|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | from dataclasses import dataclass | 
					
						
						|  | from typing import Any, Dict, List, Optional, Tuple, Union | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn as nn | 
					
						
						|  | import torch.utils.checkpoint | 
					
						
						|  |  | 
					
						
						|  | from diffusers.configuration_utils import ConfigMixin, register_to_config | 
					
						
						|  | from diffusers.loaders import UNet2DConditionLoadersMixin | 
					
						
						|  | from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers | 
					
						
						|  | from diffusers.models.activations import get_activation | 
					
						
						|  | from diffusers.models.attention_processor import ( | 
					
						
						|  | ADDED_KV_ATTENTION_PROCESSORS, | 
					
						
						|  | CROSS_ATTENTION_PROCESSORS, | 
					
						
						|  | Attention, | 
					
						
						|  | AttentionProcessor, | 
					
						
						|  | AttnAddedKVProcessor, | 
					
						
						|  | AttnProcessor, | 
					
						
						|  | ) | 
					
						
						|  | from einops import rearrange | 
					
						
						|  |  | 
					
						
						|  | from diffusers.models.embeddings import ( | 
					
						
						|  | GaussianFourierProjection, | 
					
						
						|  | ImageHintTimeEmbedding, | 
					
						
						|  | ImageProjection, | 
					
						
						|  | ImageTimeEmbedding, | 
					
						
						|  | PositionNet, | 
					
						
						|  | TextImageProjection, | 
					
						
						|  | TextImageTimeEmbedding, | 
					
						
						|  | TextTimeEmbedding, | 
					
						
						|  | TimestepEmbedding, | 
					
						
						|  | Timesteps, | 
					
						
						|  | ) | 
					
						
						|  | from diffusers.models.modeling_utils import ModelMixin | 
					
						
						|  | from src.unet_block_hacked_garmnet import ( | 
					
						
						|  | UNetMidBlock2D, | 
					
						
						|  | UNetMidBlock2DCrossAttn, | 
					
						
						|  | UNetMidBlock2DSimpleCrossAttn, | 
					
						
						|  | get_down_block, | 
					
						
						|  | get_up_block, | 
					
						
						|  | ) | 
					
						
						|  | from diffusers.models.resnet import Downsample2D, FirDownsample2D, FirUpsample2D, KDownsample2D, KUpsample2D, ResnetBlock2D, Upsample2D | 
					
						
						|  | from diffusers.models.transformer_2d import Transformer2DModel | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def zero_module(module): | 
					
						
						|  | for p in module.parameters(): | 
					
						
						|  | nn.init.zeros_(p) | 
					
						
						|  | return module | 
					
						
						|  |  | 
					
						
						|  | @dataclass | 
					
						
						|  | class UNet2DConditionOutput(BaseOutput): | 
					
						
						|  | """ | 
					
						
						|  | The output of [`UNet2DConditionModel`]. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | 
					
						
						|  | The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | sample: torch.FloatTensor = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin): | 
					
						
						|  | r""" | 
					
						
						|  | A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample | 
					
						
						|  | shaped output. | 
					
						
						|  |  | 
					
						
						|  | This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented | 
					
						
						|  | for all models (such as downloading or saving). | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`): | 
					
						
						|  | Height and width of input/output sample. | 
					
						
						|  | in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample. | 
					
						
						|  | out_channels (`int`, *optional*, defaults to 4): Number of channels in the output. | 
					
						
						|  | center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample. | 
					
						
						|  | flip_sin_to_cos (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether to flip the sin to cos in the time embedding. | 
					
						
						|  | freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding. | 
					
						
						|  | down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`): | 
					
						
						|  | The tuple of downsample blocks to use. | 
					
						
						|  | mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`): | 
					
						
						|  | Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or | 
					
						
						|  | `UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped. | 
					
						
						|  | up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`): | 
					
						
						|  | The tuple of upsample blocks to use. | 
					
						
						|  | only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`): | 
					
						
						|  | Whether to include self-attention in the basic transformer blocks, see | 
					
						
						|  | [`~models.attention.BasicTransformerBlock`]. | 
					
						
						|  | block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): | 
					
						
						|  | The tuple of output channels for each block. | 
					
						
						|  | layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block. | 
					
						
						|  | downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution. | 
					
						
						|  | mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block. | 
					
						
						|  | dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | 
					
						
						|  | act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. | 
					
						
						|  | norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization. | 
					
						
						|  | If `None`, normalization and activation layers is skipped in post-processing. | 
					
						
						|  | norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization. | 
					
						
						|  | cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280): | 
					
						
						|  | The dimension of the cross attention features. | 
					
						
						|  | transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1): | 
					
						
						|  | The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for | 
					
						
						|  | [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`], | 
					
						
						|  | [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`]. | 
					
						
						|  | reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None): | 
					
						
						|  | The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling | 
					
						
						|  | blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for | 
					
						
						|  | [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`], | 
					
						
						|  | [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`]. | 
					
						
						|  | encoder_hid_dim (`int`, *optional*, defaults to None): | 
					
						
						|  | If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim` | 
					
						
						|  | dimension to `cross_attention_dim`. | 
					
						
						|  | encoder_hid_dim_type (`str`, *optional*, defaults to `None`): | 
					
						
						|  | If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text | 
					
						
						|  | embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`. | 
					
						
						|  | attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads. | 
					
						
						|  | num_attention_heads (`int`, *optional*): | 
					
						
						|  | The number of attention heads. If not defined, defaults to `attention_head_dim` | 
					
						
						|  | resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config | 
					
						
						|  | for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`. | 
					
						
						|  | class_embed_type (`str`, *optional*, defaults to `None`): | 
					
						
						|  | The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`, | 
					
						
						|  | `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`. | 
					
						
						|  | addition_embed_type (`str`, *optional*, defaults to `None`): | 
					
						
						|  | Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or | 
					
						
						|  | "text". "text" will use the `TextTimeEmbedding` layer. | 
					
						
						|  | addition_time_embed_dim: (`int`, *optional*, defaults to `None`): | 
					
						
						|  | Dimension for the timestep embeddings. | 
					
						
						|  | num_class_embeds (`int`, *optional*, defaults to `None`): | 
					
						
						|  | Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing | 
					
						
						|  | class conditioning with `class_embed_type` equal to `None`. | 
					
						
						|  | time_embedding_type (`str`, *optional*, defaults to `positional`): | 
					
						
						|  | The type of position embedding to use for timesteps. Choose from `positional` or `fourier`. | 
					
						
						|  | time_embedding_dim (`int`, *optional*, defaults to `None`): | 
					
						
						|  | An optional override for the dimension of the projected time embedding. | 
					
						
						|  | time_embedding_act_fn (`str`, *optional*, defaults to `None`): | 
					
						
						|  | Optional activation function to use only once on the time embeddings before they are passed to the rest of | 
					
						
						|  | the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`. | 
					
						
						|  | timestep_post_act (`str`, *optional*, defaults to `None`): | 
					
						
						|  | The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`. | 
					
						
						|  | time_cond_proj_dim (`int`, *optional*, defaults to `None`): | 
					
						
						|  | The dimension of `cond_proj` layer in the timestep embedding. | 
					
						
						|  | conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer. conv_out_kernel (`int`, | 
					
						
						|  | *optional*, default to `3`): The kernel size of `conv_out` layer. projection_class_embeddings_input_dim (`int`, | 
					
						
						|  | *optional*): The dimension of the `class_labels` input when | 
					
						
						|  | `class_embed_type="projection"`. Required when `class_embed_type="projection"`. | 
					
						
						|  | class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time | 
					
						
						|  | embeddings with the class embeddings. | 
					
						
						|  | mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`): | 
					
						
						|  | Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If | 
					
						
						|  | `only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the | 
					
						
						|  | `only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False` | 
					
						
						|  | otherwise. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _supports_gradient_checkpointing = True | 
					
						
						|  |  | 
					
						
						|  | @register_to_config | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | sample_size: Optional[int] = None, | 
					
						
						|  | in_channels: int = 4, | 
					
						
						|  | out_channels: int = 4, | 
					
						
						|  | center_input_sample: bool = False, | 
					
						
						|  | flip_sin_to_cos: bool = True, | 
					
						
						|  | freq_shift: int = 0, | 
					
						
						|  | down_block_types: Tuple[str] = ( | 
					
						
						|  | "CrossAttnDownBlock2D", | 
					
						
						|  | "CrossAttnDownBlock2D", | 
					
						
						|  | "CrossAttnDownBlock2D", | 
					
						
						|  | "DownBlock2D", | 
					
						
						|  | ), | 
					
						
						|  | mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn", | 
					
						
						|  | up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"), | 
					
						
						|  | only_cross_attention: Union[bool, Tuple[bool]] = False, | 
					
						
						|  | block_out_channels: Tuple[int] = (320, 640, 1280, 1280), | 
					
						
						|  | layers_per_block: Union[int, Tuple[int]] = 2, | 
					
						
						|  | downsample_padding: int = 1, | 
					
						
						|  | mid_block_scale_factor: float = 1, | 
					
						
						|  | dropout: float = 0.0, | 
					
						
						|  | act_fn: str = "silu", | 
					
						
						|  | norm_num_groups: Optional[int] = 32, | 
					
						
						|  | norm_eps: float = 1e-5, | 
					
						
						|  | cross_attention_dim: Union[int, Tuple[int]] = 1280, | 
					
						
						|  | transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1, | 
					
						
						|  | reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None, | 
					
						
						|  | encoder_hid_dim: Optional[int] = None, | 
					
						
						|  | encoder_hid_dim_type: Optional[str] = None, | 
					
						
						|  | attention_head_dim: Union[int, Tuple[int]] = 8, | 
					
						
						|  | num_attention_heads: Optional[Union[int, Tuple[int]]] = None, | 
					
						
						|  | dual_cross_attention: bool = False, | 
					
						
						|  | use_linear_projection: bool = False, | 
					
						
						|  | class_embed_type: Optional[str] = None, | 
					
						
						|  | addition_embed_type: Optional[str] = None, | 
					
						
						|  | addition_time_embed_dim: Optional[int] = None, | 
					
						
						|  | num_class_embeds: Optional[int] = None, | 
					
						
						|  | upcast_attention: bool = False, | 
					
						
						|  | resnet_time_scale_shift: str = "default", | 
					
						
						|  | resnet_skip_time_act: bool = False, | 
					
						
						|  | resnet_out_scale_factor: int = 1.0, | 
					
						
						|  | time_embedding_type: str = "positional", | 
					
						
						|  | time_embedding_dim: Optional[int] = None, | 
					
						
						|  | time_embedding_act_fn: Optional[str] = None, | 
					
						
						|  | timestep_post_act: Optional[str] = None, | 
					
						
						|  | time_cond_proj_dim: Optional[int] = None, | 
					
						
						|  | conv_in_kernel: int = 3, | 
					
						
						|  | conv_out_kernel: int = 3, | 
					
						
						|  | projection_class_embeddings_input_dim: Optional[int] = None, | 
					
						
						|  | attention_type: str = "default", | 
					
						
						|  | class_embeddings_concat: bool = False, | 
					
						
						|  | mid_block_only_cross_attention: Optional[bool] = None, | 
					
						
						|  | cross_attention_norm: Optional[str] = None, | 
					
						
						|  | addition_embed_type_num_heads=64, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.sample_size = sample_size | 
					
						
						|  |  | 
					
						
						|  | if num_attention_heads is not None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | num_attention_heads = num_attention_heads or attention_head_dim | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if len(down_block_types) != len(up_block_types): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if len(block_out_channels) != len(down_block_types): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}." | 
					
						
						|  | ) | 
					
						
						|  | if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None: | 
					
						
						|  | for layer_number_per_block in transformer_layers_per_block: | 
					
						
						|  | if isinstance(layer_number_per_block, list): | 
					
						
						|  | raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | conv_in_padding = (conv_in_kernel - 1) // 2 | 
					
						
						|  | self.conv_in = nn.Conv2d( | 
					
						
						|  | in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if time_embedding_type == "fourier": | 
					
						
						|  | time_embed_dim = time_embedding_dim or block_out_channels[0] * 2 | 
					
						
						|  | if time_embed_dim % 2 != 0: | 
					
						
						|  | raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.") | 
					
						
						|  | self.time_proj = GaussianFourierProjection( | 
					
						
						|  | time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos | 
					
						
						|  | ) | 
					
						
						|  | timestep_input_dim = time_embed_dim | 
					
						
						|  | elif time_embedding_type == "positional": | 
					
						
						|  | time_embed_dim = time_embedding_dim or block_out_channels[0] * 4 | 
					
						
						|  |  | 
					
						
						|  | self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) | 
					
						
						|  | timestep_input_dim = block_out_channels[0] | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.time_embedding = TimestepEmbedding( | 
					
						
						|  | timestep_input_dim, | 
					
						
						|  | time_embed_dim, | 
					
						
						|  | act_fn=act_fn, | 
					
						
						|  | post_act_fn=timestep_post_act, | 
					
						
						|  | cond_proj_dim=time_cond_proj_dim, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if encoder_hid_dim_type is None and encoder_hid_dim is not None: | 
					
						
						|  | encoder_hid_dim_type = "text_proj" | 
					
						
						|  | self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type) | 
					
						
						|  | logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.") | 
					
						
						|  |  | 
					
						
						|  | if encoder_hid_dim is None and encoder_hid_dim_type is not None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if encoder_hid_dim_type == "text_proj": | 
					
						
						|  | self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim) | 
					
						
						|  | elif encoder_hid_dim_type == "text_image_proj": | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.encoder_hid_proj = TextImageProjection( | 
					
						
						|  | text_embed_dim=encoder_hid_dim, | 
					
						
						|  | image_embed_dim=cross_attention_dim, | 
					
						
						|  | cross_attention_dim=cross_attention_dim, | 
					
						
						|  | ) | 
					
						
						|  | elif encoder_hid_dim_type == "image_proj": | 
					
						
						|  |  | 
					
						
						|  | self.encoder_hid_proj = ImageProjection( | 
					
						
						|  | image_embed_dim=encoder_hid_dim, | 
					
						
						|  | cross_attention_dim=cross_attention_dim, | 
					
						
						|  | ) | 
					
						
						|  | elif encoder_hid_dim_type is not None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'." | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | self.encoder_hid_proj = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if class_embed_type is None and num_class_embeds is not None: | 
					
						
						|  | self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim) | 
					
						
						|  | elif class_embed_type == "timestep": | 
					
						
						|  | self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn) | 
					
						
						|  | elif class_embed_type == "identity": | 
					
						
						|  | self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim) | 
					
						
						|  | elif class_embed_type == "projection": | 
					
						
						|  | if projection_class_embeddings_input_dim is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) | 
					
						
						|  | elif class_embed_type == "simple_projection": | 
					
						
						|  | if projection_class_embeddings_input_dim is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set" | 
					
						
						|  | ) | 
					
						
						|  | self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim) | 
					
						
						|  | else: | 
					
						
						|  | self.class_embedding = None | 
					
						
						|  |  | 
					
						
						|  | if addition_embed_type == "text": | 
					
						
						|  | if encoder_hid_dim is not None: | 
					
						
						|  | text_time_embedding_from_dim = encoder_hid_dim | 
					
						
						|  | else: | 
					
						
						|  | text_time_embedding_from_dim = cross_attention_dim | 
					
						
						|  |  | 
					
						
						|  | self.add_embedding = TextTimeEmbedding( | 
					
						
						|  | text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads | 
					
						
						|  | ) | 
					
						
						|  | elif addition_embed_type == "text_image": | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.add_embedding = TextImageTimeEmbedding( | 
					
						
						|  | text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim | 
					
						
						|  | ) | 
					
						
						|  | elif addition_embed_type == "text_time": | 
					
						
						|  | self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift) | 
					
						
						|  | self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) | 
					
						
						|  | elif addition_embed_type == "image": | 
					
						
						|  |  | 
					
						
						|  | self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim) | 
					
						
						|  | elif addition_embed_type == "image_hint": | 
					
						
						|  |  | 
					
						
						|  | self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim) | 
					
						
						|  | elif addition_embed_type is not None: | 
					
						
						|  | raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.") | 
					
						
						|  |  | 
					
						
						|  | if time_embedding_act_fn is None: | 
					
						
						|  | self.time_embed_act = None | 
					
						
						|  | else: | 
					
						
						|  | self.time_embed_act = get_activation(time_embedding_act_fn) | 
					
						
						|  |  | 
					
						
						|  | self.down_blocks = nn.ModuleList([]) | 
					
						
						|  | self.up_blocks = nn.ModuleList([]) | 
					
						
						|  |  | 
					
						
						|  | if isinstance(only_cross_attention, bool): | 
					
						
						|  | if mid_block_only_cross_attention is None: | 
					
						
						|  | mid_block_only_cross_attention = only_cross_attention | 
					
						
						|  |  | 
					
						
						|  | only_cross_attention = [only_cross_attention] * len(down_block_types) | 
					
						
						|  |  | 
					
						
						|  | if mid_block_only_cross_attention is None: | 
					
						
						|  | mid_block_only_cross_attention = False | 
					
						
						|  |  | 
					
						
						|  | if isinstance(num_attention_heads, int): | 
					
						
						|  | num_attention_heads = (num_attention_heads,) * len(down_block_types) | 
					
						
						|  |  | 
					
						
						|  | if isinstance(attention_head_dim, int): | 
					
						
						|  | attention_head_dim = (attention_head_dim,) * len(down_block_types) | 
					
						
						|  |  | 
					
						
						|  | if isinstance(cross_attention_dim, int): | 
					
						
						|  | cross_attention_dim = (cross_attention_dim,) * len(down_block_types) | 
					
						
						|  |  | 
					
						
						|  | if isinstance(layers_per_block, int): | 
					
						
						|  | layers_per_block = [layers_per_block] * len(down_block_types) | 
					
						
						|  |  | 
					
						
						|  | if isinstance(transformer_layers_per_block, int): | 
					
						
						|  | transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types) | 
					
						
						|  | if class_embeddings_concat: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | blocks_time_embed_dim = time_embed_dim * 2 | 
					
						
						|  | else: | 
					
						
						|  | blocks_time_embed_dim = time_embed_dim | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | output_channel = block_out_channels[0] | 
					
						
						|  | for i, down_block_type in enumerate(down_block_types): | 
					
						
						|  | input_channel = output_channel | 
					
						
						|  | output_channel = block_out_channels[i] | 
					
						
						|  | is_final_block = i == len(block_out_channels) - 1 | 
					
						
						|  |  | 
					
						
						|  | down_block = get_down_block( | 
					
						
						|  | down_block_type, | 
					
						
						|  | num_layers=layers_per_block[i], | 
					
						
						|  | transformer_layers_per_block=transformer_layers_per_block[i], | 
					
						
						|  | in_channels=input_channel, | 
					
						
						|  | out_channels=output_channel, | 
					
						
						|  | temb_channels=blocks_time_embed_dim, | 
					
						
						|  | add_downsample=not is_final_block, | 
					
						
						|  | resnet_eps=norm_eps, | 
					
						
						|  | resnet_act_fn=act_fn, | 
					
						
						|  | resnet_groups=norm_num_groups, | 
					
						
						|  | cross_attention_dim=cross_attention_dim[i], | 
					
						
						|  | num_attention_heads=num_attention_heads[i], | 
					
						
						|  | downsample_padding=downsample_padding, | 
					
						
						|  | dual_cross_attention=dual_cross_attention, | 
					
						
						|  | use_linear_projection=use_linear_projection, | 
					
						
						|  | only_cross_attention=only_cross_attention[i], | 
					
						
						|  | upcast_attention=upcast_attention, | 
					
						
						|  | resnet_time_scale_shift=resnet_time_scale_shift, | 
					
						
						|  | attention_type=attention_type, | 
					
						
						|  | resnet_skip_time_act=resnet_skip_time_act, | 
					
						
						|  | resnet_out_scale_factor=resnet_out_scale_factor, | 
					
						
						|  | cross_attention_norm=cross_attention_norm, | 
					
						
						|  | attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | ) | 
					
						
						|  | self.down_blocks.append(down_block) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if mid_block_type == "UNetMidBlock2DCrossAttn": | 
					
						
						|  | self.mid_block = UNetMidBlock2DCrossAttn( | 
					
						
						|  | transformer_layers_per_block=transformer_layers_per_block[-1], | 
					
						
						|  | in_channels=block_out_channels[-1], | 
					
						
						|  | temb_channels=blocks_time_embed_dim, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | resnet_eps=norm_eps, | 
					
						
						|  | resnet_act_fn=act_fn, | 
					
						
						|  | output_scale_factor=mid_block_scale_factor, | 
					
						
						|  | resnet_time_scale_shift=resnet_time_scale_shift, | 
					
						
						|  | cross_attention_dim=cross_attention_dim[-1], | 
					
						
						|  | num_attention_heads=num_attention_heads[-1], | 
					
						
						|  | resnet_groups=norm_num_groups, | 
					
						
						|  | dual_cross_attention=dual_cross_attention, | 
					
						
						|  | use_linear_projection=use_linear_projection, | 
					
						
						|  | upcast_attention=upcast_attention, | 
					
						
						|  | attention_type=attention_type, | 
					
						
						|  | ) | 
					
						
						|  | elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn": | 
					
						
						|  | self.mid_block = UNetMidBlock2DSimpleCrossAttn( | 
					
						
						|  | in_channels=block_out_channels[-1], | 
					
						
						|  | temb_channels=blocks_time_embed_dim, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | resnet_eps=norm_eps, | 
					
						
						|  | resnet_act_fn=act_fn, | 
					
						
						|  | output_scale_factor=mid_block_scale_factor, | 
					
						
						|  | cross_attention_dim=cross_attention_dim[-1], | 
					
						
						|  | attention_head_dim=attention_head_dim[-1], | 
					
						
						|  | resnet_groups=norm_num_groups, | 
					
						
						|  | resnet_time_scale_shift=resnet_time_scale_shift, | 
					
						
						|  | skip_time_act=resnet_skip_time_act, | 
					
						
						|  | only_cross_attention=mid_block_only_cross_attention, | 
					
						
						|  | cross_attention_norm=cross_attention_norm, | 
					
						
						|  | ) | 
					
						
						|  | elif mid_block_type == "UNetMidBlock2D": | 
					
						
						|  | self.mid_block = UNetMidBlock2D( | 
					
						
						|  | in_channels=block_out_channels[-1], | 
					
						
						|  | temb_channels=blocks_time_embed_dim, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | num_layers=0, | 
					
						
						|  | resnet_eps=norm_eps, | 
					
						
						|  | resnet_act_fn=act_fn, | 
					
						
						|  | output_scale_factor=mid_block_scale_factor, | 
					
						
						|  | resnet_groups=norm_num_groups, | 
					
						
						|  | resnet_time_scale_shift=resnet_time_scale_shift, | 
					
						
						|  | add_attention=False, | 
					
						
						|  | ) | 
					
						
						|  | elif mid_block_type is None: | 
					
						
						|  | self.mid_block = None | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"unknown mid_block_type : {mid_block_type}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.num_upsamplers = 0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | reversed_block_out_channels = list(reversed(block_out_channels)) | 
					
						
						|  | reversed_num_attention_heads = list(reversed(num_attention_heads)) | 
					
						
						|  | reversed_layers_per_block = list(reversed(layers_per_block)) | 
					
						
						|  | reversed_cross_attention_dim = list(reversed(cross_attention_dim)) | 
					
						
						|  | reversed_transformer_layers_per_block = ( | 
					
						
						|  | list(reversed(transformer_layers_per_block)) | 
					
						
						|  | if reverse_transformer_layers_per_block is None | 
					
						
						|  | else reverse_transformer_layers_per_block | 
					
						
						|  | ) | 
					
						
						|  | only_cross_attention = list(reversed(only_cross_attention)) | 
					
						
						|  |  | 
					
						
						|  | output_channel = reversed_block_out_channels[0] | 
					
						
						|  | for i, up_block_type in enumerate(up_block_types): | 
					
						
						|  | is_final_block = i == len(block_out_channels) - 1 | 
					
						
						|  |  | 
					
						
						|  | prev_output_channel = output_channel | 
					
						
						|  | output_channel = reversed_block_out_channels[i] | 
					
						
						|  | input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if not is_final_block: | 
					
						
						|  | add_upsample = True | 
					
						
						|  | self.num_upsamplers += 1 | 
					
						
						|  | else: | 
					
						
						|  | add_upsample = False | 
					
						
						|  | up_block = get_up_block( | 
					
						
						|  | up_block_type, | 
					
						
						|  | num_layers=reversed_layers_per_block[i] + 1, | 
					
						
						|  | transformer_layers_per_block=reversed_transformer_layers_per_block[i], | 
					
						
						|  | in_channels=input_channel, | 
					
						
						|  | out_channels=output_channel, | 
					
						
						|  | prev_output_channel=prev_output_channel, | 
					
						
						|  | temb_channels=blocks_time_embed_dim, | 
					
						
						|  | add_upsample=add_upsample, | 
					
						
						|  | resnet_eps=norm_eps, | 
					
						
						|  | resnet_act_fn=act_fn, | 
					
						
						|  | resolution_idx=i, | 
					
						
						|  | resnet_groups=norm_num_groups, | 
					
						
						|  | cross_attention_dim=reversed_cross_attention_dim[i], | 
					
						
						|  | num_attention_heads=reversed_num_attention_heads[i], | 
					
						
						|  | dual_cross_attention=dual_cross_attention, | 
					
						
						|  | use_linear_projection=use_linear_projection, | 
					
						
						|  | only_cross_attention=only_cross_attention[i], | 
					
						
						|  | upcast_attention=upcast_attention, | 
					
						
						|  | resnet_time_scale_shift=resnet_time_scale_shift, | 
					
						
						|  | attention_type=attention_type, | 
					
						
						|  | resnet_skip_time_act=resnet_skip_time_act, | 
					
						
						|  | resnet_out_scale_factor=resnet_out_scale_factor, | 
					
						
						|  | cross_attention_norm=cross_attention_norm, | 
					
						
						|  | attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.up_blocks.append(up_block) | 
					
						
						|  | prev_output_channel = output_channel | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if norm_num_groups is not None: | 
					
						
						|  | self.conv_norm_out = nn.GroupNorm( | 
					
						
						|  | num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.conv_act = get_activation(act_fn) | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | self.conv_norm_out = None | 
					
						
						|  | self.conv_act = None | 
					
						
						|  |  | 
					
						
						|  | conv_out_padding = (conv_out_kernel - 1) // 2 | 
					
						
						|  | self.conv_out = nn.Conv2d( | 
					
						
						|  | block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if attention_type in ["gated", "gated-text-image"]: | 
					
						
						|  | positive_len = 768 | 
					
						
						|  | if isinstance(cross_attention_dim, int): | 
					
						
						|  | positive_len = cross_attention_dim | 
					
						
						|  | elif isinstance(cross_attention_dim, tuple) or isinstance(cross_attention_dim, list): | 
					
						
						|  | positive_len = cross_attention_dim[0] | 
					
						
						|  |  | 
					
						
						|  | feature_type = "text-only" if attention_type == "gated" else "text-image" | 
					
						
						|  | self.position_net = PositionNet( | 
					
						
						|  | positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def attn_processors(self) -> Dict[str, AttentionProcessor]: | 
					
						
						|  | r""" | 
					
						
						|  | Returns: | 
					
						
						|  | `dict` of attention processors: A dictionary containing all attention processors used in the model with | 
					
						
						|  | indexed by its weight name. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | processors = {} | 
					
						
						|  |  | 
					
						
						|  | def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): | 
					
						
						|  | if hasattr(module, "get_processor"): | 
					
						
						|  | processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) | 
					
						
						|  |  | 
					
						
						|  | for sub_name, child in module.named_children(): | 
					
						
						|  | fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | 
					
						
						|  |  | 
					
						
						|  | return processors | 
					
						
						|  |  | 
					
						
						|  | for name, module in self.named_children(): | 
					
						
						|  | fn_recursive_add_processors(name, module, processors) | 
					
						
						|  |  | 
					
						
						|  | return processors | 
					
						
						|  |  | 
					
						
						|  | def set_attn_processor( | 
					
						
						|  | self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Sets the attention processor to use to compute attention. | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | 
					
						
						|  | The instantiated processor class or a dictionary of processor classes that will be set as the processor | 
					
						
						|  | for **all** `Attention` layers. | 
					
						
						|  |  | 
					
						
						|  | If `processor` is a dict, the key needs to define the path to the corresponding cross attention | 
					
						
						|  | processor. This is strongly recommended when setting trainable attention processors. | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  | count = len(self.attn_processors.keys()) | 
					
						
						|  |  | 
					
						
						|  | if isinstance(processor, dict) and len(processor) != count: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | 
					
						
						|  | f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | 
					
						
						|  | if hasattr(module, "set_processor"): | 
					
						
						|  | if not isinstance(processor, dict): | 
					
						
						|  | module.set_processor(processor, _remove_lora=_remove_lora) | 
					
						
						|  | else: | 
					
						
						|  | module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora) | 
					
						
						|  |  | 
					
						
						|  | for sub_name, child in module.named_children(): | 
					
						
						|  | fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | 
					
						
						|  |  | 
					
						
						|  | for name, module in self.named_children(): | 
					
						
						|  | fn_recursive_attn_processor(name, module, processor) | 
					
						
						|  |  | 
					
						
						|  | def set_default_attn_processor(self): | 
					
						
						|  | """ | 
					
						
						|  | Disables custom attention processors and sets the default attention implementation. | 
					
						
						|  | """ | 
					
						
						|  | if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): | 
					
						
						|  | processor = AttnAddedKVProcessor() | 
					
						
						|  | elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): | 
					
						
						|  | processor = AttnProcessor() | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.set_attn_processor(processor, _remove_lora=True) | 
					
						
						|  |  | 
					
						
						|  | def set_attention_slice(self, slice_size): | 
					
						
						|  | r""" | 
					
						
						|  | Enable sliced attention computation. | 
					
						
						|  |  | 
					
						
						|  | When this option is enabled, the attention module splits the input tensor in slices to compute attention in | 
					
						
						|  | several steps. This is useful for saving some memory in exchange for a small decrease in speed. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): | 
					
						
						|  | When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If | 
					
						
						|  | `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is | 
					
						
						|  | provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` | 
					
						
						|  | must be a multiple of `slice_size`. | 
					
						
						|  | """ | 
					
						
						|  | sliceable_head_dims = [] | 
					
						
						|  |  | 
					
						
						|  | def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module): | 
					
						
						|  | if hasattr(module, "set_attention_slice"): | 
					
						
						|  | sliceable_head_dims.append(module.sliceable_head_dim) | 
					
						
						|  |  | 
					
						
						|  | for child in module.children(): | 
					
						
						|  | fn_recursive_retrieve_sliceable_dims(child) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for module in self.children(): | 
					
						
						|  | fn_recursive_retrieve_sliceable_dims(module) | 
					
						
						|  |  | 
					
						
						|  | num_sliceable_layers = len(sliceable_head_dims) | 
					
						
						|  |  | 
					
						
						|  | if slice_size == "auto": | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | slice_size = [dim // 2 for dim in sliceable_head_dims] | 
					
						
						|  | elif slice_size == "max": | 
					
						
						|  |  | 
					
						
						|  | slice_size = num_sliceable_layers * [1] | 
					
						
						|  |  | 
					
						
						|  | slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size | 
					
						
						|  |  | 
					
						
						|  | if len(slice_size) != len(sliceable_head_dims): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different" | 
					
						
						|  | f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | for i in range(len(slice_size)): | 
					
						
						|  | size = slice_size[i] | 
					
						
						|  | dim = sliceable_head_dims[i] | 
					
						
						|  | if size is not None and size > dim: | 
					
						
						|  | raise ValueError(f"size {size} has to be smaller or equal to {dim}.") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]): | 
					
						
						|  | if hasattr(module, "set_attention_slice"): | 
					
						
						|  | module.set_attention_slice(slice_size.pop()) | 
					
						
						|  |  | 
					
						
						|  | for child in module.children(): | 
					
						
						|  | fn_recursive_set_attention_slice(child, slice_size) | 
					
						
						|  |  | 
					
						
						|  | reversed_slice_size = list(reversed(slice_size)) | 
					
						
						|  | for module in self.children(): | 
					
						
						|  | fn_recursive_set_attention_slice(module, reversed_slice_size) | 
					
						
						|  |  | 
					
						
						|  | def _set_gradient_checkpointing(self, module, value=False): | 
					
						
						|  | if hasattr(module, "gradient_checkpointing"): | 
					
						
						|  | module.gradient_checkpointing = value | 
					
						
						|  |  | 
					
						
						|  | def enable_freeu(self, s1, s2, b1, b2): | 
					
						
						|  | r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497. | 
					
						
						|  |  | 
					
						
						|  | The suffixes after the scaling factors represent the stage blocks where they are being applied. | 
					
						
						|  |  | 
					
						
						|  | Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that | 
					
						
						|  | are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | s1 (`float`): | 
					
						
						|  | Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to | 
					
						
						|  | mitigate the "oversmoothing effect" in the enhanced denoising process. | 
					
						
						|  | s2 (`float`): | 
					
						
						|  | Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to | 
					
						
						|  | mitigate the "oversmoothing effect" in the enhanced denoising process. | 
					
						
						|  | b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features. | 
					
						
						|  | b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features. | 
					
						
						|  | """ | 
					
						
						|  | for i, upsample_block in enumerate(self.up_blocks): | 
					
						
						|  | setattr(upsample_block, "s1", s1) | 
					
						
						|  | setattr(upsample_block, "s2", s2) | 
					
						
						|  | setattr(upsample_block, "b1", b1) | 
					
						
						|  | setattr(upsample_block, "b2", b2) | 
					
						
						|  |  | 
					
						
						|  | def disable_freeu(self): | 
					
						
						|  | """Disables the FreeU mechanism.""" | 
					
						
						|  | freeu_keys = {"s1", "s2", "b1", "b2"} | 
					
						
						|  | for i, upsample_block in enumerate(self.up_blocks): | 
					
						
						|  | for k in freeu_keys: | 
					
						
						|  | if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None: | 
					
						
						|  | setattr(upsample_block, k, None) | 
					
						
						|  |  | 
					
						
						|  | def fuse_qkv_projections(self): | 
					
						
						|  | """ | 
					
						
						|  | Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, | 
					
						
						|  | key, value) are fused. For cross-attention modules, key and value projection matrices are fused. | 
					
						
						|  |  | 
					
						
						|  | <Tip warning={true}> | 
					
						
						|  |  | 
					
						
						|  | This API is π§ͺ experimental. | 
					
						
						|  |  | 
					
						
						|  | </Tip> | 
					
						
						|  | """ | 
					
						
						|  | self.original_attn_processors = None | 
					
						
						|  |  | 
					
						
						|  | for _, attn_processor in self.attn_processors.items(): | 
					
						
						|  | if "Added" in str(attn_processor.__class__.__name__): | 
					
						
						|  | raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") | 
					
						
						|  |  | 
					
						
						|  | self.original_attn_processors = self.attn_processors | 
					
						
						|  |  | 
					
						
						|  | for module in self.modules(): | 
					
						
						|  | if isinstance(module, Attention): | 
					
						
						|  | module.fuse_projections(fuse=True) | 
					
						
						|  |  | 
					
						
						|  | def unfuse_qkv_projections(self): | 
					
						
						|  | """Disables the fused QKV projection if enabled. | 
					
						
						|  |  | 
					
						
						|  | <Tip warning={true}> | 
					
						
						|  |  | 
					
						
						|  | This API is π§ͺ experimental. | 
					
						
						|  |  | 
					
						
						|  | </Tip> | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  | if self.original_attn_processors is not None: | 
					
						
						|  | self.set_attn_processor(self.original_attn_processors) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | sample: torch.FloatTensor, | 
					
						
						|  | timestep: Union[torch.Tensor, float, int], | 
					
						
						|  | encoder_hidden_states: torch.Tensor, | 
					
						
						|  | class_labels: Optional[torch.Tensor] = None, | 
					
						
						|  | timestep_cond: Optional[torch.Tensor] = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | cross_attention_kwargs: Optional[Dict[str, Any]] = None, | 
					
						
						|  | added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, | 
					
						
						|  | down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, | 
					
						
						|  | mid_block_additional_residual: Optional[torch.Tensor] = None, | 
					
						
						|  | down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None, | 
					
						
						|  | encoder_attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | return_dict: bool = True, | 
					
						
						|  | ) -> Union[UNet2DConditionOutput, Tuple]: | 
					
						
						|  | r""" | 
					
						
						|  | The [`UNet2DConditionModel`] forward method. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | sample (`torch.FloatTensor`): | 
					
						
						|  | The noisy input tensor with the following shape `(batch, channel, height, width)`. | 
					
						
						|  | timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input. | 
					
						
						|  | encoder_hidden_states (`torch.FloatTensor`): | 
					
						
						|  | The encoder hidden states with shape `(batch, sequence_length, feature_dim)`. | 
					
						
						|  | class_labels (`torch.Tensor`, *optional*, defaults to `None`): | 
					
						
						|  | Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings. | 
					
						
						|  | timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`): | 
					
						
						|  | Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed | 
					
						
						|  | through the `self.time_embedding` layer to obtain the timestep embeddings. | 
					
						
						|  | attention_mask (`torch.Tensor`, *optional*, defaults to `None`): | 
					
						
						|  | An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask | 
					
						
						|  | is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large | 
					
						
						|  | negative values to the attention scores corresponding to "discard" tokens. | 
					
						
						|  | cross_attention_kwargs (`dict`, *optional*): | 
					
						
						|  | A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | 
					
						
						|  | `self.processor` in | 
					
						
						|  | [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | 
					
						
						|  | added_cond_kwargs: (`dict`, *optional*): | 
					
						
						|  | A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that | 
					
						
						|  | are passed along to the UNet blocks. | 
					
						
						|  | down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*): | 
					
						
						|  | A tuple of tensors that if specified are added to the residuals of down unet blocks. | 
					
						
						|  | mid_block_additional_residual: (`torch.Tensor`, *optional*): | 
					
						
						|  | A tensor that if specified is added to the residual of the middle unet block. | 
					
						
						|  | encoder_attention_mask (`torch.Tensor`): | 
					
						
						|  | A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If | 
					
						
						|  | `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias, | 
					
						
						|  | which adds large negative values to the attention scores corresponding to "discard" tokens. | 
					
						
						|  | return_dict (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain | 
					
						
						|  | tuple. | 
					
						
						|  | cross_attention_kwargs (`dict`, *optional*): | 
					
						
						|  | A kwargs dictionary that if specified is passed along to the [`AttnProcessor`]. | 
					
						
						|  | added_cond_kwargs: (`dict`, *optional*): | 
					
						
						|  | A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that | 
					
						
						|  | are passed along to the UNet blocks. | 
					
						
						|  | down_block_additional_residuals (`tuple` of `torch.Tensor`, *optional*): | 
					
						
						|  | additional residuals to be added to UNet long skip connections from down blocks to up blocks for | 
					
						
						|  | example from ControlNet side model(s) | 
					
						
						|  | mid_block_additional_residual (`torch.Tensor`, *optional*): | 
					
						
						|  | additional residual to be added to UNet mid block output, for example from ControlNet side model | 
					
						
						|  | down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*): | 
					
						
						|  | additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s) | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`: | 
					
						
						|  | If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise | 
					
						
						|  | a `tuple` is returned where the first element is the sample tensor. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | default_overall_up_factor = 2**self.num_upsamplers | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | forward_upsample_size = False | 
					
						
						|  | upsample_size = None | 
					
						
						|  |  | 
					
						
						|  | for dim in sample.shape[-2:]: | 
					
						
						|  | if dim % default_overall_up_factor != 0: | 
					
						
						|  |  | 
					
						
						|  | forward_upsample_size = True | 
					
						
						|  | break | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 | 
					
						
						|  | attention_mask = attention_mask.unsqueeze(1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if encoder_attention_mask is not None: | 
					
						
						|  | encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0 | 
					
						
						|  | encoder_attention_mask = encoder_attention_mask.unsqueeze(1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.config.center_input_sample: | 
					
						
						|  | sample = 2 * sample - 1.0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | timesteps = timestep | 
					
						
						|  | if not torch.is_tensor(timesteps): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | is_mps = sample.device.type == "mps" | 
					
						
						|  | if isinstance(timestep, float): | 
					
						
						|  | dtype = torch.float32 if is_mps else torch.float64 | 
					
						
						|  | else: | 
					
						
						|  | dtype = torch.int32 if is_mps else torch.int64 | 
					
						
						|  | timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) | 
					
						
						|  | elif len(timesteps.shape) == 0: | 
					
						
						|  | timesteps = timesteps[None].to(sample.device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | timesteps = timesteps.expand(sample.shape[0]) | 
					
						
						|  |  | 
					
						
						|  | t_emb = self.time_proj(timesteps) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | t_emb = t_emb.to(dtype=sample.dtype) | 
					
						
						|  |  | 
					
						
						|  | emb = self.time_embedding(t_emb, timestep_cond) | 
					
						
						|  | aug_emb = None | 
					
						
						|  |  | 
					
						
						|  | if self.class_embedding is not None: | 
					
						
						|  | if class_labels is None: | 
					
						
						|  | raise ValueError("class_labels should be provided when num_class_embeds > 0") | 
					
						
						|  |  | 
					
						
						|  | if self.config.class_embed_type == "timestep": | 
					
						
						|  | class_labels = self.time_proj(class_labels) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class_labels = class_labels.to(dtype=sample.dtype) | 
					
						
						|  |  | 
					
						
						|  | class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype) | 
					
						
						|  |  | 
					
						
						|  | if self.config.class_embeddings_concat: | 
					
						
						|  | emb = torch.cat([emb, class_emb], dim=-1) | 
					
						
						|  | else: | 
					
						
						|  | emb = emb + class_emb | 
					
						
						|  |  | 
					
						
						|  | if self.config.addition_embed_type == "text": | 
					
						
						|  | aug_emb = self.add_embedding(encoder_hidden_states) | 
					
						
						|  | elif self.config.addition_embed_type == "text_image": | 
					
						
						|  |  | 
					
						
						|  | if "image_embeds" not in added_cond_kwargs: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | image_embs = added_cond_kwargs.get("image_embeds") | 
					
						
						|  | text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states) | 
					
						
						|  | aug_emb = self.add_embedding(text_embs, image_embs) | 
					
						
						|  | elif self.config.addition_embed_type == "text_time": | 
					
						
						|  |  | 
					
						
						|  | if "text_embeds" not in added_cond_kwargs: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`" | 
					
						
						|  | ) | 
					
						
						|  | text_embeds = added_cond_kwargs.get("text_embeds") | 
					
						
						|  | if "time_ids" not in added_cond_kwargs: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`" | 
					
						
						|  | ) | 
					
						
						|  | time_ids = added_cond_kwargs.get("time_ids") | 
					
						
						|  | time_embeds = self.add_time_proj(time_ids.flatten()) | 
					
						
						|  | time_embeds = time_embeds.reshape((text_embeds.shape[0], -1)) | 
					
						
						|  | add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) | 
					
						
						|  | add_embeds = add_embeds.to(emb.dtype) | 
					
						
						|  | aug_emb = self.add_embedding(add_embeds) | 
					
						
						|  | elif self.config.addition_embed_type == "image": | 
					
						
						|  |  | 
					
						
						|  | if "image_embeds" not in added_cond_kwargs: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`" | 
					
						
						|  | ) | 
					
						
						|  | image_embs = added_cond_kwargs.get("image_embeds") | 
					
						
						|  | aug_emb = self.add_embedding(image_embs) | 
					
						
						|  | elif self.config.addition_embed_type == "image_hint": | 
					
						
						|  |  | 
					
						
						|  | if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`" | 
					
						
						|  | ) | 
					
						
						|  | image_embs = added_cond_kwargs.get("image_embeds") | 
					
						
						|  | hint = added_cond_kwargs.get("hint") | 
					
						
						|  | aug_emb, hint = self.add_embedding(image_embs, hint) | 
					
						
						|  | sample = torch.cat([sample, hint], dim=1) | 
					
						
						|  |  | 
					
						
						|  | emb = emb + aug_emb if aug_emb is not None else emb | 
					
						
						|  |  | 
					
						
						|  | if self.time_embed_act is not None: | 
					
						
						|  | emb = self.time_embed_act(emb) | 
					
						
						|  |  | 
					
						
						|  | if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj": | 
					
						
						|  | encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states) | 
					
						
						|  | elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj": | 
					
						
						|  |  | 
					
						
						|  | if "image_embeds" not in added_cond_kwargs: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | image_embeds = added_cond_kwargs.get("image_embeds") | 
					
						
						|  | encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds) | 
					
						
						|  | elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj": | 
					
						
						|  |  | 
					
						
						|  | if "image_embeds" not in added_cond_kwargs: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`" | 
					
						
						|  | ) | 
					
						
						|  | image_embeds = added_cond_kwargs.get("image_embeds") | 
					
						
						|  | encoder_hidden_states = self.encoder_hid_proj(image_embeds) | 
					
						
						|  | elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj": | 
					
						
						|  | if "image_embeds" not in added_cond_kwargs: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`" | 
					
						
						|  | ) | 
					
						
						|  | image_embeds = added_cond_kwargs.get("image_embeds") | 
					
						
						|  | image_embeds = self.encoder_hid_proj(image_embeds).to(encoder_hidden_states.dtype) | 
					
						
						|  | encoder_hidden_states = torch.cat([encoder_hidden_states, image_embeds], dim=1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | sample = self.conv_in(sample) | 
					
						
						|  | garment_features=[] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None: | 
					
						
						|  | cross_attention_kwargs = cross_attention_kwargs.copy() | 
					
						
						|  | gligen_args = cross_attention_kwargs.pop("gligen") | 
					
						
						|  | cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)} | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 | 
					
						
						|  | if USE_PEFT_BACKEND: | 
					
						
						|  |  | 
					
						
						|  | scale_lora_layers(self, lora_scale) | 
					
						
						|  |  | 
					
						
						|  | is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None | 
					
						
						|  |  | 
					
						
						|  | is_adapter = down_intrablock_additional_residuals is not None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None: | 
					
						
						|  | deprecate( | 
					
						
						|  | "T2I should not use down_block_additional_residuals", | 
					
						
						|  | "1.3.0", | 
					
						
						|  | "Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \ | 
					
						
						|  | and will be removed in diffusers 1.3.0.  `down_block_additional_residuals` should only be used \ | 
					
						
						|  | for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ", | 
					
						
						|  | standard_warn=False, | 
					
						
						|  | ) | 
					
						
						|  | down_intrablock_additional_residuals = down_block_additional_residuals | 
					
						
						|  | is_adapter = True | 
					
						
						|  |  | 
					
						
						|  | down_block_res_samples = (sample,) | 
					
						
						|  | for downsample_block in self.down_blocks: | 
					
						
						|  | if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: | 
					
						
						|  |  | 
					
						
						|  | additional_residuals = {} | 
					
						
						|  | if is_adapter and len(down_intrablock_additional_residuals) > 0: | 
					
						
						|  | additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0) | 
					
						
						|  |  | 
					
						
						|  | sample, res_samples,out_garment_feat = downsample_block( | 
					
						
						|  | hidden_states=sample, | 
					
						
						|  | temb=emb, | 
					
						
						|  | encoder_hidden_states=encoder_hidden_states, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | cross_attention_kwargs=cross_attention_kwargs, | 
					
						
						|  | encoder_attention_mask=encoder_attention_mask, | 
					
						
						|  | **additional_residuals, | 
					
						
						|  | ) | 
					
						
						|  | garment_features += out_garment_feat | 
					
						
						|  | else: | 
					
						
						|  | sample, res_samples = downsample_block(hidden_states=sample, temb=emb, scale=lora_scale) | 
					
						
						|  | if is_adapter and len(down_intrablock_additional_residuals) > 0: | 
					
						
						|  | sample += down_intrablock_additional_residuals.pop(0) | 
					
						
						|  |  | 
					
						
						|  | down_block_res_samples += res_samples | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if is_controlnet: | 
					
						
						|  | new_down_block_res_samples = () | 
					
						
						|  |  | 
					
						
						|  | for down_block_res_sample, down_block_additional_residual in zip( | 
					
						
						|  | down_block_res_samples, down_block_additional_residuals | 
					
						
						|  | ): | 
					
						
						|  | down_block_res_sample = down_block_res_sample + down_block_additional_residual | 
					
						
						|  | new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,) | 
					
						
						|  |  | 
					
						
						|  | down_block_res_samples = new_down_block_res_samples | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.mid_block is not None: | 
					
						
						|  | if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention: | 
					
						
						|  | sample,out_garment_feat = self.mid_block( | 
					
						
						|  | sample, | 
					
						
						|  | emb, | 
					
						
						|  | encoder_hidden_states=encoder_hidden_states, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | cross_attention_kwargs=cross_attention_kwargs, | 
					
						
						|  | encoder_attention_mask=encoder_attention_mask, | 
					
						
						|  | ) | 
					
						
						|  | garment_features += out_garment_feat | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | sample = self.mid_block(sample, emb) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if ( | 
					
						
						|  | is_adapter | 
					
						
						|  | and len(down_intrablock_additional_residuals) > 0 | 
					
						
						|  | and sample.shape == down_intrablock_additional_residuals[0].shape | 
					
						
						|  | ): | 
					
						
						|  | sample += down_intrablock_additional_residuals.pop(0) | 
					
						
						|  |  | 
					
						
						|  | if is_controlnet: | 
					
						
						|  | sample = sample + mid_block_additional_residual | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for i, upsample_block in enumerate(self.up_blocks): | 
					
						
						|  | is_final_block = i == len(self.up_blocks) - 1 | 
					
						
						|  |  | 
					
						
						|  | res_samples = down_block_res_samples[-len(upsample_block.resnets) :] | 
					
						
						|  | down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if not is_final_block and forward_upsample_size: | 
					
						
						|  | upsample_size = down_block_res_samples[-1].shape[2:] | 
					
						
						|  |  | 
					
						
						|  | if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: | 
					
						
						|  | sample,out_garment_feat = upsample_block( | 
					
						
						|  | hidden_states=sample, | 
					
						
						|  | temb=emb, | 
					
						
						|  | res_hidden_states_tuple=res_samples, | 
					
						
						|  | encoder_hidden_states=encoder_hidden_states, | 
					
						
						|  | cross_attention_kwargs=cross_attention_kwargs, | 
					
						
						|  | upsample_size=upsample_size, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | encoder_attention_mask=encoder_attention_mask, | 
					
						
						|  | ) | 
					
						
						|  | garment_features += out_garment_feat | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return (sample,),garment_features | 
					
						
						|  |  | 
					
						
						|  | return UNet2DConditionOutput(sample=sample),garment_features | 
					
						
						|  |  |