act_fn: str = "swish", | 
					
						
						|  | resnet_groups: int = 32, | 
					
						
						|  | resnet_pre_norm: bool = True, | 
					
						
						|  | num_attention_heads: int = 1, | 
					
						
						|  | output_scale_factor: float = 1.0, | 
					
						
						|  | cross_attention_dim: int = 1280, | 
					
						
						|  | dual_cross_attention: bool = False, | 
					
						
						|  | use_linear_projection: bool = False, | 
					
						
						|  | upcast_attention: bool = False, | 
					
						
						|  | attention_type: str = "default", | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.has_cross_attention = True | 
					
						
						|  | self.num_attention_heads = num_attention_heads | 
					
						
						|  | resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if isinstance(transformer_layers_per_block, int): | 
					
						
						|  | transformer_layers_per_block = [transformer_layers_per_block] * num_layers | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | resnets = [ | 
					
						
						|  | ResnetBlock2D( | 
					
						
						|  | in_channels=in_channels, | 
					
						
						|  | out_channels=in_channels, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | eps=resnet_eps, | 
					
						
						|  | groups=resnet_groups, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | time_embedding_norm=resnet_time_scale_shift, | 
					
						
						|  | non_linearity=resnet_act_fn, | 
					
						
						|  | output_scale_factor=output_scale_factor, | 
					
						
						|  | pre_norm=resnet_pre_norm, | 
					
						
						|  | ) | 
					
						
						|  | ] | 
					
						
						|  | attentions = [] | 
					
						
						|  |  | 
					
						
						|  | for i in range(num_layers): | 
					
						
						|  | if not dual_cross_attention: | 
					
						
						|  | attentions.append( | 
					
						
						|  | Transformer2DModel( | 
					
						
						|  | num_attention_heads, | 
					
						
						|  | in_channels // num_attention_heads, | 
					
						
						|  | in_channels=in_channels, | 
					
						
						|  | num_layers=transformer_layers_per_block[i], | 
					
						
						|  | cross_attention_dim=cross_attention_dim, | 
					
						
						|  | norm_num_groups=resnet_groups, | 
					
						
						|  | use_linear_projection=use_linear_projection, | 
					
						
						|  | upcast_attention=upcast_attention, | 
					
						
						|  | attention_type=attention_type, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | attentions.append( | 
					
						
						|  | DualTransformer2DModel( | 
					
						
						|  | num_attention_heads, | 
					
						
						|  | in_channels // num_attention_heads, | 
					
						
						|  | in_channels=in_channels, | 
					
						
						|  | num_layers=1, | 
					
						
						|  | cross_attention_dim=cross_attention_dim, | 
					
						
						|  | norm_num_groups=resnet_groups, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | resnets.append( | 
					
						
						|  | ResnetBlock2D( | 
					
						
						|  | in_channels=in_channels, | 
					
						
						|  | out_channels=in_channels, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | eps=resnet_eps, | 
					
						
						|  | groups=resnet_groups, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | time_embedding_norm=resnet_time_scale_shift, | 
					
						
						|  | non_linearity=resnet_act_fn, | 
					
						
						|  | output_scale_factor=output_scale_factor, | 
					
						
						|  | pre_norm=resnet_pre_norm, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.attentions = nn.ModuleList(attentions) | 
					
						
						|  | self.resnets = nn.ModuleList(resnets) | 
					
						
						|  |  | 
					
						
						|  | self.gradient_checkpointing = False | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.FloatTensor, | 
					
						
						|  | temb: Optional[torch.FloatTensor] = None, | 
					
						
						|  | encoder_hidden_states: Optional[torch.FloatTensor] = None, | 
					
						
						|  | attention_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | cross_attention_kwargs: Optional[Dict[str, Any]] = None, | 
					
						
						|  | encoder_attention_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | garment_features=None, | 
					
						
						|  | curr_garment_feat_idx=0, | 
					
						
						|  | ) -> torch.FloatTensor: | 
					
						
						|  | lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 | 
					
						
						|  | hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale) | 
					
						
						|  | for attn, resnet in zip(self.attentions, self.resnets[1:]): | 
					
						
						|  | if self.training and self.gradient_checkpointing: | 
					
						
						|  |  | 
					
						
						|  | def create_custom_forward(module, return_dict=None): | 
					
						
						|  | def custom_forward(*inputs): | 
					
						
						|  | if return_dict is not None: | 
					
						
						|  | return module(*inputs, return_dict=return_dict) | 
					
						
						|  | else: | 
					
						
						|  | return module(*inputs) | 
					
						
						|  |  | 
					
						
						|  | return custom_forward | 
					
						
						|  |  | 
					
						
						|  | ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | 
					
						
						|  | hidden_states,curr_garment_feat_idx = attn( | 
					
						
						|  | hidden_states, | 
					
						
						|  | encoder_hidden_states=encoder_hidden_states, | 
					
						
						|  | cross_attention_kwargs=cross_attention_kwargs, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | encoder_attention_mask=encoder_attention_mask, | 
					
						
						|  | return_dict=False, | 
					
						
						|  | garment_features=garment_features, | 
					
						
						|  | curr_garment_feat_idx=curr_garment_feat_idx, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states=hidden_states[0] | 
					
						
						|  | hidden_states = torch.utils.checkpoint.checkpoint( | 
					
						
						|  | create_custom_forward(resnet), | 
					
						
						|  | hidden_states, | 
					
						
						|  | temb, | 
					
						
						|  | **ckpt_kwargs, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | hidden_states,curr_garment_feat_idx = attn( | 
					
						
						|  | hidden_states, | 
					
						
						|  | encoder_hidden_states=encoder_hidden_states, | 
					
						
						|  | cross_attention_kwargs=cross_attention_kwargs, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | encoder_attention_mask=encoder_attention_mask, | 
					
						
						|  | return_dict=False, | 
					
						
						|  | garment_features=garment_features, | 
					
						
						|  | curr_garment_feat_idx=curr_garment_feat_idx, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states=hidden_states[0] | 
					
						
						|  | hidden_states = resnet(hidden_states, temb, scale=lora_scale) | 
					
						
						|  |  | 
					
						
						|  | return hidden_states,curr_garment_feat_idx | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class UNetMidBlock2DSimpleCrossAttn(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | in_channels: int, | 
					
						
						|  | temb_channels: int, | 
					
						
						|  | dropout: float = 0.0, | 
					
						
						|  | num_layers: int = 1, | 
					
						
						|  | resnet_eps: float = 1e-6, | 
					
						
						|  | resnet_time_scale_shift: str = "default", | 
					
						
						|  | resnet_act_fn: str = "swish", | 
					
						
						|  | resnet_groups: int = 32, | 
					
						
						|  | resnet_pre_norm: bool = True, | 
					
						
						|  | attention_head_dim: int = 1, | 
					
						
						|  | output_scale_factor: float = 1.0, | 
					
						
						|  | cross_attention_dim: int = 1280, | 
					
						
						|  | skip_time_act: bool = False, | 
					
						
						|  | only_cross_attention: bool = False, | 
					
						
						|  | cross_attention_norm: Optional[str] = None, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.has_cross_attention = True | 
					
						
						|  |  | 
					
						
						|  | self.attention_head_dim = attention_head_dim | 
					
						
						|  | resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) | 
					
						
						|  |  | 
					
						
						|  | self.num_heads = in_channels // self.attention_head_dim | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | resnets = [ | 
					
						
						|  | ResnetBlock2D( | 
					
						
						|  | in_channels=in_channels, | 
					
						
						|  | out_channels=in_channels, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | eps=resnet_eps, | 
					
						
						|  | groups=resnet_groups, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | time_embedding_norm=resnet_time_scale_shift, | 
					
						
						|  | non_linearity=resnet_act_fn, | 
					
						
						|  | output_scale_factor=output_scale_factor, | 
					
						
						|  | pre_norm=resnet_pre_norm, | 
					
						
						|  | skip_time_act=skip_time_act, | 
					
						
						|  | ) | 
					
						
						|  | ] | 
					
						
						|  | attentions = [] | 
					
						
						|  |  | 
					
						
						|  | for _ in range(num_layers): | 
					
						
						|  | processor = ( | 
					
						
						|  | AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor() | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attentions.append( | 
					
						
						|  | Attention( | 
					
						
						|  | query_dim=in_channels, | 
					
						
						|  | cross_attention_dim=in_channels, | 
					
						
						|  | heads=self.num_heads, | 
					
						
						|  | dim_head=self.attention_head_dim, | 
					
						
						|  | added_kv_proj_dim=cross_attention_dim, | 
					
						
						|  | norm_num_groups=resnet_groups, | 
					
						
						|  | bias=True, | 
					
						
						|  | upcast_softmax=True, | 
					
						
						|  | only_cross_attention=only_cross_attention, | 
					
						
						|  | cross_attention_norm=cross_attention_norm, | 
					
						
						|  | processor=processor, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | resnets.append( | 
					
						
						|  | ResnetBlock2D( | 
					
						
						|  | in_channels=in_channels, | 
					
						
						|  | out_channels=in_channels, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | eps=resnet_eps, | 
					
						
						|  | groups=resnet_groups, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | time_embedding_norm=resnet_time_scale_shift, | 
					
						
						|  | non_linearity=resnet_act_fn, | 
					
						
						|  | output_scale_factor=output_scale_factor, | 
					
						
						|  | pre_norm=resnet_pre_norm, | 
					
						
						|  | skip_time_act=skip_time_act, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.attentions = nn.ModuleList(attentions) | 
					
						
						|  | self.resnets = nn.ModuleList(resnets) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.FloatTensor, | 
					
						
						|  | temb: Optional[torch.FloatTensor] = None, | 
					
						
						|  | encoder_hidden_states: Optional[torch.FloatTensor] = None, | 
					
						
						|  | attention_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | cross_attention_kwargs: Optional[Dict[str, Any]] = None, | 
					
						
						|  | encoder_attention_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | ) -> torch.FloatTensor: | 
					
						
						|  | cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} | 
					
						
						|  | lora_scale = cross_attention_kwargs.get("scale", 1.0) | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is None: | 
					
						
						|  |  | 
					
						
						|  | mask = None if encoder_hidden_states is None else encoder_attention_mask | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | mask = attention_mask | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale) | 
					
						
						|  | for attn, resnet in zip(self.attentions, self.resnets[1:]): | 
					
						
						|  |  | 
					
						
						|  | hidden_states = attn( | 
					
						
						|  | hidden_states, | 
					
						
						|  | encoder_hidden_states=encoder_hidden_states, | 
					
						
						|  | attention_mask=mask, | 
					
						
						|  | **cross_attention_kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states = resnet(hidden_states, temb, scale=lora_scale) | 
					
						
						|  |  | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class AttnDownBlock2D(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | in_channels: int, | 
					
						
						|  | out_channels: int, | 
					
						
						|  | temb_channels: int, | 
					
						
						|  | dropout: float = 0.0, | 
					
						
						|  | num_layers: int = 1, | 
					
						
						|  | resnet_eps: float = 1e-6, | 
					
						
						|  | resnet_time_scale_shift: str = "default", | 
					
						
						|  | resnet_act_fn: str = "swish", | 
					
						
						|  | resnet_groups: int = 32, | 
					
						
						|  | resnet_pre_norm: bool = True, | 
					
						
						|  | attention_head_dim: int = 1, | 
					
						
						|  | output_scale_factor: float = 1.0, | 
					
						
						|  | downsample_padding: int = 1, | 
					
						
						|  | downsample_type: str = "conv", | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | resnets = [] | 
					
						
						|  | attentions = [] | 
					
						
						|  | self.downsample_type = downsample_type | 
					
						
						|  |  | 
					
						
						|  | if attention_head_dim is None: | 
					
						
						|  | logger.warn( | 
					
						
						|  | f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}." | 
					
						
						|  | ) | 
					
						
						|  | attention_head_dim = out_channels | 
					
						
						|  |  | 
					
						
						|  | for i in range(num_layers): | 
					
						
						|  | in_channels = in_channels if i == 0 else out_channels | 
					
						
						|  | resnets.append( | 
					
						
						|  | ResnetBlock2D( | 
					
						
						|  | in_channels=in_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | eps=resnet_eps, | 
					
						
						|  | groups=resnet_groups, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | time_embedding_norm=resnet_time_scale_shift, | 
					
						
						|  | non_linearity=resnet_act_fn, | 
					
						
						|  | output_scale_factor=output_scale_factor, | 
					
						
						|  | pre_norm=resnet_pre_norm, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | attentions.append( | 
					
						
						|  | Attention( | 
					
						
						|  | out_channels, | 
					
						
						|  | heads=out_channels // attention_head_dim, | 
					
						
						|  | dim_head=attention_head_dim, | 
					
						
						|  | rescale_output_factor=output_scale_factor, | 
					
						
						|  | eps=resnet_eps, | 
					
						
						|  | norm_num_groups=resnet_groups, | 
					
						
						|  | residual_connection=True, | 
					
						
						|  | bias=True, | 
					
						
						|  | upcast_softmax=True, | 
					
						
						|  | _from_deprecated_attn_block=True, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.attentions = nn.ModuleList(attentions) | 
					
						
						|  | self.resnets = nn.ModuleList(resnets) | 
					
						
						|  |  | 
					
						
						|  | if downsample_type == "conv": | 
					
						
						|  | self.downsamplers = nn.ModuleList( | 
					
						
						|  | [ | 
					
						
						|  | Downsample2D( | 
					
						
						|  | out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" | 
					
						
						|  | ) | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  | elif downsample_type == "resnet": | 
					
						
						|  | self.downsamplers = nn.ModuleList( | 
					
						
						|  | [ | 
					
						
						|  | ResnetBlock2D( | 
					
						
						|  | in_channels=out_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | eps=resnet_eps, | 
					
						
						|  | groups=resnet_groups, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | time_embedding_norm=resnet_time_scale_shift, | 
					
						
						|  | non_linearity=resnet_act_fn, | 
					
						
						|  | output_scale_factor=output_scale_factor, | 
					
						
						|  | pre_norm=resnet_pre_norm, | 
					
						
						|  | down=True, | 
					
						
						|  | ) | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | self.downsamplers = None | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.FloatTensor, | 
					
						
						|  | temb: Optional[torch.FloatTensor] = None, | 
					
						
						|  | upsample_size: Optional[int] = None, | 
					
						
						|  | cross_attention_kwargs: Optional[Dict[str, Any]] = None, | 
					
						
						|  | ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: | 
					
						
						|  | cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} | 
					
						
						|  |  | 
					
						
						|  | lora_scale = cross_attention_kwargs.get("scale", 1.0) | 
					
						
						|  |  | 
					
						
						|  | output_states = () | 
					
						
						|  |  | 
					
						
						|  | for resnet, attn in zip(self.resnets, self.attentions): | 
					
						
						|  | cross_attention_kwargs.update({"scale": lora_scale}) | 
					
						
						|  | hidden_states = resnet(hidden_states, temb, scale=lora_scale) | 
					
						
						|  | hidden_states = attn(hidden_states, **cross_attention_kwargs) | 
					
						
						|  | output_states = output_states + (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if self.downsamplers is not None: | 
					
						
						|  | for downsampler in self.downsamplers: | 
					
						
						|  | if self.downsample_type == "resnet": | 
					
						
						|  | hidden_states = downsampler(hidden_states, temb=temb, scale=lora_scale) | 
					
						
						|  | else: | 
					
						
						|  | hidden_states = downsampler(hidden_states, scale=lora_scale) | 
					
						
						|  |  | 
					
						
						|  | output_states += (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | return hidden_states, output_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class CrossAttnDownBlock2D(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | in_channels: int, | 
					
						
						|  | out_channels: int, | 
					
						
						|  | temb_channels: int, | 
					
						
						|  | dropout: float = 0.0, | 
					
						
						|  | num_layers: int = 1, | 
					
						
						|  | transformer_layers_per_block: Union[int, Tuple[int]] = 1, | 
					
						
						|  | resnet_eps: float = 1e-6, | 
					
						
						|  | resnet_time_scale_shift: str = "default", | 
					
						
						|  | resnet_act_fn: str = "swish", | 
					
						
						|  | resnet_groups: int = 32, | 
					
						
						|  | resnet_pre_norm: bool = True, | 
					
						
						|  | num_attention_heads: int = 1, | 
					
						
						|  | cross_attention_dim: int = 1280, | 
					
						
						|  | output_scale_factor: float = 1.0, | 
					
						
						|  | downsample_padding: int = 1, | 
					
						
						|  | add_downsample: bool = True, | 
					
						
						|  | dual_cross_attention: bool = False, | 
					
						
						|  | use_linear_projection: bool = False, | 
					
						
						|  | only_cross_attention: bool = False, | 
					
						
						|  | upcast_attention: bool = False, | 
					
						
						|  | attention_type: str = "default", | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | resnets = [] | 
					
						
						|  | attentions = [] | 
					
						
						|  |  | 
					
						
						|  | self.has_cross_attention = True | 
					
						
						|  | self.num_attention_heads = num_attention_heads | 
					
						
						|  | if isinstance(transformer_layers_per_block, int): | 
					
						
						|  | transformer_layers_per_block = [transformer_layers_per_block] * num_layers | 
					
						
						|  |  | 
					
						
						|  | for i in range(num_layers): | 
					
						
						|  | in_channels = in_channels if i == 0 else out_channels | 
					
						
						|  | resnets.append( | 
					
						
						|  | ResnetBlock2D( | 
					
						
						|  | in_channels=in_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | eps=resnet_eps, | 
					
						
						|  | groups=resnet_groups, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | time_embedding_norm=resnet_time_scale_shift, | 
					
						
						|  | non_linearity=resnet_act_fn, | 
					
						
						|  | output_scale_factor=output_scale_factor, | 
					
						
						|  | pre_norm=resnet_pre_norm, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | if not dual_cross_attention: | 
					
						
						|  | attentions.append( | 
					
						
						|  | Transformer2DModel( | 
					
						
						|  | num_attention_heads, | 
					
						
						|  | out_channels // num_attention_heads, | 
					
						
						|  | in_channels=out_channels, | 
					
						
						|  | num_layers=transformer_layers_per_block[i], | 
					
						
						|  | cross_attention_dim=cross_attention_dim, | 
					
						
						|  | norm_num_groups=resnet_groups, | 
					
						
						|  | use_linear_projection=use_linear_projection, | 
					
						
						|  | only_cross_attention=only_cross_attention, | 
					
						
						|  | upcast_attention=upcast_attention, | 
					
						
						|  | attention_type=attention_type, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | attentions.append( | 
					
						
						|  | DualTransformer2DModel( | 
					
						
						|  | num_attention_heads, | 
					
						
						|  | out_channels // num_attention_heads, | 
					
						
						|  | in_channels=out_channels, | 
					
						
						|  | num_layers=1, | 
					
						
						|  | cross_attention_dim=cross_attention_dim, | 
					
						
						|  | norm_num_groups=resnet_groups, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | self.attentions = nn.ModuleList(attentions) | 
					
						
						|  | self.resnets = nn.ModuleList(resnets) | 
					
						
						|  |  | 
					
						
						|  | if add_downsample: | 
					
						
						|  | self.downsamplers = nn.ModuleList( | 
					
						
						|  | [ | 
					
						
						|  | Downsample2D( | 
					
						
						|  | out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" | 
					
						
						|  | ) | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | self.downsamplers = None | 
					
						
						|  |  | 
					
						
						|  | self.gradient_checkpointing = False | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.FloatTensor, | 
					
						
						|  | temb: Optional[torch.FloatTensor] = None, | 
					
						
						|  | encoder_hidden_states: Optional[torch.FloatTensor] = None, | 
					
						
						|  | attention_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | cross_attention_kwargs: Optional[Dict[str, Any]] = None, | 
					
						
						|  | encoder_attention_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | additional_residuals: Optional[torch.FloatTensor] = None, | 
					
						
						|  | garment_features=None, | 
					
						
						|  | curr_garment_feat_idx=0, | 
					
						
						|  | ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: | 
					
						
						|  | output_states = () | 
					
						
						|  |  | 
					
						
						|  | lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 | 
					
						
						|  |  | 
					
						
						|  | blocks = list(zip(self.resnets, self.attentions)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for i, (resnet, attn) in enumerate(blocks): | 
					
						
						|  | if self.training and self.gradient_checkpointing: | 
					
						
						|  |  | 
					
						
						|  | def create_custom_forward(module, return_dict=None): | 
					
						
						|  | def custom_forward(*inputs): | 
					
						
						|  | if return_dict is not None: | 
					
						
						|  | return module(*inputs, return_dict=return_dict) | 
					
						
						|  | else: | 
					
						
						|  | return module(*inputs) | 
					
						
						|  |  | 
					
						
						|  | return custom_forward | 
					
						
						|  |  | 
					
						
						|  | ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | 
					
						
						|  | hidden_states = torch.utils.checkpoint.checkpoint( | 
					
						
						|  | create_custom_forward(resnet), | 
					
						
						|  | hidden_states, | 
					
						
						|  | temb, | 
					
						
						|  | **ckpt_kwargs, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states,curr_garment_feat_idx = attn( | 
					
						
						|  | hidden_states, | 
					
						
						|  | encoder_hidden_states=encoder_hidden_states, | 
					
						
						|  | cross_attention_kwargs=cross_attention_kwargs, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | encoder_attention_mask=encoder_attention_mask, | 
					
						
						|  | return_dict=False, | 
					
						
						|  | garment_features=garment_features, | 
					
						
						|  | curr_garment_feat_idx=curr_garment_feat_idx, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states=hidden_states[0] | 
					
						
						|  | else: | 
					
						
						|  | hidden_states = resnet(hidden_states, temb, scale=lora_scale) | 
					
						
						|  | hidden_states,curr_garment_feat_idx = attn( | 
					
						
						|  | hidden_states, | 
					
						
						|  | encoder_hidden_states=encoder_hidden_states, | 
					
						
						|  | cross_attention_kwargs=cross_attention_kwargs, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | encoder_attention_mask=encoder_attention_mask, | 
					
						
						|  | return_dict=False, | 
					
						
						|  | garment_features=garment_features, | 
					
						
						|  | curr_garment_feat_idx=curr_garment_feat_idx, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states=hidden_states[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if i == len(blocks) - 1 and additional_residuals is not None: | 
					
						
						|  | hidden_states = hidden_states + additional_residuals | 
					
						
						|  |  | 
					
						
						|  | output_states = output_states + (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if self.downsamplers is not None: | 
					
						
						|  | for downsampler in self.downsamplers: | 
					
						
						|  | hidden_states = downsampler(hidden_states, scale=lora_scale) | 
					
						
						|  |  | 
					
						
						|  | output_states = output_states + (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | return hidden_states, output_states,curr_garment_feat_idx | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class DownBlock2D(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | in_channels: int, | 
					
						
						|  | out_channels: int, | 
					
						
						|  | temb_channels: int, | 
					
						
						|  | dropout: float = 0.0, | 
					
						
						|  | num_layers: int = 1, | 
					
						
						|  | resnet_eps: float = 1e-6, | 
					
						
						|  | resnet_time_scale_shift: str = "default", | 
					
						
						|  | resnet_act_fn: str = "swish", | 
					
						
						|  | resnet_groups: int = 32, | 
					
						
						|  | resnet_pre_norm: bool = True, | 
					
						
						|  | output_scale_factor: float = 1.0, | 
					
						
						|  | add_downsample: bool = True, | 
					
						
						|  | downsample_padding: int = 1, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | resnets = [] | 
					
						
						|  |  | 
					
						
						|  | for i in range(num_layers): | 
					
						
						|  | in_channels = in_channels if i == 0 else out_channels | 
					
						
						|  | resnets.append( | 
					
						
						|  | ResnetBlock2D( | 
					
						
						|  | in_channels=in_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | eps=resnet_eps, | 
					
						
						|  | groups=resnet_groups, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | time_embedding_norm=resnet_time_scale_shift, | 
					
						
						|  | non_linearity=resnet_act_fn, | 
					
						
						|  | output_scale_factor=output_scale_factor, | 
					
						
						|  | pre_norm=resnet_pre_norm, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.resnets = nn.ModuleList(resnets) | 
					
						
						|  |  | 
					
						
						|  | if add_downsample: | 
					
						
						|  | self.downsamplers = nn.ModuleList( | 
					
						
						|  | [ | 
					
						
						|  | Downsample2D( | 
					
						
						|  | out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" | 
					
						
						|  | ) | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | self.downsamplers = None | 
					
						
						|  |  | 
					
						
						|  | self.gradient_checkpointing = False | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0 | 
					
						
						|  | ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: | 
					
						
						|  | output_states = () | 
					
						
						|  |  | 
					
						
						|  | for resnet in self.resnets: | 
					
						
						|  | if self.training and self.gradient_checkpointing: | 
					
						
						|  |  | 
					
						
						|  | def create_custom_forward(module): | 
					
						
						|  | def custom_forward(*inputs): | 
					
						
						|  | return module(*inputs) | 
					
						
						|  |  | 
					
						
						|  | return custom_forward | 
					
						
						|  |  | 
					
						
						|  | if is_torch_version(">=", "1.11.0"): | 
					
						
						|  | hidden_states = torch.utils.checkpoint.checkpoint( | 
					
						
						|  | create_custom_forward(resnet), hidden_states, temb, use_reentrant=False | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | hidden_states = torch.utils.checkpoint.checkpoint( | 
					
						
						|  | create_custom_forward(resnet), hidden_states, temb | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | hidden_states = resnet(hidden_states, temb, scale=scale) | 
					
						
						|  |  | 
					
						
						|  | output_states = output_states + (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if self.downsamplers is not None: | 
					
						
						|  | for downsampler in self.downsamplers: | 
					
						
						|  | hidden_states = downsampler(hidden_states, scale=scale) | 
					
						
						|  |  | 
					
						
						|  | output_states = output_states + (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | return hidden_states, output_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class DownEncoderBlock2D(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | in_channels: int, | 
					
						
						|  | out_channels: int, | 
					
						
						|  | dropout: float = 0.0, | 
					
						
						|  | num_layers: int = 1, | 
					
						
						|  | resnet_eps: float = 1e-6, | 
					
						
						|  | resnet_time_scale_shift: str = "default", | 
					
						
						|  | resnet_act_fn: str = "swish", | 
					
						
						|  | resnet_groups: int = 32, | 
					
						
						|  | resnet_pre_norm: bool = True, | 
					
						
						|  | output_scale_factor: float = 1.0, | 
					
						
						|  | add_downsample: bool = True, | 
					
						
						|  | downsample_padding: int = 1, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | resnets = [] | 
					
						
						|  |  | 
					
						
						|  | for i in range(num_layers): | 
					
						
						|  | in_channels = in_channels if i == 0 else out_channels | 
					
						
						|  | resnets.append( | 
					
						
						|  | ResnetBlock2D( | 
					
						
						|  | in_channels=in_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | temb_channels=None, | 
					
						
						|  | eps=resnet_eps, | 
					
						
						|  | groups=resnet_groups, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | time_embedding_norm=resnet_time_scale_shift, | 
					
						
						|  | non_linearity=resnet_act_fn, | 
					
						
						|  | output_scale_factor=output_scale_factor, | 
					
						
						|  | pre_norm=resnet_pre_norm, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.resnets = nn.ModuleList(resnets) | 
					
						
						|  |  | 
					
						
						|  | if add_downsample: | 
					
						
						|  | self.downsamplers = nn.ModuleList( | 
					
						
						|  | [ | 
					
						
						|  | Downsample2D( | 
					
						
						|  | out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" | 
					
						
						|  | ) | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | self.downsamplers = None | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states: torch.FloatTensor, scale: float = 1.0) -> torch.FloatTensor: | 
					
						
						|  | for resnet in self.resnets: | 
					
						
						|  | hidden_states = resnet(hidden_states, temb=None, scale=scale) | 
					
						
						|  |  | 
					
						
						|  | if self.downsamplers is not None: | 
					
						
						|  | for downsampler in self.downsamplers: | 
					
						
						|  | hidden_states = downsampler(hidden_states, scale) | 
					
						
						|  |  | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class AttnDownEncoderBlock2D(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | in_channels: int, | 
					
						
						|  | out_channels: int, | 
					
						
						|  | dropout: float = 0.0, | 
					
						
						|  | num_layers: int = 1, | 
					
						
						|  | resnet_eps: float = 1e-6, | 
					
						
						|  | resnet_time_scale_shift: str = "default", | 
					
						
						|  | resnet_act_fn: str = "swish", | 
					
						
						|  | resnet_groups: int = 32, | 
					
						
						|  | resnet_pre_norm: bool = True, | 
					
						
						|  | attention_head_dim: int = 1, | 
					
						
						|  | output_scale_factor: float = 1.0, | 
					
						
						|  | add_downsample: bool = True, | 
					
						
						|  | downsample_padding: int = 1, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | resnets = [] | 
					
						
						|  | attentions = [] | 
					
						
						|  |  | 
					
						
						|  | if attention_head_dim is None: | 
					
						
						|  | logger.warn( | 
					
						
						|  | f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}." | 
					
						
						|  | ) | 
					
						
						|  | attention_head_dim = out_channels | 
					
						
						|  |  | 
					
						
						|  | for i in range(num_layers): | 
					
						
						|  | in_channels = in_channels if i == 0 else out_channels | 
					
						
						|  | resnets.append( | 
					
						
						|  | ResnetBlock2D( | 
					
						
						|  | in_channels=in_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | temb_channels=None, | 
					
						
						|  | eps=resnet_eps, | 
					
						
						|  | groups=resnet_groups, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | time_embedding_norm=resnet_time_scale_shift, | 
					
						
						|  | non_linearity=resnet_act_fn, | 
					
						
						|  | output_scale_factor=output_scale_factor, | 
					
						
						|  | pre_norm=resnet_pre_norm, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | attentions.append( | 
					
						
						|  | Attention( | 
					
						
						|  | out_channels, | 
					
						
						|  | heads=out_channels // attention_head_dim, | 
					
						
						|  | dim_head=attention_head_dim, | 
					
						
						|  | rescale_output_factor=output_scale_factor, | 
					
						
						|  | eps=resnet_eps, | 
					
						
						|  | norm_num_groups=resnet_groups, | 
					
						
						|  | residual_connection=True, | 
					
						
						|  | bias=True, | 
					
						
						|  | upcast_softmax=True, | 
					
						
						|  | _from_deprecated_attn_block=True, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.attentions = nn.ModuleList(attentions) | 
					
						
						|  | self.resnets = nn.ModuleList(resnets) | 
					
						
						|  |  | 
					
						
						|  | if add_downsample: | 
					
						
						|  | self.downsamplers = nn.ModuleList( | 
					
						
						|  | [ | 
					
						
						|  | Downsample2D( | 
					
						
						|  | out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" | 
					
						
						|  | ) | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | self.downsamplers = None | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states: torch.FloatTensor, scale: float = 1.0) -> torch.FloatTensor: | 
					
						
						|  | for resnet, attn in zip(self.resnets, self.attentions): | 
					
						
						|  | hidden_states = resnet(hidden_states, temb=None, scale=scale) | 
					
						
						|  | cross_attention_kwargs = {"scale": scale} | 
					
						
						|  | hidden_states = attn(hidden_states, **cross_attention_kwargs) | 
					
						
						|  |  | 
					
						
						|  | if self.downsamplers is not None: | 
					
						
						|  | for downsampler in self.downsamplers: | 
					
						
						|  | hidden_states = downsampler(hidden_states, scale) | 
					
						
						|  |  | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class AttnSkipDownBlock2D(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | in_channels: int, | 
					
						
						|  | out_channels: int, | 
					
						
						|  | temb_channels: int, | 
					
						
						|  | dropout: float = 0.0, | 
					
						
						|  | num_layers: int = 1, | 
					
						
						|  | resnet_eps: float = 1e-6, | 
					
						
						|  | resnet_time_scale_shift: str = "default", | 
					
						
						|  | resnet_act_fn: str = "swish", | 
					
						
						|  | resnet_pre_norm: bool = True, | 
					
						
						|  | attention_head_dim: int = 1, | 
					
						
						|  | output_scale_factor: float = np.sqrt(2.0), | 
					
						
						|  | add_downsample: bool = True, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.attentions = nn.ModuleList([]) | 
					
						
						|  | self.resnets = nn.ModuleList([]) | 
					
						
						|  |  | 
					
						
						|  | if attention_head_dim is None: | 
					
						
						|  | logger.warn( | 
					
						
						|  | f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}." | 
					
						
						|  | ) | 
					
						
						|  | attention_head_dim = out_channels | 
					
						
						|  |  | 
					
						
						|  | for i in range(num_layers): | 
					
						
						|  | in_channels = in_channels if i == 0 else out_channels | 
					
						
						|  | self.resnets.append( | 
					
						
						|  | ResnetBlock2D( | 
					
						
						|  | in_channels=in_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | eps=resnet_eps, | 
					
						
						|  | groups=min(in_channels // 4, 32), | 
					
						
						|  | groups_out=min(out_channels // 4, 32), | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | time_embedding_norm=resnet_time_scale_shift, | 
					
						
						|  | non_linearity=resnet_act_fn, | 
					
						
						|  | output_scale_factor=output_scale_factor, | 
					
						
						|  | pre_norm=resnet_pre_norm, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | self.attentions.append( | 
					
						
						|  | Attention( | 
					
						
						|  | out_channels, | 
					
						
						|  | heads=out_channels // attention_head_dim, | 
					
						
						|  | dim_head=attention_head_dim, | 
					
						
						|  | rescale_output_factor=output_scale_factor, | 
					
						
						|  | eps=resnet_eps, | 
					
						
						|  | norm_num_groups=32, | 
					
						
						|  | residual_connection=True, | 
					
						
						|  | bias=True, | 
					
						
						|  | upcast_softmax=True, | 
					
						
						|  | _from_deprecated_attn_block=True, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if add_downsample: | 
					
						
						|  | self.resnet_down = ResnetBlock2D( | 
					
						
						|  | in_channels=out_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | eps=resnet_eps, | 
					
						
						|  | groups=min(out_channels // 4, 32), | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | time_embedding_norm=resnet_time_scale_shift, | 
					
						
						|  | non_linearity=resnet_act_fn, | 
					
						
						|  | output_scale_factor=output_scale_factor, | 
					
						
						|  | pre_norm=resnet_pre_norm, | 
					
						
						|  | use_in_shortcut=True, | 
					
						
						|  | down=True, | 
					
						
						|  | kernel="fir", | 
					
						
						|  | ) | 
					
						
						|  | self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)]) | 
					
						
						|  | self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1)) | 
					
						
						|  | else: | 
					
						
						|  | self.resnet_down = None | 
					
						
						|  | self.downsamplers = None | 
					
						
						|  | self.skip_conv = None | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.FloatTensor, | 
					
						
						|  | temb: Optional[torch.FloatTensor] = None, | 
					
						
						|  | skip_sample: Optional[torch.FloatTensor] = None, | 
					
						
						|  | scale: float = 1.0, | 
					
						
						|  | ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...], torch.FloatTensor]: | 
					
						
						|  | output_states = () | 
					
						
						|  |  | 
					
						
						|  | for resnet, attn in zip(self.resnets, self.attentions): | 
					
						
						|  | hidden_states = resnet(hidden_states, temb, scale=scale) | 
					
						
						|  | cross_attention_kwargs = {"scale": scale} | 
					
						
						|  | hidden_states = attn(hidden_states, **cross_attention_kwargs) | 
					
						
						|  | output_states += (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if self.downsamplers is not None: | 
					
						
						|  | hidden_states = self.resnet_down(hidden_states, temb, scale=scale) | 
					
						
						|  | for downsampler in self.downsamplers: | 
					
						
						|  | skip_sample = downsampler(skip_sample) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.skip_conv(skip_sample) + hidden_states | 
					
						
						|  |  | 
					
						
						|  | output_states += (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | return hidden_states, output_states, skip_sample | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SkipDownBlock2D(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | in_channels: int, | 
					
						
						|  | out_channels: int, | 
					
						
						|  | temb_channels: int, | 
					
						
						|  | dropout: float = 0.0, | 
					
						
						|  | num_layers: int = 1, | 
					
						
						|  | resnet_eps: float = 1e-6, | 
					
						
						|  | resnet_time_scale_shift: str = "default", | 
					
						
						|  | resnet_act_fn: str = "swish", | 
					
						
						|  | resnet_pre_norm: bool = True, | 
					
						
						|  | output_scale_factor: float = np.sqrt(2.0), | 
					
						
						|  | add_downsample: bool = True, | 
					
						
						|  | downsample_padding: int = 1, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.resnets = nn.ModuleList([]) | 
					
						
						|  |  | 
					
						
						|  | for i in range(num_layers): | 
					
						
						|  | in_channels = in_channels if i == 0 else out_channels | 
					
						
						|  | self.resnets.append( | 
					
						
						|  | ResnetBlock2D( | 
					
						
						|  | in_channels=in_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | eps=resnet_eps, | 
					
						
						|  | groups=min(in_channels // 4, 32), | 
					
						
						|  | groups_out=min(out_channels // 4, 32), | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | time_embedding_norm=resnet_time_scale_shift, | 
					
						
						|  | non_linearity=resnet_act_fn, | 
					
						
						|  | output_scale_factor=output_scale_factor, | 
					
						
						|  | pre_norm=resnet_pre_norm, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if add_downsample: | 
					
						
						|  | self.resnet_down = ResnetBlock2D( | 
					
						
						|  | in_channels=out_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | eps=resnet_eps, | 
					
						
						|  | groups=min(out_channels // 4, 32), | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | time_embedding_norm=resnet_time_scale_shift, | 
					
						
						|  | non_linearity=resnet_act_fn, | 
					
						
						|  | output_scale_factor=output_scale_factor, | 
					
						
						|  | pre_norm=resnet_pre_norm, | 
					
						
						|  | use_in_shortcut=True, | 
					
						
						|  | down=True, | 
					
						
						|  | kernel="fir", | 
					
						
						|  | ) | 
					
						
						|  | self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)]) | 
					
						
						|  | self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1)) | 
					
						
						|  | else: | 
					
						
						|  | self.resnet_down = None | 
					
						
						|  | self.downsamplers = None | 
					
						
						|  | self.skip_conv = None | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.FloatTensor, | 
					
						
						|  | temb: Optional[torch.FloatTensor] = None, | 
					
						
						|  | skip_sample: Optional[torch.FloatTensor] = None, | 
					
						
						|  | scale: float = 1.0, | 
					
						
						|  | ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...], torch.FloatTensor]: | 
					
						
						|  | output_states = () | 
					
						
						|  |  | 
					
						
						|  | for resnet in self.resnets: | 
					
						
						|  | hidden_states = resnet(hidden_states, temb, scale) | 
					
						
						|  | output_states += (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if self.downsamplers is not None: | 
					
						
						|  | hidden_states = self.resnet_down(hidden_states, temb, scale) | 
					
						
						|  | for downsampler in self.downsamplers: | 
					
						
						|  | skip_sample = downsampler(skip_sample) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.skip_conv(skip_sample) + hidden_states | 
					
						
						|  |  | 
					
						
						|  | output_states += (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | return hidden_states, output_states, skip_sample | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class ResnetDownsampleBlock2D(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | in_channels: int, | 
					
						
						|  | out_channels: int, | 
					
						
						|  | temb_channels: int, | 
					
						
						|  | dropout: float = 0.0, | 
					
						
						|  | num_layers: int = 1, | 
					
						
						|  | resnet_eps: float = 1e-6, | 
					
						
						|  | resnet_time_scale_shift: str = "default", | 
					
						
						|  | resnet_act_fn: str = "swish", | 
					
						
						|  | resnet_groups: int = 32, | 
					
						
						|  | resnet_pre_norm: bool = True, | 
					
						
						|  | output_scale_factor: float = 1.0, | 
					
						
						|  | add_downsample: bool = True, | 
					
						
						|  | skip_time_act: bool = False, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | resnets = [] | 
					
						
						|  |  | 
					
						
						|  | for i in range(num_layers): | 
					
						
						|  | in_channels = in_channels if i == 0 else out_channels | 
					
						
						|  | resnets.append( | 
					
						
						|  | ResnetBlock2D( | 
					
						
						|  | in_channels=in_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | eps=resnet_eps, | 
					
						
						|  | groups=resnet_groups, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | time_embedding_norm=resnet_time_scale_shift, | 
					
						
						|  | non_linearity=resnet_act_fn, | 
					
						
						|  | output_scale_factor=output_scale_factor, | 
					
						
						|  | pre_norm=resnet_pre_norm, | 
					
						
						|  | skip_time_act=skip_time_act, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.resnets = nn.ModuleList(resnets) | 
					
						
						|  |  | 
					
						
						|  | if add_downsample: | 
					
						
						|  | self.downsamplers = nn.ModuleList( | 
					
						
						|  | [ | 
					
						
						|  | ResnetBlock2D( | 
					
						
						|  | in_channels=out_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | eps=resnet_eps, | 
					
						
						|  | groups=resnet_groups, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | time_embedding_norm=resnet_time_scale_shift, | 
					
						
						|  | non_linearity=resnet_act_fn, | 
					
						
						|  | output_scale_factor=output_scale_factor, | 
					
						
						|  | pre_norm=resnet_pre_norm, | 
					
						
						|  | skip_time_act=skip_time_act, | 
					
						
						|  | down=True, | 
					
						
						|  | ) | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | self.downsamplers = None | 
					
						
						|  |  | 
					
						
						|  | self.gradient_checkpointing = False | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0 | 
					
						
						|  | ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: | 
					
						
						|  | output_states = () | 
					
						
						|  |  | 
					
						
						|  | for resnet in self.resnets: | 
					
						
						|  | if self.training and self.gradient_checkpointing: | 
					
						
						|  |  | 
					
						
						|  | def create_custom_forward(module): | 
					
						
						|  | def custom_forward(*inputs): | 
					
						
						|  | return module(*inputs) | 
					
						
						|  |  | 
					
						
						|  | return custom_forward | 
					
						
						|  |  | 
					
						
						|  | if is_torch_version(">=", "1.11.0"): | 
					
						
						|  | hidden_states = torch.utils.checkpoint.checkpoint( | 
					
						
						|  | create_custom_forward(resnet), hidden_states, temb, use_reentrant=False | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | hidden_states = torch.utils.checkpoint.checkpoint( | 
					
						
						|  | create_custom_forward(resnet), hidden_states, temb | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | hidden_states = resnet(hidden_states, temb, scale) | 
					
						
						|  |  | 
					
						
						|  | output_states = output_states + (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if self.downsamplers is not None: | 
					
						
						|  | for downsampler in self.downsamplers: | 
					
						
						|  | hidden_states = downsampler(hidden_states, temb, scale) | 
					
						
						|  |  | 
					
						
						|  | output_states = output_states + (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | return hidden_states, output_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SimpleCrossAttnDownBlock2D(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | in_channels: int, | 
					
						
						|  | out_channels: int, | 
					
						
						|  | temb_channels: int, | 
					
						
						|  | dropout: float = 0.0, | 
					
						
						|  | num_layers: int = 1, | 
					
						
						|  | resnet_eps: float = 1e-6, | 
					
						
						|  | resnet_time_scale_shift: str = "default", | 
					
						
						|  | resnet_act_fn: str = "swish", | 
					
						
						|  | resnet_groups: int = 32, | 
					
						
						|  | resnet_pre_norm: bool = True, | 
					
						
						|  | attention_head_dim: int = 1, | 
					
						
						|  | cross_attention_dim: int = 1280, | 
					
						
						|  | output_scale_factor: float = 1.0, | 
					
						
						|  | add_downsample: bool = True, | 
					
						
						|  | skip_time_act: bool = False, | 
					
						
						|  | only_cross_attention: bool = False, | 
					
						
						|  | cross_attention_norm: Optional[str] = None, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.has_cross_attention = True | 
					
						
						|  |  | 
					
						
						|  | resnets = [] | 
					
						
						|  | attentions = [] | 
					
						
						|  |  | 
					
						
						|  | self.attention_head_dim = attention_head_dim | 
					
						
						|  | self.num_heads = out_channels // self.attention_head_dim | 
					
						
						|  |  | 
					
						
						|  | for i in range(num_layers): | 
					
						
						|  | in_channels = in_channels if i == 0 else out_channels | 
					
						
						|  | resnets.append( | 
					
						
						|  | ResnetBlock2D( | 
					
						
						|  | in_channels=in_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | eps=resnet_eps, | 
					
						
						|  | groups=resnet_groups, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | time_embedding_norm=resnet_time_scale_shift, | 
					
						
						|  | non_linearity=resnet_act_fn, | 
					
						
						|  | output_scale_factor=output_scale_factor, | 
					
						
						|  | pre_norm=resnet_pre_norm, | 
					
						
						|  | skip_time_act=skip_time_act, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | processor = ( | 
					
						
						|  | AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor() | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attentions.append( | 
					
						
						|  | Attention( | 
					
						
						|  | query_dim=out_channels, | 
					
						
						|  | cross_attention_dim=out_channels, | 
					
						
						|  | heads=self.num_heads, | 
					
						
						|  | dim_head=attention_head_dim, | 
					
						
						|  | added_kv_proj_dim=cross_attention_dim, | 
					
						
						|  | norm_num_groups=resnet_groups, | 
					
						
						|  | bias=True, | 
					
						
						|  | upcast_softmax=True, | 
					
						
						|  | only_cross_attention=only_cross_attention, | 
					
						
						|  | cross_attention_norm=cross_attention_norm, | 
					
						
						|  | processor=processor, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | self.attentions = nn.ModuleList(attentions) | 
					
						
						|  | self.resnets = nn.ModuleList(resnets) | 
					
						
						|  |  | 
					
						
						|  | if add_downsample: | 
					
						
						|  | self.downsamplers = nn.ModuleList( | 
					
						
						|  | [ | 
					
						
						|  | ResnetBlock2D( | 
					
						
						|  | in_channels=out_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | eps=resnet_eps, | 
					
						
						|  | groups=resnet_groups, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | time_embedding_norm=resnet_time_scale_shift, | 
					
						
						|  | non_linearity=resnet_act_fn, | 
					
						
						|  | output_scale_factor=output_scale_factor, | 
					
						
						|  | pre_norm=resnet_pre_norm, | 
					
						
						|  | skip_time_act=skip_time_act, | 
					
						
						|  | down=True, | 
					
						
						|  | ) | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | self.downsamplers = None | 
					
						
						|  |  | 
					
						
						|  | self.gradient_checkpointing = False | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.FloatTensor, | 
					
						
						|  | temb: Optional[torch.FloatTensor] = None, | 
					
						
						|  | encoder_hidden_states: Optional[torch.FloatTensor] = None, | 
					
						
						|  | attention_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | cross_attention_kwargs: Optional[Dict[str, Any]] = None, | 
					
						
						|  | encoder_attention_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: | 
					
						
						|  | output_states = () | 
					
						
						|  | cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} | 
					
						
						|  |  | 
					
						
						|  | lora_scale = cross_attention_kwargs.get("scale", 1.0) | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is None: | 
					
						
						|  |  | 
					
						
						|  | mask = None if encoder_hidden_states is None else encoder_attention_mask | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | mask = attention_mask | 
					
						
						|  |  | 
					
						
						|  | for resnet, attn in zip(self.resnets, self.attentions): | 
					
						
						|  | if self.training and self.gradient_checkpointing: | 
					
						
						|  |  | 
					
						
						|  | def create_custom_forward(module, return_dict=None): | 
					
						
						|  | def custom_forward(*inputs): | 
					
						
						|  | if return_dict is not None: | 
					
						
						|  | return module(*inputs, return_dict=return_dict) | 
					
						
						|  | else: | 
					
						
						|  | return module(*inputs) | 
					
						
						|  |  | 
					
						
						|  | return custom_forward | 
					
						
						|  |  | 
					
						
						|  | hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) | 
					
						
						|  | hidden_states = attn( | 
					
						
						|  | hidden_states, | 
					
						
						|  | encoder_hidden_states=encoder_hidden_states, | 
					
						
						|  | attention_mask=mask, | 
					
						
						|  | **cross_attention_kwargs, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | hidden_states = resnet(hidden_states, temb, scale=lora_scale) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = attn( | 
					
						
						|  | hidden_states, | 
					
						
						|  | encoder_hidden_states=encoder_hidden_states, | 
					
						
						|  | attention_mask=mask, | 
					
						
						|  | **cross_attention_kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | output_states = output_states + (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if self.downsamplers is not None: | 
					
						
						|  | for downsampler in self.downsamplers: | 
					
						
						|  | hidden_states = downsampler(hidden_states, temb, scale=lora_scale) | 
					
						
						|  |  | 
					
						
						|  | output_states = output_states + (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | return hidden_states, output_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class KDownBlock2D(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | in_channels: int, | 
					
						
						|  | out_channels: int, | 
					
						
						|  | temb_channels: int, | 
					
						
						|  | dropout: float = 0.0, | 
					
						
						|  | num_layers: int = 4, | 
					
						
						|  | resnet_eps: float = 1e-5, | 
					
						
						|  | resnet_act_fn: str = "gelu", | 
					
						
						|  | resnet_group_size: int = 32, | 
					
						
						|  | add_downsample: bool = False, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | resnets = [] | 
					
						
						|  |  | 
					
						
						|  | for i in range(num_layers): | 
					
						
						|  | in_channels = in_channels if i == 0 else out_channels | 
					
						
						|  | groups = in_channels // resnet_group_size | 
					
						
						|  | groups_out = out_channels // resnet_group_size | 
					
						
						|  |  | 
					
						
						|  | resnets.append( | 
					
						
						|  | ResnetBlock2D( | 
					
						
						|  | in_channels=in_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | groups=groups, | 
					
						
						|  | groups_out=groups_out, | 
					
						
						|  | eps=resnet_eps, | 
					
						
						|  | non_linearity=resnet_act_fn, | 
					
						
						|  | time_embedding_norm="ada_group", | 
					
						
						|  | conv_shortcut_bias=False, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.resnets = nn.ModuleList(resnets) | 
					
						
						|  |  | 
					
						
						|  | if add_downsample: | 
					
						
						|  |  | 
					
						
						|  | self.downsamplers = nn.ModuleList([KDownsample2D()]) | 
					
						
						|  | else: | 
					
						
						|  | self.downsamplers = None | 
					
						
						|  |  | 
					
						
						|  | self.gradient_checkpointing = False | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0 | 
					
						
						|  | ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: | 
					
						
						|  | output_states = () | 
					
						
						|  |  | 
					
						
						|  | for resnet in self.resnets: | 
					
						
						|  | if self.training and self.gradient_checkpointing: | 
					
						
						|  |  | 
					
						
						|  | def create_custom_forward(module): | 
					
						
						|  | def custom_forward(*inputs): | 
					
						
						|  | return module(*inputs) | 
					
						
						|  |  | 
					
						
						|  | return custom_forward | 
					
						
						|  |  | 
					
						
						|  | if is_torch_version(">=", "1.11.0"): | 
					
						
						|  | hidden_states = torch.utils.checkpoint.checkpoint( | 
					
						
						|  | create_custom_forward(resnet), hidden_states, temb, use_reentrant=False | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | hidden_states = torch.utils.checkpoint.checkpoint( | 
					
						
						|  | create_custom_forward(resnet), hidden_states, temb | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | hidden_states = resnet(hidden_states, temb, scale) | 
					
						
						|  |  | 
					
						
						|  | output_states += (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if self.downsamplers is not None: | 
					
						
						|  | for downsampler in self.downsamplers: | 
					
						
						|  | hidden_states = downsampler(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | return hidden_states, output_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class KCrossAttnDownBlock2D(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | in_channels: int, | 
					
						
						|  | out_channels: int, | 
					
						
						|  | temb_channels: int, | 
					
						
						|  | cross_attention_dim: int, | 
					
						
						|  | dropout: float = 0.0, | 
					
						
						|  | num_layers: int = 4, | 
					
						
						|  | resnet_group_size: int = 32, | 
					
						
						|  | add_downsample: bool = True, | 
					
						
						|  | attention_head_dim: int = 64, | 
					
						
						|  | add_self_attention: bool = False, | 
					
						
						|  | resnet_eps: float = 1e-5, | 
					
						
						|  | resnet_act_fn: str = "gelu", | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | resnets = [] | 
					
						
						|  | attentions = [] | 
					
						
						|  |  | 
					
						
						|  | self.has_cross_attention = True | 
					
						
						|  |  | 
					
						
						|  | for i in range(num_layers): | 
					
						
						|  | in_channels = in_channels if i == 0 else out_channels | 
					
						
						|  | groups = in_channels // resnet_group_size | 
					
						
						|  | groups_out = out_channels // resnet_group_size | 
					
						
						|  |  | 
					
						
						|  | resnets.append( | 
					
						
						|  | ResnetBlock2D( | 
					
						
						|  | in_channels=in_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | groups=groups, | 
					
						
						|  | groups_out=groups_out, | 
					
						
						|  | eps=resnet_eps, | 
					
						
						|  | non_linearity=resnet_act_fn, | 
					
						
						|  | time_embedding_norm="ada_group", | 
					
						
						|  | conv_shortcut_bias=False, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | attentions.append( | 
					
						
						|  | KAttentionBlock( | 
					
						
						|  | out_channels, | 
					
						
						|  | out_channels // attention_head_dim, | 
					
						
						|  | attention_head_dim, | 
					
						
						|  | cross_attention_dim=cross_attention_dim, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | attention_bias=True, | 
					
						
						|  | add_self_attention=add_self_attention, | 
					
						
						|  | cross_attention_norm="layer_norm", | 
					
						
						|  | group_size=resnet_group_size, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.resnets = nn.ModuleList(resnets) | 
					
						
						|  | self.attentions = nn.ModuleList(attentions) | 
					
						
						|  |  | 
					
						
						|  | if add_downsample: | 
					
						
						|  | self.downsamplers = nn.ModuleList([KDownsample2D()]) | 
					
						
						|  | else: | 
					
						
						|  | self.downsamplers = None | 
					
						
						|  |  | 
					
						
						|  | self.gradient_checkpointing = False | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.FloatTensor, | 
					
						
						|  | temb: Optional[torch.FloatTensor] = None, | 
					
						
						|  | encoder_hidden_states: Optional[torch.FloatTensor] = None, | 
					
						
						|  | attention_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | cross_attention_kwargs: Optional[Dict[str, Any]] = None, | 
					
						
						|  | encoder_attention_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: | 
					
						
						|  | output_states = () | 
					
						
						|  | lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 | 
					
						
						|  |  | 
					
						
						|  | for resnet, attn in zip(self.resnets, self.attentions): | 
					
						
						|  | if self.training and self.gradient_checkpointing: | 
					
						
						|  |  | 
					
						
						|  | def create_custom_forward(module, return_dict=None): | 
					
						
						|  | def custom_forward(*inputs): | 
					
						
						|  | if return_dict is not None: | 
					
						
						|  | return module(*inputs, return_dict=return_dict) | 
					
						
						|  | else: | 
					
						
						|  | return module(*inputs) | 
					
						
						|  |  | 
					
						
						|  | return custom_forward | 
					
						
						|  |  | 
					
						
						|  | ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | 
					
						
						|  | hidden_states = torch.utils.checkpoint.checkpoint( | 
					
						
						|  | create_custom_forward(resnet), | 
					
						
						|  | hidden_states, | 
					
						
						|  | temb, | 
					
						
						|  | **ckpt_kwargs, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = attn( | 
					
						
						|  | hidden_states, | 
					
						
						|  | encoder_hidden_states=encoder_hidden_states, | 
					
						
						|  | emb=temb, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | cross_attention_kwargs=cross_attention_kwargs, | 
					
						
						|  | encoder_attention_mask=encoder_attention_mask, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | hidden_states = resnet(hidden_states, temb, scale=lora_scale) | 
					
						
						|  | hidden_states = attn( | 
					
						
						|  | hidden_states, | 
					
						
						|  | encoder_hidden_states=encoder_hidden_states, | 
					
						
						|  | emb=temb, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | cross_attention_kwargs=cross_attention_kwargs, | 
					
						
						|  | encoder_attention_mask=encoder_attention_mask, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if self.downsamplers is None: | 
					
						
						|  | output_states += (None,) | 
					
						
						|  | else: | 
					
						
						|  | output_states += (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if self.downsamplers is not None: | 
					
						
						|  | for downsampler in self.downsamplers: | 
					
						
						|  | hidden_states = downsampler(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | return hidden_states, output_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class AttnUpBlock2D(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | in_channels: int, | 
					
						
						|  | prev_output_channel: int, | 
					
						
						|  | out_channels: int, | 
					
						
						|  | temb_channels: int, | 
					
						
						|  | resolution_idx: int = None, | 
					
						
						|  | dropout: float = 0.0, | 
					
						
						|  | num_layers: int = 1, | 
					
						
						|  | resnet_eps: float = 1e-6, | 
					
						
						|  | resnet_time_scale_shift: str = "default", | 
					
						
						|  | resnet_act_fn: str = "swish", | 
					
						
						|  | resnet_groups: int = 32, | 
					
						
						|  | resnet_pre_norm: bool = True, | 
					
						
						|  | attention_head_dim: int = 1, | 
					
						
						|  | output_scale_factor: float = 1.0, | 
					
						
						|  | upsample_type: str = "conv", | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | resnets = [] | 
					
						
						|  | attentions = [] | 
					
						
						|  |  | 
					
						
						|  | self.upsample_type = upsample_type | 
					
						
						|  |  | 
					
						
						|  | if attention_head_dim is None: | 
					
						
						|  | logger.warn( | 
					
						
						|  | f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}." | 
					
						
						|  | ) | 
					
						
						|  | attention_head_dim = out_channels | 
					
						
						|  |  | 
					
						
						|  | for i in range(num_layers): | 
					
						
						|  | res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | 
					
						
						|  | resnet_in_channels = prev_output_channel if i == 0 else out_channels | 
					
						
						|  |  | 
					
						
						|  | resnets.append( | 
					
						
						|  | ResnetBlock2D( | 
					
						
						|  | in_channels=resnet_in_channels + res_skip_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | eps=resnet_eps, | 
					
						
						|  | groups=resnet_groups, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | time_embedding_norm=resnet_time_scale_shift, | 
					
						
						|  | non_linearity=resnet_act_fn, | 
					
						
						|  | output_scale_factor=output_scale_factor, | 
					
						
						|  | pre_norm=resnet_pre_norm, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | attentions.append( | 
					
						
						|  | Attention( | 
					
						
						|  | out_channels, | 
					
						
						|  | heads=out_channels // attention_head_dim, | 
					
						
						|  | dim_head=attention_head_dim, | 
					
						
						|  | rescale_output_factor=output_scale_factor, | 
					
						
						|  | eps=resnet_eps, | 
					
						
						|  | norm_num_groups=resnet_groups, | 
					
						
						|  | residual_connection=True, | 
					
						
						|  | bias=True, | 
					
						
						|  | upcast_softmax=True, | 
					
						
						|  | _from_deprecated_attn_block=True, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.attentions = nn.ModuleList(attentions) | 
					
						
						|  | self.resnets = nn.ModuleList(resnets) | 
					
						
						|  |  | 
					
						
						|  | if upsample_type == "conv": | 
					
						
						|  | self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) | 
					
						
						|  | elif upsample_type == "resnet": | 
					
						
						|  | self.upsamplers = nn.ModuleList( | 
					
						
						|  | [ | 
					
						
						|  | ResnetBlock2D( | 
					
						
						|  | in_channels=out_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | eps=resnet_eps, | 
					
						
						|  | groups=resnet_groups, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | time_embedding_norm=resnet_time_scale_shift, | 
					
						
						|  | non_linearity=resnet_act_fn, | 
					
						
						|  | output_scale_factor=output_scale_factor, | 
					
						
						|  | pre_norm=resnet_pre_norm, | 
					
						
						|  | up=True, | 
					
						
						|  | ) | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | self.upsamplers = None | 
					
						
						|  |  | 
					
						
						|  | self.resolution_idx = resolution_idx | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.FloatTensor, | 
					
						
						|  | res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], | 
					
						
						|  | temb: Optional[torch.FloatTensor] = None, | 
					
						
						|  | upsample_size: Optional[int] = None, | 
					
						
						|  | scale: float = 1.0, | 
					
						
						|  | ) -> torch.FloatTensor: | 
					
						
						|  | for resnet, attn in zip(self.resnets, self.attentions): | 
					
						
						|  |  | 
					
						
						|  | res_hidden_states = res_hidden_states_tuple[-1] | 
					
						
						|  | res_hidden_states_tuple = res_hidden_states_tuple[:-1] | 
					
						
						|  | hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = resnet(hidden_states, temb, scale=scale) | 
					
						
						|  | cross_attention_kwargs = {"scale": scale} | 
					
						
						|  | hidden_states = attn(hidden_states, **cross_attention_kwargs) | 
					
						
						|  |  | 
					
						
						|  | if self.upsamplers is not None: | 
					
						
						|  | for upsampler in self.upsamplers: | 
					
						
						|  | if self.upsample_type == "resnet": | 
					
						
						|  | hidden_states = upsampler(hidden_states, temb=temb, scale=scale) | 
					
						
						|  | else: | 
					
						
						|  | hidden_states = upsampler(hidden_states, scale=scale) | 
					
						
						|  |  | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class CrossAttnUpBlock2D(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | in_channels: int, | 
					
						
						|  | out_channels: int, | 
					
						
						|  | prev_output_channel: int, | 
					
						
						|  | temb_channels: int, | 
					
						
						|  | resolution_idx: Optional[int] = None, | 
					
						
						|  | dropout: float = 0.0, | 
					
						
						|  | num_layers: int = 1, | 
					
						
						|  | transformer_layers_per_block: Union[int, Tuple[int]] = 1, | 
					
						
						|  | resnet_eps: float = 1e-6, | 
					
						
						|  | resnet_time_scale_shift: str = "default", | 
					
						
						|  | resnet_act_fn: str = "swish", | 
					
						
						|  | resnet_groups: int = 32, | 
					
						
						|  | resnet_pre_norm: bool = True, | 
					
						
						|  | num_attention_heads: int = 1, | 
					
						
						|  | cross_attention_dim: int = 1280, | 
					
						
						|  | output_scale_factor: float = 1.0, | 
					
						
						|  | add_upsample: bool = True, | 
					
						
						|  | dual_cross_attention: bool = False, | 
					
						
						|  | use_linear_projection: bool = False, | 
					
						
						|  | only_cross_attention: bool = False, | 
					
						
						|  | upcast_attention: bool = False, | 
					
						
						|  | attention_type: str = "default", | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | resnets = [] | 
					
						
						|  | attentions = [] | 
					
						
						|  |  | 
					
						
						|  | self.has_cross_attention = True | 
					
						
						|  | self.num_attention_heads = num_attention_heads | 
					
						
						|  |  | 
					
						
						|  | if isinstance(transformer_layers_per_block, int): | 
					
						
						|  | transformer_layers_per_block = [transformer_layers_per_block] * num_layers | 
					
						
						|  |  | 
					
						
						|  | for i in range(num_layers): | 
					
						
						|  | res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | 
					
						
						|  | resnet_in_channels = prev_output_channel if i == 0 else out_channels | 
					
						
						|  |  | 
					
						
						|  | resnets.append( | 
					
						
						|  | ResnetBlock2D( | 
					
						
						|  | in_channels=resnet_in_channels + res_skip_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | eps=resnet_eps, | 
					
						
						|  | groups=resnet_groups, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | time_embedding_norm=resnet_time_scale_shift, | 
					
						
						|  | non_linearity=resnet_act_fn, | 
					
						
						|  | output_scale_factor=output_scale_factor, | 
					
						
						|  | pre_norm=resnet_pre_norm, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | if not dual_cross_attention: | 
					
						
						|  | attentions.append( | 
					
						
						|  | Transformer2DModel( | 
					
						
						|  | num_attention_heads, | 
					
						
						|  | out_channels // num_attention_heads, | 
					
						
						|  | in_channels=out_channels, | 
					
						
						|  | num_layers=transformer_layers_per_block[i], | 
					
						
						|  | cross_attention_dim=cross_attention_dim, | 
					
						
						|  | norm_num_groups=resnet_groups, | 
					
						
						|  | use_linear_projection=use_linear_projection, | 
					
						
						|  | only_cross_attention=only_cross_attention, | 
					
						
						|  | upcast_attention=upcast_attention, | 
					
						
						|  | attention_type=attention_type, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | attentions.append( | 
					
						
						|  | DualTransformer2DModel( | 
					
						
						|  | num_attention_heads, | 
					
						
						|  | out_channels // num_attention_heads, | 
					
						
						|  | in_channels=out_channels, | 
					
						
						|  | num_layers=1, | 
					
						
						|  | cross_attention_dim=cross_attention_dim, | 
					
						
						|  | norm_num_groups=resnet_groups, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | self.attentions = nn.ModuleList(attentions) | 
					
						
						|  | self.resnets = nn.ModuleList(resnets) | 
					
						
						|  |  | 
					
						
						|  | if add_upsample: | 
					
						
						|  | self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) | 
					
						
						|  | else: | 
					
						
						|  | self.upsamplers = None | 
					
						
						|  |  | 
					
						
						|  | self.gradient_checkpointing = False | 
					
						
						|  | self.resolution_idx = resolution_idx | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.FloatTensor, | 
					
						
						|  | res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], | 
					
						
						|  | temb: Optional[torch.FloatTensor] = None, | 
					
						
						|  | encoder_hidden_states: Optional[torch.FloatTensor] = None, | 
					
						
						|  | cross_attention_kwargs: Optional[Dict[str, Any]] = None, | 
					
						
						|  | upsample_size: Optional[int] = None, | 
					
						
						|  | attention_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | encoder_attention_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | garment_features=None, | 
					
						
						|  | curr_garment_feat_idx=0, | 
					
						
						|  | ) -> torch.FloatTensor: | 
					
						
						|  | lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 | 
					
						
						|  | is_freeu_enabled = ( | 
					
						
						|  | getattr(self, "s1", None) | 
					
						
						|  | and getattr(self, "s2", None) | 
					
						
						|  | and getattr(self, "b1", None) | 
					
						
						|  | and getattr(self, "b2", None) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | for resnet, attn in zip(self.resnets, self.attentions): | 
					
						
						|  |  | 
					
						
						|  | res_hidden_states = res_hidden_states_tuple[-1] | 
					
						
						|  | res_hidden_states_tuple = res_hidden_states_tuple[:-1] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if is_freeu_enabled: | 
					
						
						|  | hidden_states, res_hidden_states = apply_freeu( | 
					
						
						|  | self.resolution_idx, | 
					
						
						|  | hidden_states, | 
					
						
						|  | res_hidden_states, | 
					
						
						|  | s1=self.s1, | 
					
						
						|  | s2=self.s2, | 
					
						
						|  | b1=self.b1, | 
					
						
						|  | b2=self.b2, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.training and self.gradient_checkpointing: | 
					
						
						|  |  | 
					
						
						|  | def create_custom_forward(module, return_dict=None): | 
					
						
						|  | def custom_forward(*inputs): | 
					
						
						|  | if return_dict is not None: | 
					
						
						|  | return module(*inputs, return_dict=return_dict) | 
					
						
						|  | else: | 
					
						
						|  | return module(*inputs) | 
					
						
						|  |  | 
					
						
						|  | return custom_forward | 
					
						
						|  |  | 
					
						
						|  | ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | 
					
						
						|  | hidden_states = torch.utils.checkpoint.checkpoint( | 
					
						
						|  | create_custom_forward(resnet), | 
					
						
						|  | hidden_states, | 
					
						
						|  | temb, | 
					
						
						|  | **ckpt_kwargs, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states,curr_garment_feat_idx = attn( | 
					
						
						|  | hidden_states, | 
					
						
						|  | encoder_hidden_states=encoder_hidden_states, | 
					
						
						|  | cross_attention_kwargs=cross_attention_kwargs, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | encoder_attention_mask=encoder_attention_mask, | 
					
						
						|  | return_dict=False, | 
					
						
						|  | garment_features=garment_features, | 
					
						
						|  | curr_garment_feat_idx=curr_garment_feat_idx, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states=hidden_states[0] | 
					
						
						|  | else: | 
					
						
						|  | hidden_states = resnet(hidden_states, temb, scale=lora_scale) | 
					
						
						|  | hidden_states,curr_garment_feat_idx = attn( | 
					
						
						|  | hidden_states, | 
					
						
						|  | encoder_hidden_states=encoder_hidden_states, | 
					
						
						|  | cross_attention_kwargs=cross_attention_kwargs, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | encoder_attention_mask=encoder_attention_mask, | 
					
						
						|  | return_dict=False, | 
					
						
						|  | garment_features=garment_features, | 
					
						
						|  | curr_garment_feat_idx=curr_garment_feat_idx, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states=hidden_states[0] | 
					
						
						|  | if self.upsamplers is not None: | 
					
						
						|  | for upsampler in self.upsamplers: | 
					
						
						|  | hidden_states = upsampler(hidden_states, upsample_size, scale=lora_scale) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | return hidden_states,curr_garment_feat_idx | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class UpBlock2D(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | in_channels: int, | 
					
						
						|  | prev_output_channel: int, | 
					
						
						|  | out_channels: int, | 
					
						
						|  | temb_channels: int, | 
					
						
						|  | resolution_idx: Optional[int] = None, | 
					
						
						|  | dropout: float = 0.0, | 
					
						
						|  | num_layers: int = 1, | 
					
						
						|  | resnet_eps: float = 1e-6, | 
					
						
						|  | resnet_time_scale_shift: str = "default", | 
					
						
						|  | resnet_act_fn: str = "swish", | 
					
						
						|  | resnet_groups: int = 32, | 
					
						
						|  | resnet_pre_norm: bool = True, | 
					
						
						|  | output_scale_factor: float = 1.0, | 
					
						
						|  | add_upsample: bool = True, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | resnets = [] | 
					
						
						|  |  | 
					
						
						|  | for i in range(num_layers): | 
					
						
						|  | res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | 
					
						
						|  | resnet_in_channels = prev_output_channel if i == 0 else out_channels | 
					
						
						|  |  | 
					
						
						|  | resnets.append( | 
					
						
						|  | ResnetBlock2D( | 
					
						
						|  | in_channels=resnet_in_channels + res_skip_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | eps=resnet_eps, | 
					
						
						|  | groups=resnet_groups, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | time_embedding_norm=resnet_time_scale_shift, | 
					
						
						|  | non_linearity=resnet_act_fn, | 
					
						
						|  | output_scale_factor=output_scale_factor, | 
					
						
						|  | pre_norm=resnet_pre_norm, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.resnets = nn.ModuleList(resnets) | 
					
						
						|  |  | 
					
						
						|  | if add_upsample: | 
					
						
						|  | self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) | 
					
						
						|  | else: | 
					
						
						|  | self.upsamplers = None | 
					
						
						|  |  | 
					
						
						|  | self.gradient_checkpointing = False | 
					
						
						|  | self.resolution_idx = resolution_idx | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.FloatTensor, | 
					
						
						|  | res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], | 
					
						
						|  | temb: Optional[torch.FloatTensor] = None, | 
					
						
						|  | upsample_size: Optional[int] = None, | 
					
						
						|  | scale: float = 1.0, | 
					
						
						|  | ) -> torch.FloatTensor: | 
					
						
						|  | is_freeu_enabled = ( | 
					
						
						|  | getattr(self, "s1", None) | 
					
						
						|  | and getattr(self, "s2", None) | 
					
						
						|  | and getattr(self, "b1", None) | 
					
						
						|  | and getattr(self, "b2", None) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | for resnet in self.resnets: | 
					
						
						|  |  | 
					
						
						|  | res_hidden_states = res_hidden_states_tuple[-1] | 
					
						
						|  | res_hidden_states_tuple = res_hidden_states_tuple[:-1] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if is_freeu_enabled: | 
					
						
						|  | hidden_states, res_hidden_states = apply_freeu( | 
					
						
						|  | self.resolution_idx, | 
					
						
						|  | hidden_states, | 
					
						
						|  | res_hidden_states, | 
					
						
						|  | s1=self.s1, | 
					
						
						|  | s2=self.s2, | 
					
						
						|  | b1=self.b1, | 
					
						
						|  | b2=self.b2, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | 
					
						
						|  |  | 
					
						
						|  | if self.training and self.gradient_checkpointing: | 
					
						
						|  |  | 
					
						
						|  | def create_custom_forward(module): | 
					
						
						|  | def custom_forward(*inputs): | 
					
						
						|  | return module(*inputs) | 
					
						
						|  |  | 
					
						
						|  | return custom_forward | 
					
						
						|  |  | 
					
						
						|  | if is_torch_version(">=", "1.11.0"): | 
					
						
						|  | hidden_states = torch.utils.checkpoint.checkpoint( | 
					
						
						|  | create_custom_forward(resnet), hidden_states, temb, use_reentrant=False | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | hidden_states = torch.utils.checkpoint.checkpoint( | 
					
						
						|  | create_custom_forward(resnet), hidden_states, temb | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | hidden_states = resnet(hidden_states, temb, scale=scale) | 
					
						
						|  |  | 
					
						
						|  | if self.upsamplers is not None: | 
					
						
						|  | for upsampler in self.upsamplers: | 
					
						
						|  | hidden_states = upsampler(hidden_states, upsample_size, scale=scale) | 
					
						
						|  |  | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class UpDecoderBlock2D(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | in_channels: int, | 
					
						
						|  | out_channels: int, | 
					
						
						|  | resolution_idx: Optional[int] = None, | 
					
						
						|  | dropout: float = 0.0, | 
					
						
						|  | num_layers: int = 1, | 
					
						
						|  | resnet_eps: float = 1e-6, | 
					
						
						|  | resnet_time_scale_shift: str = "default", | 
					
						
						|  | resnet_act_fn: str = "swish", | 
					
						
						|  | resnet_groups: int = 32, | 
					
						
						|  | resnet_pre_norm: bool = True, | 
					
						
						|  | output_scale_factor: float = 1.0, | 
					
						
						|  | add_upsample: bool = True, | 
					
						
						|  | temb_channels: Optional[int] = None, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | resnets = [] | 
					
						
						|  |  | 
					
						
						|  | for i in range(num_layers): | 
					
						
						|  | input_channels = in_channels if i == 0 else out_channels | 
					
						
						|  |  | 
					
						
						|  | resnets.append( | 
					
						
						|  | ResnetBlock2D( | 
					
						
						|  | in_channels=input_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | eps=resnet_eps, | 
					
						
						|  | groups=resnet_groups, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | time_embedding_norm=resnet_time_scale_shift, | 
					
						
						|  | non_linearity=resnet_act_fn, | 
					
						
						|  | output_scale_factor=output_scale_factor, | 
					
						
						|  | pre_norm=resnet_pre_norm, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.resnets = nn.ModuleList(resnets) | 
					
						
						|  |  | 
					
						
						|  | if add_upsample: | 
					
						
						|  | self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) | 
					
						
						|  | else: | 
					
						
						|  | self.upsamplers = None | 
					
						
						|  |  | 
					
						
						|  | self.resolution_idx = resolution_idx | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0 | 
					
						
						|  | ) -> torch.FloatTensor: | 
					
						
						|  | for resnet in self.resnets: | 
					
						
						|  | hidden_states = resnet(hidden_states, temb=temb, scale=scale) | 
					
						
						|  |  | 
					
						
						|  | if self.upsamplers is not None: | 
					
						
						|  | for upsampler in self.upsamplers: | 
					
						
						|  | hidden_states = upsampler(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class AttnUpDecoderBlock2D(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | in_channels: int, | 
					
						
						|  | out_channels: int, | 
					
						
						|  | resolution_idx: Optional[int] = None, | 
					
						
						|  | dropout: float = 0.0, | 
					
						
						|  | num_layers: int = 1, | 
					
						
						|  | resnet_eps: float = 1e-6, | 
					
						
						|  | resnet_time_scale_shift: str = "default", | 
					
						
						|  | resnet_act_fn: str = "swish", | 
					
						
						|  | resnet_groups: int = 32, | 
					
						
						|  | resnet_pre_norm: bool = True, | 
					
						
						|  | attention_head_dim: int = 1, | 
					
						
						|  | output_scale_factor: float = 1.0, | 
					
						
						|  | add_upsample: bool = True, | 
					
						
						|  | temb_channels: Optional[int] = None, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | resnets = [] | 
					
						
						|  | attentions = [] | 
					
						
						|  |  | 
					
						
						|  | if attention_head_dim is None: | 
					
						
						|  | logger.warn( | 
					
						
						|  | f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `out_channels`: {out_channels}." | 
					
						
						|  | ) | 
					
						
						|  | attention_head_dim = out_channels | 
					
						
						|  |  | 
					
						
						|  | for i in range(num_layers): | 
					
						
						|  | input_channels = in_channels if i == 0 else out_channels | 
					
						
						|  |  | 
					
						
						|  | resnets.append( | 
					
						
						|  | ResnetBlock2D( | 
					
						
						|  | in_channels=input_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | eps=resnet_eps, | 
					
						
						|  | groups=resnet_groups, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | time_embedding_norm=resnet_time_scale_shift, | 
					
						
						|  | non_linearity=resnet_act_fn, | 
					
						
						|  | output_scale_factor=output_scale_factor, | 
					
						
						|  | pre_norm=resnet_pre_norm, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | attentions.append( | 
					
						
						|  | Attention( | 
					
						
						|  | out_channels, | 
					
						
						|  | heads=out_channels // attention_head_dim, | 
					
						
						|  | dim_head=attention_head_dim, | 
					
						
						|  | rescale_output_factor=output_scale_factor, | 
					
						
						|  | eps=resnet_eps, | 
					
						
						|  | norm_num_groups=resnet_groups if resnet_time_scale_shift != "spatial" else None, | 
					
						
						|  | spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None, | 
					
						
						|  | residual_connection=True, | 
					
						
						|  | bias=True, | 
					
						
						|  | upcast_softmax=True, | 
					
						
						|  | _from_deprecated_attn_block=True, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.attentions = nn.ModuleList(attentions) | 
					
						
						|  | self.resnets = nn.ModuleList(resnets) | 
					
						
						|  |  | 
					
						
						|  | if add_upsample: | 
					
						
						|  | self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) | 
					
						
						|  | else: | 
					
						
						|  | self.upsamplers = None | 
					
						
						|  |  | 
					
						
						|  | self.resolution_idx = resolution_idx | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0 | 
					
						
						|  | ) -> torch.FloatTensor: | 
					
						
						|  | for resnet, attn in zip(self.resnets, self.attentions): | 
					
						
						|  | hidden_states = resnet(hidden_states, temb=temb, scale=scale) | 
					
						
						|  | cross_attention_kwargs = {"scale": scale} | 
					
						
						|  | hidden_states = attn(hidden_states, temb=temb, **cross_attention_kwargs) | 
					
						
						|  |  | 
					
						
						|  | if self.upsamplers is not None: | 
					
						
						|  | for upsampler in self.upsamplers: | 
					
						
						|  | hidden_states = upsampler(hidden_states, scale=scale) | 
					
						
						|  |  | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class AttnSkipUpBlock2D(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | in_channels: int, | 
					
						
						|  | prev_output_channel: int, | 
					
						
						|  | out_channels: int, | 
					
						
						|  | temb_channels: int, | 
					
						
						|  | resolution_idx: Optional[int] = None, | 
					
						
						|  | dropout: float = 0.0, | 
					
						
						|  | num_layers: int = 1, | 
					
						
						|  | resnet_eps: float = 1e-6, | 
					
						
						|  | resnet_time_scale_shift: str = "default", | 
					
						
						|  | resnet_act_fn: str = "swish", | 
					
						
						|  | resnet_pre_norm: bool = True, | 
					
						
						|  | attention_head_dim: int = 1, | 
					
						
						|  | output_scale_factor: float = np.sqrt(2.0), | 
					
						
						|  | add_upsample: bool = True, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.attentions = nn.ModuleList([]) | 
					
						
						|  | self.resnets = nn.ModuleList([]) | 
					
						
						|  |  | 
					
						
						|  | for i in range(num_layers): | 
					
						
						|  | res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | 
					
						
						|  | resnet_in_channels = prev_output_channel if i == 0 else out_channels | 
					
						
						|  |  | 
					
						
						|  | self.resnets.append( | 
					
						
						|  | ResnetBlock2D( | 
					
						
						|  | in_channels=resnet_in_channels + res_skip_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | eps=resnet_eps, | 
					
						
						|  | groups=min(resnet_in_channels + res_skip_channels // 4, 32), | 
					
						
						|  | groups_out=min(out_channels // 4, 32), | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | time_embedding_norm=resnet_time_scale_shift, | 
					
						
						|  | non_linearity=resnet_act_fn, | 
					
						
						|  | output_scale_factor=output_scale_factor, | 
					
						
						|  | pre_norm=resnet_pre_norm, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if attention_head_dim is None: | 
					
						
						|  | logger.warn( | 
					
						
						|  | f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `out_channels`: {out_channels}." | 
					
						
						|  | ) | 
					
						
						|  | attention_head_dim = out_channels | 
					
						
						|  |  | 
					
						
						|  | self.attentions.append( | 
					
						
						|  | Attention( | 
					
						
						|  | out_channels, | 
					
						
						|  | heads=out_channels // attention_head_dim, | 
					
						
						|  | dim_head=attention_head_dim, | 
					
						
						|  | rescale_output_factor=output_scale_factor, | 
					
						
						|  | eps=resnet_eps, | 
					
						
						|  | norm_num_groups=32, | 
					
						
						|  | residual_connection=True, | 
					
						
						|  | bias=True, | 
					
						
						|  | upcast_softmax=True, | 
					
						
						|  | _from_deprecated_attn_block=True, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels) | 
					
						
						|  | if add_upsample: | 
					
						
						|  | self.resnet_up = ResnetBlock2D( | 
					
						
						|  | in_channels=out_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | eps=resnet_eps, | 
					
						
						|  | groups=min(out_channels // 4, 32), | 
					
						
						|  | groups_out=min(out_channels // 4, 32), | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | time_embedding_norm=resnet_time_scale_shift, | 
					
						
						|  | non_linearity=resnet_act_fn, | 
					
						
						|  | output_scale_factor=output_scale_factor, | 
					
						
						|  | pre_norm=resnet_pre_norm, | 
					
						
						|  | use_in_shortcut=True, | 
					
						
						|  | up=True, | 
					
						
						|  | kernel="fir", | 
					
						
						|  | ) | 
					
						
						|  | self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) | 
					
						
						|  | self.skip_norm = torch.nn.GroupNorm( | 
					
						
						|  | num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True | 
					
						
						|  | ) | 
					
						
						|  | self.act = nn.SiLU() | 
					
						
						|  | else: | 
					
						
						|  | self.resnet_up = None | 
					
						
						|  | self.skip_conv = None | 
					
						
						|  | self.skip_norm = None | 
					
						
						|  | self.act = None | 
					
						
						|  |  | 
					
						
						|  | self.resolution_idx = resolution_idx | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.FloatTensor, | 
					
						
						|  | res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], | 
					
						
						|  | temb: Optional[torch.FloatTensor] = None, | 
					
						
						|  | skip_sample=None, | 
					
						
						|  | scale: float = 1.0, | 
					
						
						|  | ) -> Tuple[torch.FloatTensor, torch.FloatTensor]: | 
					
						
						|  | for resnet in self.resnets: | 
					
						
						|  |  | 
					
						
						|  | res_hidden_states = res_hidden_states_tuple[-1] | 
					
						
						|  | res_hidden_states_tuple = res_hidden_states_tuple[:-1] | 
					
						
						|  | hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = resnet(hidden_states, temb, scale=scale) | 
					
						
						|  |  | 
					
						
						|  | cross_attention_kwargs = {"scale": scale} | 
					
						
						|  | hidden_states = self.attentions[0](hidden_states, **cross_attention_kwargs) | 
					
						
						|  |  | 
					
						
						|  | if skip_sample is not None: | 
					
						
						|  | skip_sample = self.upsampler(skip_sample) | 
					
						
						|  | else: | 
					
						
						|  | skip_sample = 0 | 
					
						
						|  |  | 
					
						
						|  | if self.resnet_up is not None: | 
					
						
						|  | skip_sample_states = self.skip_norm(hidden_states) | 
					
						
						|  | skip_sample_states = self.act(skip_sample_states) | 
					
						
						|  | skip_sample_states = self.skip_conv(skip_sample_states) | 
					
						
						|  |  | 
					
						
						|  | skip_sample = skip_sample + skip_sample_states | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.resnet_up(hidden_states, temb, scale=scale) | 
					
						
						|  |  | 
					
						
						|  | return hidden_states, skip_sample | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SkipUpBlock2D(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | in_channels: int, | 
					
						
						|  | prev_output_channel: int, | 
					
						
						|  | out_channels: int, | 
					
						
						|  | temb_channels: int, | 
					
						
						|  | resolution_idx: Optional[int] = None, | 
					
						
						|  | dropout: float = 0.0, | 
					
						
						|  | num_layers: int = 1, | 
					
						
						|  | resnet_eps: float = 1e-6, | 
					
						
						|  | resnet_time_scale_shift: str = "default", | 
					
						
						|  | resnet_act_fn: str = "swish", | 
					
						
						|  | resnet_pre_norm: bool = True, | 
					
						
						|  | output_scale_factor: float = np.sqrt(2.0), | 
					
						
						|  | add_upsample: bool = True, | 
					
						
						|  | upsample_padding: int = 1, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.resnets = nn.ModuleList([]) | 
					
						
						|  |  | 
					
						
						|  | for i in range(num_layers): | 
					
						
						|  | res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | 
					
						
						|  | resnet_in_channels = prev_output_channel if i == 0 else out_channels | 
					
						
						|  |  | 
					
						
						|  | self.resnets.append( | 
					
						
						|  | ResnetBlock2D( | 
					
						
						|  | in_channels=resnet_in_channels + res_skip_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | eps=resnet_eps, | 
					
						
						|  | groups=min((resnet_in_channels + res_skip_channels) // 4, 32), | 
					
						
						|  | groups_out=min(out_channels // 4, 32), | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | time_embedding_norm=resnet_time_scale_shift, | 
					
						
						|  | non_linearity=resnet_act_fn, | 
					
						
						|  | output_scale_factor=output_scale_factor, | 
					
						
						|  | pre_norm=resnet_pre_norm, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels) | 
					
						
						|  | if add_upsample: | 
					
						
						|  | self.resnet_up = ResnetBlock2D( | 
					
						
						|  | in_channels=out_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | eps=resnet_eps, | 
					
						
						|  | groups=min(out_channels // 4, 32), | 
					
						
						|  | groups_out=min(out_channels // 4, 32), | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | time_embedding_norm=resnet_time_scale_shift, | 
					
						
						|  | non_linearity=resnet_act_fn, | 
					
						
						|  | output_scale_factor=output_scale_factor, | 
					
						
						|  | pre_norm=resnet_pre_norm, | 
					
						
						|  | use_in_shortcut=True, | 
					
						
						|  | up=True, | 
					
						
						|  | kernel="fir", | 
					
						
						|  | ) | 
					
						
						|  | self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) | 
					
						
						|  | self.skip_norm = torch.nn.GroupNorm( | 
					
						
						|  | num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True | 
					
						
						|  | ) | 
					
						
						|  | self.act = nn.SiLU() | 
					
						
						|  | else: | 
					
						
						|  | self.resnet_up = None | 
					
						
						|  | self.skip_conv = None | 
					
						
						|  | self.skip_norm = None | 
					
						
						|  | self.act = None | 
					
						
						|  |  | 
					
						
						|  | self.resolution_idx = resolution_idx | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.FloatTensor, | 
					
						
						|  | res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], | 
					
						
						|  | temb: Optional[torch.FloatTensor] = None, | 
					
						
						|  | skip_sample=None, | 
					
						
						|  | scale: float = 1.0, | 
					
						
						|  | ) -> Tuple[torch.FloatTensor, torch.FloatTensor]: | 
					
						
						|  | for resnet in self.resnets: | 
					
						
						|  |  | 
					
						
						|  | res_hidden_states = res_hidden_states_tuple[-1] | 
					
						
						|  | res_hidden_states_tuple = res_hidden_states_tuple[:-1] | 
					
						
						|  | hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = resnet(hidden_states, temb, scale=scale) | 
					
						
						|  |  | 
					
						
						|  | if skip_sample is not None: | 
					
						
						|  | skip_sample = self.upsampler(skip_sample) | 
					
						
						|  | else: | 
					
						
						|  | skip_sample = 0 | 
					
						
						|  |  | 
					
						
						|  | if self.resnet_up is not None: | 
					
						
						|  | skip_sample_states = self.skip_norm(hidden_states) | 
					
						
						|  | skip_sample_states = self.act(skip_sample_states) | 
					
						
						|  | skip_sample_states = self.skip_conv(skip_sample_states) | 
					
						
						|  |  | 
					
						
						|  | skip_sample = skip_sample + skip_sample_states | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.resnet_up(hidden_states, temb, scale=scale) | 
					
						
						|  |  | 
					
						
						|  | return hidden_states, skip_sample | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class ResnetUpsampleBlock2D(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | in_channels: int, | 
					
						
						|  | prev_output_channel: int, | 
					
						
						|  | out_channels: int, | 
					
						
						|  | temb_channels: int, | 
					
						
						|  | resolution_idx: Optional[int] = None, | 
					
						
						|  | dropout: float = 0.0, | 
					
						
						|  | num_layers: int = 1, | 
					
						
						|  | resnet_eps: float = 1e-6, | 
					
						
						|  | resnet_time_scale_shift: str = "default", | 
					
						
						|  | resnet_act_fn: str = "swish", | 
					
						
						|  | resnet_groups: int = 32, | 
					
						
						|  | resnet_pre_norm: bool = True, | 
					
						
						|  | output_scale_factor: float = 1.0, | 
					
						
						|  | add_upsample: bool = True, | 
					
						
						|  | skip_time_act: bool = False, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | resnets = [] | 
					
						
						|  |  | 
					
						
						|  | for i in range(num_layers): | 
					
						
						|  | res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | 
					
						
						|  | resnet_in_channels = prev_output_channel if i == 0 else out_channels | 
					
						
						|  |  | 
					
						
						|  | resnets.append( | 
					
						
						|  | ResnetBlock2D( | 
					
						
						|  | in_channels=resnet_in_channels + res_skip_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | eps=resnet_eps, | 
					
						
						|  | groups=resnet_groups, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | time_embedding_norm=resnet_time_scale_shift, | 
					
						
						|  | non_linearity=resnet_act_fn, | 
					
						
						|  | output_scale_factor=output_scale_factor, | 
					
						
						|  | pre_norm=resnet_pre_norm, | 
					
						
						|  | skip_time_act=skip_time_act, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.resnets = nn.ModuleList(resnets) | 
					
						
						|  |  | 
					
						
						|  | if add_upsample: | 
					
						
						|  | self.upsamplers = nn.ModuleList( | 
					
						
						|  | [ | 
					
						
						|  | ResnetBlock2D( | 
					
						
						|  | in_channels=out_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | eps=resnet_eps, | 
					
						
						|  | groups=resnet_groups, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | time_embedding_norm=resnet_time_scale_shift, | 
					
						
						|  | non_linearity=resnet_act_fn, | 
					
						
						|  | output_scale_factor=output_scale_factor, | 
					
						
						|  | pre_norm=resnet_pre_norm, | 
					
						
						|  | skip_time_act=skip_time_act, | 
					
						
						|  | up=True, | 
					
						
						|  | ) | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | self.upsamplers = None | 
					
						
						|  |  | 
					
						
						|  | self.gradient_checkpointing = False | 
					
						
						|  | self.resolution_idx = resolution_idx | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.FloatTensor, | 
					
						
						|  | res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], | 
					
						
						|  | temb: Optional[torch.FloatTensor] = None, | 
					
						
						|  | upsample_size: Optional[int] = None, | 
					
						
						|  | scale: float = 1.0, | 
					
						
						|  | ) -> torch.FloatTensor: | 
					
						
						|  | for resnet in self.resnets: | 
					
						
						|  |  | 
					
						
						|  | res_hidden_states = res_hidden_states_tuple[-1] | 
					
						
						|  | res_hidden_states_tuple = res_hidden_states_tuple[:-1] | 
					
						
						|  | hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | 
					
						
						|  |  | 
					
						
						|  | if self.training and self.gradient_checkpointing: | 
					
						
						|  |  | 
					
						
						|  | def create_custom_forward(module): | 
					
						
						|  | def custom_forward(*inputs): | 
					
						
						|  | return module(*inputs) | 
					
						
						|  |  | 
					
						
						|  | return custom_forward | 
					
						
						|  |  | 
					
						
						|  | if is_torch_version(">=", "1.11.0"): | 
					
						
						|  | hidden_states = torch.utils.checkpoint.checkpoint( | 
					
						
						|  | create_custom_forward(resnet), hidden_states, temb, use_reentrant=False | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | hidden_states = torch.utils.checkpoint.checkpoint( | 
					
						
						|  | create_custom_forward(resnet), hidden_states, temb | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | hidden_states = resnet(hidden_states, temb, scale=scale) | 
					
						
						|  |  | 
					
						
						|  | if self.upsamplers is not None: | 
					
						
						|  | for upsampler in self.upsamplers: | 
					
						
						|  | hidden_states = upsampler(hidden_states, temb, scale=scale) | 
					
						
						|  |  | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SimpleCrossAttnUpBlock2D(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | in_channels: int, | 
					
						
						|  | out_channels: int, | 
					
						
						|  | prev_output_channel: int, | 
					
						
						|  | temb_channels: int, | 
					
						
						|  | resolution_idx: Optional[int] = None, | 
					
						
						|  | dropout: float = 0.0, | 
					
						
						|  | num_layers: int = 1, | 
					
						
						|  | resnet_eps: float = 1e-6, | 
					
						
						|  | resnet_time_scale_shift: str = "default", | 
					
						
						|  | resnet_act_fn: str = "swish", | 
					
						
						|  | resnet_groups: int = 32, | 
					
						
						|  | resnet_pre_norm: bool = True, | 
					
						
						|  | attention_head_dim: int = 1, | 
					
						
						|  | cross_attention_dim: int = 1280, | 
					
						
						|  | output_scale_factor: float = 1.0, | 
					
						
						|  | add_upsample: bool = True, | 
					
						
						|  | skip_time_act: bool = False, | 
					
						
						|  | only_cross_attention: bool = False, | 
					
						
						|  | cross_attention_norm: Optional[str] = None, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | resnets = [] | 
					
						
						|  | attentions = [] | 
					
						
						|  |  | 
					
						
						|  | self.has_cross_attention = True | 
					
						
						|  | self.attention_head_dim = attention_head_dim | 
					
						
						|  |  | 
					
						
						|  | self.num_heads = out_channels // self.attention_head_dim | 
					
						
						|  |  | 
					
						
						|  | for i in range(num_layers): | 
					
						
						|  | res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | 
					
						
						|  | resnet_in_channels = prev_output_channel if i == 0 else out_channels | 
					
						
						|  |  | 
					
						
						|  | resnets.append( | 
					
						
						|  | ResnetBlock2D( | 
					
						
						|  | in_channels=resnet_in_channels + res_skip_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | eps=resnet_eps, | 
					
						
						|  | groups=resnet_groups, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | time_embedding_norm=resnet_time_scale_shift, | 
					
						
						|  | non_linearity=resnet_act_fn, | 
					
						
						|  | output_scale_factor=output_scale_factor, | 
					
						
						|  | pre_norm=resnet_pre_norm, | 
					
						
						|  | skip_time_act=skip_time_act, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | processor = ( | 
					
						
						|  | AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor() | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attentions.append( | 
					
						
						|  | Attention( | 
					
						
						|  | query_dim=out_channels, | 
					
						
						|  | cross_attention_dim=out_channels, | 
					
						
						|  | heads=self.num_heads, | 
					
						
						|  | dim_head=self.attention_head_dim, | 
					
						
						|  | added_kv_proj_dim=cross_attention_dim, | 
					
						
						|  | norm_num_groups=resnet_groups, | 
					
						
						|  | bias=True, | 
					
						
						|  | upcast_softmax=True, | 
					
						
						|  | only_cross_attention=only_cross_attention, | 
					
						
						|  | cross_attention_norm=cross_attention_norm, | 
					
						
						|  | processor=processor, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | self.attentions = nn.ModuleList(attentions) | 
					
						
						|  | self.resnets = nn.ModuleList(resnets) | 
					
						
						|  |  | 
					
						
						|  | if add_upsample: | 
					
						
						|  | self.upsamplers = nn.ModuleList( | 
					
						
						|  | [ | 
					
						
						|  | ResnetBlock2D( | 
					
						
						|  | in_channels=out_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | eps=resnet_eps, | 
					
						
						|  | groups=resnet_groups, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | time_embedding_norm=resnet_time_scale_shift, | 
					
						
						|  | non_linearity=resnet_act_fn, | 
					
						
						|  | output_scale_factor=output_scale_factor, | 
					
						
						|  | pre_norm=resnet_pre_norm, | 
					
						
						|  | skip_time_act=skip_time_act, | 
					
						
						|  | up=True, | 
					
						
						|  | ) | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | self.upsamplers = None | 
					
						
						|  |  | 
					
						
						|  | self.gradient_checkpointing = False | 
					
						
						|  | self.resolution_idx = resolution_idx | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.FloatTensor, | 
					
						
						|  | res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], | 
					
						
						|  | temb: Optional[torch.FloatTensor] = None, | 
					
						
						|  | encoder_hidden_states: Optional[torch.FloatTensor] = None, | 
					
						
						|  | upsample_size: Optional[int] = None, | 
					
						
						|  | attention_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | cross_attention_kwargs: Optional[Dict[str, Any]] = None, | 
					
						
						|  | encoder_attention_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | ) -> torch.FloatTensor: | 
					
						
						|  | cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} | 
					
						
						|  |  | 
					
						
						|  | lora_scale = cross_attention_kwargs.get("scale", 1.0) | 
					
						
						|  | if attention_mask is None: | 
					
						
						|  |  | 
					
						
						|  | mask = None if encoder_hidden_states is None else encoder_attention_mask | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | mask = attention_mask | 
					
						
						|  |  | 
					
						
						|  | for resnet, attn in zip(self.resnets, self.attentions): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | res_hidden_states = res_hidden_states_tuple[-1] | 
					
						
						|  | res_hidden_states_tuple = res_hidden_states_tuple[:-1] | 
					
						
						|  | hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | 
					
						
						|  |  | 
					
						
						|  | if self.training and self.gradient_checkpointing: | 
					
						
						|  |  | 
					
						
						|  | def create_custom_forward(module, return_dict=None): | 
					
						
						|  | def custom_forward(*inputs): | 
					
						
						|  | if return_dict is not None: | 
					
						
						|  | return module(*inputs, return_dict=return_dict) | 
					
						
						|  | else: | 
					
						
						|  | return module(*inputs) | 
					
						
						|  |  | 
					
						
						|  | return custom_forward | 
					
						
						|  |  | 
					
						
						|  | hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) | 
					
						
						|  | hidden_states = attn( | 
					
						
						|  | hidden_states, | 
					
						
						|  | encoder_hidden_states=encoder_hidden_states, | 
					
						
						|  | attention_mask=mask, | 
					
						
						|  | **cross_attention_kwargs, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | hidden_states = resnet(hidden_states, temb, scale=lora_scale) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = attn( | 
					
						
						|  | hidden_states, | 
					
						
						|  | encoder_hidden_states=encoder_hidden_states, | 
					
						
						|  | attention_mask=mask, | 
					
						
						|  | **cross_attention_kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if self.upsamplers is not None: | 
					
						
						|  | for upsampler in self.upsamplers: | 
					
						
						|  | hidden_states = upsampler(hidden_states, temb, scale=lora_scale) | 
					
						
						|  |  | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class KUpBlock2D(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | in_channels: int, | 
					
						
						|  | out_channels: int, | 
					
						
						|  | temb_channels: int, | 
					
						
						|  | resolution_idx: int, | 
					
						
						|  | dropout: float = 0.0, | 
					
						
						|  | num_layers: int = 5, | 
					
						
						|  | resnet_eps: float = 1e-5, | 
					
						
						|  | resnet_act_fn: str = "gelu", | 
					
						
						|  | resnet_group_size: Optional[int] = 32, | 
					
						
						|  | add_upsample: bool = True, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | resnets = [] | 
					
						
						|  | k_in_channels = 2 * out_channels | 
					
						
						|  | k_out_channels = in_channels | 
					
						
						|  | num_layers = num_layers - 1 | 
					
						
						|  |  | 
					
						
						|  | for i in range(num_layers): | 
					
						
						|  | in_channels = k_in_channels if i == 0 else out_channels | 
					
						
						|  | groups = in_channels // resnet_group_size | 
					
						
						|  | groups_out = out_channels // resnet_group_size | 
					
						
						|  |  | 
					
						
						|  | resnets.append( | 
					
						
						|  | ResnetBlock2D( | 
					
						
						|  | in_channels=in_channels, | 
					
						
						|  | out_channels=k_out_channels if (i == num_layers - 1) else out_channels, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | eps=resnet_eps, | 
					
						
						|  | groups=groups, | 
					
						
						|  | groups_out=groups_out, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | non_linearity=resnet_act_fn, | 
					
						
						|  | time_embedding_norm="ada_group", | 
					
						
						|  | conv_shortcut_bias=False, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.resnets = nn.ModuleList(resnets) | 
					
						
						|  |  | 
					
						
						|  | if add_upsample: | 
					
						
						|  | self.upsamplers = nn.ModuleList([KUpsample2D()]) | 
					
						
						|  | else: | 
					
						
						|  | self.upsamplers = None | 
					
						
						|  |  | 
					
						
						|  | self.gradient_checkpointing = False | 
					
						
						|  | self.resolution_idx = resolution_idx | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.FloatTensor, | 
					
						
						|  | res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], | 
					
						
						|  | temb: Optional[torch.FloatTensor] = None, | 
					
						
						|  | upsample_size: Optional[int] = None, | 
					
						
						|  | scale: float = 1.0, | 
					
						
						|  | ) -> torch.FloatTensor: | 
					
						
						|  | res_hidden_states_tuple = res_hidden_states_tuple[-1] | 
					
						
						|  | if res_hidden_states_tuple is not None: | 
					
						
						|  | hidden_states = torch.cat([hidden_states, res_hidden_states_tuple], dim=1) | 
					
						
						|  |  | 
					
						
						|  | for resnet in self.resnets: | 
					
						
						|  | if self.training and self.gradient_checkpointing: | 
					
						
						|  |  | 
					
						
						|  | def create_custom_forward(module): | 
					
						
						|  | def custom_forward(*inputs): | 
					
						
						|  | return module(*inputs) | 
					
						
						|  |  | 
					
						
						|  | return custom_forward | 
					
						
						|  |  | 
					
						
						|  | if is_torch_version(">=", "1.11.0"): | 
					
						
						|  | hidden_states = torch.utils.checkpoint.checkpoint( | 
					
						
						|  | create_custom_forward(resnet), hidden_states, temb, use_reentrant=False | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | hidden_states = torch.utils.checkpoint.checkpoint( | 
					
						
						|  | create_custom_forward(resnet), hidden_states, temb | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | hidden_states = resnet(hidden_states, temb, scale=scale) | 
					
						
						|  |  | 
					
						
						|  | if self.upsamplers is not None: | 
					
						
						|  | for upsampler in self.upsamplers: | 
					
						
						|  | hidden_states = upsampler(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class KCrossAttnUpBlock2D(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | in_channels: int, | 
					
						
						|  | out_channels: int, | 
					
						
						|  | temb_channels: int, | 
					
						
						|  | resolution_idx: int, | 
					
						
						|  | dropout: float = 0.0, | 
					
						
						|  | num_layers: int = 4, | 
					
						
						|  | resnet_eps: float = 1e-5, | 
					
						
						|  | resnet_act_fn: str = "gelu", | 
					
						
						|  | resnet_group_size: int = 32, | 
					
						
						|  | attention_head_dim: int = 1, | 
					
						
						|  | cross_attention_dim: int = 768, | 
					
						
						|  | add_upsample: bool = True, | 
					
						
						|  | upcast_attention: bool = False, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | resnets = [] | 
					
						
						|  | attentions = [] | 
					
						
						|  |  | 
					
						
						|  | is_first_block = in_channels == out_channels == temb_channels | 
					
						
						|  | is_middle_block = in_channels != out_channels | 
					
						
						|  | add_self_attention = True if is_first_block else False | 
					
						
						|  |  | 
					
						
						|  | self.has_cross_attention = True | 
					
						
						|  | self.attention_head_dim = attention_head_dim | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | k_in_channels = out_channels if is_first_block else 2 * out_channels | 
					
						
						|  | k_out_channels = in_channels | 
					
						
						|  |  | 
					
						
						|  | num_layers = num_layers - 1 | 
					
						
						|  |  | 
					
						
						|  | for i in range(num_layers): | 
					
						
						|  | in_channels = k_in_channels if i == 0 else out_channels | 
					
						
						|  | groups = in_channels // resnet_group_size | 
					
						
						|  | groups_out = out_channels // resnet_group_size | 
					
						
						|  |  | 
					
						
						|  | if is_middle_block and (i == num_layers - 1): | 
					
						
						|  | conv_2d_out_channels = k_out_channels | 
					
						
						|  | else: | 
					
						
						|  | conv_2d_out_channels = None | 
					
						
						|  |  | 
					
						
						|  | resnets.append( | 
					
						
						|  | ResnetBlock2D( | 
					
						
						|  | in_channels=in_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | conv_2d_out_channels=conv_2d_out_channels, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | eps=resnet_eps, | 
					
						
						|  | groups=groups, | 
					
						
						|  | groups_out=groups_out, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | non_linearity=resnet_act_fn, | 
					
						
						|  | time_embedding_norm="ada_group", | 
					
						
						|  | conv_shortcut_bias=False, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | attentions.append( | 
					
						
						|  | KAttentionBlock( | 
					
						
						|  | k_out_channels if (i == num_layers - 1) else out_channels, | 
					
						
						|  | k_out_channels // attention_head_dim | 
					
						
						|  | if (i == num_layers - 1) | 
					
						
						|  | else out_channels // attention_head_dim, | 
					
						
						|  | attention_head_dim, | 
					
						
						|  | cross_attention_dim=cross_attention_dim, | 
					
						
						|  | temb_channels=temb_channels, | 
					
						
						|  | attention_bias=True, | 
					
						
						|  | add_self_attention=add_self_attention, | 
					
						
						|  | cross_attention_norm="layer_norm", | 
					
						
						|  | upcast_attention=upcast_attention, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.resnets = nn.ModuleList(resnets) | 
					
						
						|  | self.attentions = nn.ModuleList(attentions) | 
					
						
						|  |  | 
					
						
						|  | if add_upsample: | 
					
						
						|  | self.upsamplers = nn.ModuleList([KUpsample2D()]) | 
					
						
						|  | else: | 
					
						
						|  | self.upsamplers = None | 
					
						
						|  |  | 
					
						
						|  | self.gradient_checkpointing = False | 
					
						
						|  | self.resolution_idx = resolution_idx | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.FloatTensor, | 
					
						
						|  | res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], | 
					
						
						|  | temb: Optional[torch.FloatTensor] = None, | 
					
						
						|  | encoder_hidden_states: Optional[torch.FloatTensor] = None, | 
					
						
						|  | cross_attention_kwargs: Optional[Dict[str, Any]] = None, | 
					
						
						|  | upsample_size: Optional[int] = None, | 
					
						
						|  | attention_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | encoder_attention_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | ) -> torch.FloatTensor: | 
					
						
						|  | res_hidden_states_tuple = res_hidden_states_tuple[-1] | 
					
						
						|  | if res_hidden_states_tuple is not None: | 
					
						
						|  | hidden_states = torch.cat([hidden_states, res_hidden_states_tuple], dim=1) | 
					
						
						|  |  | 
					
						
						|  | lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 | 
					
						
						|  | for resnet, attn in zip(self.resnets, self.attentions): | 
					
						
						|  | if self.training and self.gradient_checkpointing: | 
					
						
						|  |  | 
					
						
						|  | def create_custom_forward(module, return_dict=None): | 
					
						
						|  | def custom_forward(*inputs): | 
					
						
						|  | if return_dict is not None: | 
					
						
						|  | return module(*inputs, return_dict=return_dict) | 
					
						
						|  | else: | 
					
						
						|  | return module(*inputs) | 
					
						
						|  |  | 
					
						
						|  | return custom_forward | 
					
						
						|  |  | 
					
						
						|  | ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | 
					
						
						|  | hidden_states = torch.utils.checkpoint.checkpoint( | 
					
						
						|  | create_custom_forward(resnet), | 
					
						
						|  | hidden_states, | 
					
						
						|  | temb, | 
					
						
						|  | **ckpt_kwargs, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = attn( | 
					
						
						|  | hidden_states, | 
					
						
						|  | encoder_hidden_states=encoder_hidden_states, | 
					
						
						|  | emb=temb, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | cross_attention_kwargs=cross_attention_kwargs, | 
					
						
						|  | encoder_attention_mask=encoder_attention_mask, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | hidden_states = resnet(hidden_states, temb, scale=lora_scale) | 
					
						
						|  | hidden_states = attn( | 
					
						
						|  | hidden_states, | 
					
						
						|  | encoder_hidden_states=encoder_hidden_states, | 
					
						
						|  | emb=temb, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | cross_attention_kwargs=cross_attention_kwargs, | 
					
						
						|  | encoder_attention_mask=encoder_attention_mask, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if self.upsamplers is not None: | 
					
						
						|  | for upsampler in self.upsamplers: | 
					
						
						|  | hidden_states = upsampler(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class KAttentionBlock(nn.Module): | 
					
						
						|  | r""" | 
					
						
						|  | A basic Transformer block. | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | dim (`int`): The number of channels in the input and output. | 
					
						
						|  | num_attention_heads (`int`): The number of heads to use for multi-head attention. | 
					
						
						|  | attention_head_dim (`int`): The number of channels in each head. | 
					
						
						|  | dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | 
					
						
						|  | cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. | 
					
						
						|  | attention_bias (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Configure if the attention layers should contain a bias parameter. | 
					
						
						|  | upcast_attention (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Set to `True` to upcast the attention computation to `float32`. | 
					
						
						|  | temb_channels (`int`, *optional*, defaults to 768): | 
					
						
						|  | The number of channels in the token embedding. | 
					
						
						|  | add_self_attention (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Set to `True` to add self-attention to the block. | 
					
						
						|  | cross_attention_norm (`str`, *optional*, defaults to `None`): | 
					
						
						|  | The type of normalization to use for the cross attention. Can be `None`, `layer_norm`, or `group_norm`. | 
					
						
						|  | group_size (`int`, *optional*, defaults to 32): | 
					
						
						|  | The number of groups to separate the channels into for group normalization. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | dim: int, | 
					
						
						|  | num_attention_heads: int, | 
					
						
						|  | attention_head_dim: int, | 
					
						
						|  | dropout: float = 0.0, | 
					
						
						|  | cross_attention_dim: Optional[int] = None, | 
					
						
						|  | attention_bias: bool = False, | 
					
						
						|  | upcast_attention: bool = False, | 
					
						
						|  | temb_channels: int = 768, | 
					
						
						|  | add_self_attention: bool = False, | 
					
						
						|  | cross_attention_norm: Optional[str] = None, | 
					
						
						|  | group_size: int = 32, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.add_self_attention = add_self_attention | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if add_self_attention: | 
					
						
						|  | self.norm1 = AdaGroupNorm(temb_channels, dim, max(1, dim // group_size)) | 
					
						
						|  | self.attn1 = Attention( | 
					
						
						|  | query_dim=dim, | 
					
						
						|  | heads=num_attention_heads, | 
					
						
						|  | dim_head=attention_head_dim, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | bias=attention_bias, | 
					
						
						|  | cross_attention_dim=None, | 
					
						
						|  | cross_attention_norm=None, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.norm2 = AdaGroupNorm(temb_channels, dim, max(1, dim // group_size)) | 
					
						
						|  | self.attn2 = Attention( | 
					
						
						|  | query_dim=dim, | 
					
						
						|  | cross_attention_dim=cross_attention_dim, | 
					
						
						|  | heads=num_attention_heads, | 
					
						
						|  | dim_head=attention_head_dim, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | bias=attention_bias, | 
					
						
						|  | upcast_attention=upcast_attention, | 
					
						
						|  | cross_attention_norm=cross_attention_norm, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _to_3d(self, hidden_states: torch.FloatTensor, height: int, weight: int) -> torch.FloatTensor: | 
					
						
						|  | return hidden_states.permute(0, 2, 3, 1).reshape(hidden_states.shape[0], height * weight, -1) | 
					
						
						|  |  | 
					
						
						|  | def _to_4d(self, hidden_states: torch.FloatTensor, height: int, weight: int) -> torch.FloatTensor: | 
					
						
						|  | return hidden_states.permute(0, 2, 1).reshape(hidden_states.shape[0], -1, height, weight) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.FloatTensor, | 
					
						
						|  | encoder_hidden_states: Optional[torch.FloatTensor] = None, | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | emb: Optional[torch.FloatTensor] = None, | 
					
						
						|  | attention_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | cross_attention_kwargs: Optional[Dict[str, Any]] = None, | 
					
						
						|  | encoder_attention_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | ) -> torch.FloatTensor: | 
					
						
						|  | cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.add_self_attention: | 
					
						
						|  | norm_hidden_states = self.norm1(hidden_states, emb) | 
					
						
						|  |  | 
					
						
						|  | height, weight = norm_hidden_states.shape[2:] | 
					
						
						|  | norm_hidden_states = self._to_3d(norm_hidden_states, height, weight) | 
					
						
						|  |  | 
					
						
						|  | attn_output = self.attn1( | 
					
						
						|  | norm_hidden_states, | 
					
						
						|  | encoder_hidden_states=None, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | **cross_attention_kwargs, | 
					
						
						|  | ) | 
					
						
						|  | attn_output = self._to_4d(attn_output, height, weight) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = attn_output + hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | norm_hidden_states = self.norm2(hidden_states, emb) | 
					
						
						|  |  | 
					
						
						|  | height, weight = norm_hidden_states.shape[2:] | 
					
						
						|  | norm_hidden_states = self._to_3d(norm_hidden_states, height, weight) | 
					
						
						|  | attn_output = self.attn2( | 
					
						
						|  | norm_hidden_states, | 
					
						
						|  | encoder_hidden_states=encoder_hidden_states, | 
					
						
						|  | attention_mask=attention_mask if encoder_hidden_states is None else encoder_attention_mask, | 
					
						
						|  | **cross_attention_kwargs, | 
					
						
						|  | ) | 
					
						
						|  | attn_output = self._to_4d(attn_output, height, weight) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = attn_output + hidden_states | 
					
						
						|  |  | 
					
						
						|  | return hidden_states | 
					
						
						|  |  |