Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,409 Bytes
0ca05b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
import torch
from PIL import Image
from torchvision import transforms
import glob
import os
from src.utils.video_utils import video_to_image_frames
IMAGE_EXTS = ['*.png', '*.jpg', '*.jpeg', '*.bmp', '*.tiff', '*.webp']
VIDEO_EXTS = ['.mp4', '.avi', '.mov', '.webm', '.gif']
def load_and_preprocess_images(image_file_paths, preprocessing_mode="crop", output_size=518):
"""
Transform raw image files into model-ready tensor batches with standardized dimensions.
This utility function handles the complete pipeline from file paths to batched tensors,
ensuring compatibility with neural network requirements while preserving image quality.
Args:
image_file_paths (list): Collection of file system paths pointing to image files
preprocessing_mode (str, optional): Image transformation strategy:
- "crop" (default): Resize width to 518px, center-crop height if oversized
- "pad": Scale largest dimension to 518px, pad smaller dimension to square
output_size (int, optional): Target dimension for model input (default: 518)
Returns:
torch.Tensor: Processed image batch with shape (1, N, 3, H, W) ready for model inference
Raises:
ValueError: When input validation fails (empty list or invalid mode)
Implementation Details:
- Automatic alpha channel handling: RGBA images composited onto white backgrounds
- Dimension normalization: All outputs divisible by 14 for patch-based processing
- Batch consistency: Different-sized images padded to uniform dimensions
- Memory optimization: Efficient tensor operations with minimal data copying
- Quality preservation: Bicubic resampling maintains visual fidelity
"""
# Input validation and parameter setup
if len(image_file_paths) == 0:
raise ValueError("At least 1 image is required")
if preprocessing_mode not in ["crop", "pad"]:
raise ValueError("preprocessing_mode must be either 'crop' or 'pad'")
processed_image_list = []
image_dimension_set = set()
tensor_converter = transforms.ToTensor()
model_target_size = output_size
# Individual image processing pipeline
for image_file_path in image_file_paths:
# File system to memory conversion
loaded_image = Image.open(image_file_path)
# Transparency handling for RGBA images
if loaded_image.mode == "RGBA":
# Generate white canvas matching image dimensions
white_background = Image.new("RGBA", loaded_image.size, (255, 255, 255, 255))
# Blend transparent pixels with white background
loaded_image = Image.alpha_composite(white_background, loaded_image)
# Format standardization to RGB
loaded_image = loaded_image.convert("RGB")
original_width, original_height = loaded_image.size
# Dimension calculation based on preprocessing strategy
if preprocessing_mode == "pad":
# Proportional scaling to fit largest dimension within target
if original_width >= original_height:
scaled_width = model_target_size
scaled_height = round(original_height * (scaled_width / original_width) / 14) * 14 # Patch compatibility
else:
scaled_height = model_target_size
scaled_width = round(original_width * (scaled_height / original_height) / 14) * 14 # Patch compatibility
else: # preprocessing_mode == "crop"
# Width normalization with proportional height adjustment
scaled_width = model_target_size
scaled_height = round(original_height * (scaled_width / original_width) / 14) * 14
# High-quality image resizing
loaded_image = loaded_image.resize((scaled_width, scaled_height), Image.Resampling.BICUBIC)
image_tensor = tensor_converter(loaded_image) # Normalize to [0, 1] range
# Height trimming for crop mode (center-based)
if preprocessing_mode == "crop" and scaled_height > model_target_size:
crop_start_y = (scaled_height - model_target_size) // 2
image_tensor = image_tensor[:, crop_start_y : crop_start_y + model_target_size, :]
# Square padding for pad mode (centered)
if preprocessing_mode == "pad":
height_padding_needed = model_target_size - image_tensor.shape[1]
width_padding_needed = model_target_size - image_tensor.shape[2]
if height_padding_needed > 0 or width_padding_needed > 0:
padding_top = height_padding_needed // 2
padding_bottom = height_padding_needed - padding_top
padding_left = width_padding_needed // 2
padding_right = width_padding_needed - padding_left
# White padding application (value=1.0 for normalized images)
image_tensor = torch.nn.functional.pad(
image_tensor, (padding_left, padding_right, padding_top, padding_bottom), mode="constant", value=1.0
)
image_dimension_set.add((image_tensor.shape[1], image_tensor.shape[2]))
processed_image_list.append(image_tensor)
# Cross-image dimension harmonization
if len(image_dimension_set) > 1:
print(f"Warning: Found images with different shapes: {image_dimension_set}")
# Calculate maximum dimensions across the batch
maximum_height = max(dimension[0] for dimension in image_dimension_set)
maximum_width = max(dimension[1] for dimension in image_dimension_set)
# Uniform padding to achieve batch consistency
uniformly_sized_images = []
for image_tensor in processed_image_list:
height_padding_needed = maximum_height - image_tensor.shape[1]
width_padding_needed = maximum_width - image_tensor.shape[2]
if height_padding_needed > 0 or width_padding_needed > 0:
padding_top = height_padding_needed // 2
padding_bottom = height_padding_needed - padding_top
padding_left = width_padding_needed // 2
padding_right = width_padding_needed - padding_left
image_tensor = torch.nn.functional.pad(
image_tensor, (padding_left, padding_right, padding_top, padding_bottom), mode="constant", value=1.0
)
uniformly_sized_images.append(image_tensor)
processed_image_list = uniformly_sized_images
# Batch tensor construction
batched_images = torch.stack(processed_image_list) # Concatenate along batch dimension
# Single image batch dimension handling
if len(image_file_paths) == 1:
# Ensure proper 4D tensor structure (batch, channels, height, width)
if batched_images.dim() == 3:
batched_images = batched_images.unsqueeze(0)
return batched_images.unsqueeze(0)
def _handle_alpha_channel(img_data):
"""Process RGBA images by blending with white background."""
if img_data.mode == "RGBA":
white_bg = Image.new("RGBA", img_data.size, (255, 255, 255, 255))
img_data = Image.alpha_composite(white_bg, img_data)
return img_data.convert("RGB")
def _calculate_resize_dims(orig_w, orig_h, max_dim, resize_strategy, patch_size=14):
"""Calculate new dimensions based on resize strategy."""
if resize_strategy == "pad":
if orig_w >= orig_h:
new_w = max_dim
new_h = round(orig_h * (new_w / orig_w) / patch_size) * patch_size
else:
new_h = max_dim
new_w = round(orig_w * (new_h / orig_h) / patch_size) * patch_size
else: # crop strategy
new_w = max_dim
new_h = round(orig_h * (new_w / orig_w) / patch_size) * patch_size
return new_w, new_h
def _apply_padding(tensor_img, target_dim):
"""Apply padding to make tensor square."""
h_pad = target_dim - tensor_img.shape[1]
w_pad = target_dim - tensor_img.shape[2]
if h_pad > 0 or w_pad > 0:
pad_top, pad_bottom = h_pad // 2, h_pad - h_pad // 2
pad_left, pad_right = w_pad // 2, w_pad - w_pad // 2
return torch.nn.functional.pad(
tensor_img, (pad_left, pad_right, pad_top, pad_bottom),
mode="constant", value=1.0
)
return tensor_img
def prepare_images_to_tensor(file_paths, resize_strategy="crop", target_size=518):
"""
Process image files into uniform tensor batch for model input.
Args:
file_paths (list): Paths to image files
resize_strategy (str): "crop" or "pad" processing mode
target_size (int): Target size for processing
Returns:
torch.Tensor: Processed image batch (1, N, 3, H, W)
"""
if not file_paths:
raise ValueError("At least 1 image is required")
if resize_strategy not in ["crop", "pad"]:
raise ValueError("Strategy must be 'crop' or 'pad'")
tensor_list = []
dimension_set = set()
converter = transforms.ToTensor()
# Process each image file
for file_path in file_paths:
img_data = Image.open(file_path)
img_data = _handle_alpha_channel(img_data)
orig_w, orig_h = img_data.size
new_w, new_h = _calculate_resize_dims(orig_w, orig_h, target_size, resize_strategy)
# Resize and convert to tensor
img_data = img_data.resize((new_w, new_h), Image.Resampling.BICUBIC)
tensor_img = converter(img_data)
# Apply center crop for crop strategy
if resize_strategy == "crop" and new_h > target_size:
crop_start = (new_h - target_size) // 2
tensor_img = tensor_img[:, crop_start:crop_start + target_size, :]
# Apply padding for pad strategy
if resize_strategy == "pad":
tensor_img = _apply_padding(tensor_img, target_size)
dimension_set.add((tensor_img.shape[1], tensor_img.shape[2]))
tensor_list.append(tensor_img)
# Handle mixed dimensions
if len(dimension_set) > 1:
print(f"Warning: Mixed image dimensions found: {dimension_set}")
max_h = max(dims[0] for dims in dimension_set)
max_w = max(dims[1] for dims in dimension_set)
tensor_list = [_apply_padding(img, max(max_h, max_w)) if img.shape[1] != max_h or img.shape[2] != max_w
else img for img in tensor_list]
batch_tensor = torch.stack(tensor_list)
# Ensure proper batch dimensions
if batch_tensor.dim() == 3:
batch_tensor = batch_tensor.unsqueeze(0)
return batch_tensor.unsqueeze(0)
def extract_load_and_preprocess_images(image_folder_or_video_path, fps=1, target_size=518, mode="crop"):
# Support multiple image formats
if image_folder_or_video_path.is_file() and image_folder_or_video_path.suffix.lower() in VIDEO_EXTS:
frame_paths = video_to_image_frames(str(image_folder_or_video_path), fps=fps)
img_paths = sorted(frame_paths)
else:
img_paths = []
for ext in IMAGE_EXTS:
img_paths.extend(glob.glob(os.path.join(str(image_folder_or_video_path), ext)))
img_paths = sorted(img_paths)
images = prepare_images_to_tensor(img_paths, resize_strategy=mode, target_size=target_size)
return images |