import torch def position_grid_to_embed(pos_grid: torch.Tensor, embed_dim: int, omega_0: float = 100) -> torch.Tensor: """ Convert 2D position grid (HxWx2) to sinusoidal embeddings (HxWxC) Args: pos_grid: Tensor of shape (H, W, 2) containing 2D coordinates embed_dim: Output channel dimension for embeddings omega_0: Base frequency for sinusoidal encoding Returns: Tensor of shape (H, W, embed_dim) with positional embeddings """ H, W, grid_dim = pos_grid.shape assert grid_dim == 2 assert embed_dim % 2 == 0 device = pos_grid.device pos_flat = pos_grid.reshape(-1, grid_dim) # Flatten to (H*W, 2) # Generate frequency bands omega = torch.arange(embed_dim // 4, dtype=torch.float32 if device.type == "mps" else torch.double, device=device) omega /= embed_dim / 4.0 omega = 1.0 / omega_0**omega # (D/4,) # Process x and y coordinates separately pos_x = pos_flat[:, 0].reshape(-1) # (H*W,) pos_y = pos_flat[:, 1].reshape(-1) # (H*W,) # Compute outer products out_x = torch.einsum("m,d->md", pos_x, omega) # (H*W, D/4) out_y = torch.einsum("m,d->md", pos_y, omega) # (H*W, D/4) # Apply sin and cos emb_x = torch.cat([torch.sin(out_x), torch.cos(out_x)], dim=1) # (H*W, D/2) emb_y = torch.cat([torch.sin(out_y), torch.cos(out_y)], dim=1) # (H*W, D/2) # Combine x and y embeddings emb = torch.cat([emb_x, emb_y], dim=-1) # (H*W, D) return emb.float().view(H, W, embed_dim) # [H, W, D] # Inspired by https://github.com/microsoft/moge def create_uv_grid( width: int, height: int, aspect_ratio: float = None, dtype: torch.dtype = None, device: torch.device = None ) -> torch.Tensor: """ Create a normalized UV grid of shape (width, height, 2). The grid spans horizontally and vertically according to an aspect ratio, ensuring the top-left corner is at (-x_span, -y_span) and the bottom-right corner is at (x_span, y_span), normalized by the diagonal of the plane. Args: width (int): Number of points horizontally. height (int): Number of points vertically. aspect_ratio (float, optional): Width-to-height ratio. Defaults to width/height. dtype (torch.dtype, optional): Data type of the resulting tensor. device (torch.device, optional): Device on which the tensor is created. Returns: torch.Tensor: A (width, height, 2) tensor of UV coordinates. """ # Derive aspect ratio if not explicitly provided if aspect_ratio is None: aspect_ratio = float(width) / float(height) # Compute normalized spans for X and Y diag_factor = (aspect_ratio**2 + 1.0) ** 0.5 span_x = aspect_ratio / diag_factor span_y = 1.0 / diag_factor # Establish the linspace boundaries left_x = -span_x * (width - 1) / width right_x = span_x * (width - 1) / width top_y = -span_y * (height - 1) / height bottom_y = span_y * (height - 1) / height # Generate 1D coordinates x_coords = torch.linspace(left_x, right_x, steps=width, dtype=dtype, device=device) y_coords = torch.linspace(top_y, bottom_y, steps=height, dtype=dtype, device=device) # Create 2D meshgrid (width x height) and stack into UV uu, vv = torch.meshgrid(x_coords, y_coords, indexing="xy") uv_grid = torch.stack((uu, vv), dim=-1) return uv_grid