Spaces:
Runtime error
Runtime error
| # Copyright 2024 Stability AI, Katherine Crowson and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from dataclasses import dataclass | |
| from typing import Optional, Tuple, Union | |
| import numpy as np | |
| import torch | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from diffusers.utils import BaseOutput, logging | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from diffusers.schedulers.scheduling_utils import SchedulerMixin | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| class FlowMatchHeunDiscreteSchedulerOutput(BaseOutput): | |
| """ | |
| Output class for the scheduler's `step` function output. | |
| Args: | |
| prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): | |
| Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the | |
| denoising loop. | |
| """ | |
| prev_sample: torch.FloatTensor | |
| class FlowMatchHeunDiscreteScheduler(SchedulerMixin, ConfigMixin): | |
| """ | |
| Heun scheduler. | |
| This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic | |
| methods the library implements for all schedulers such as loading and saving. | |
| Args: | |
| num_train_timesteps (`int`, defaults to 1000): | |
| The number of diffusion steps to train the model. | |
| timestep_spacing (`str`, defaults to `"linspace"`): | |
| The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and | |
| Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information. | |
| shift (`float`, defaults to 1.0): | |
| The shift value for the timestep schedule. | |
| """ | |
| _compatibles = [] | |
| order = 2 | |
| def __init__( | |
| self, | |
| num_train_timesteps: int = 1000, | |
| shift: float = 1.0, | |
| ): | |
| timesteps = np.linspace(1, num_train_timesteps, num_train_timesteps, dtype=np.float32)[::-1].copy() | |
| timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32) | |
| sigmas = timesteps / num_train_timesteps | |
| sigmas = shift * sigmas / (1 + (shift - 1) * sigmas) | |
| self.timesteps = sigmas * num_train_timesteps | |
| self._step_index = None | |
| self._begin_index = None | |
| self.sigmas = sigmas.to("cpu") # to avoid too much CPU/GPU communication | |
| self.sigma_min = self.sigmas[-1].item() | |
| self.sigma_max = self.sigmas[0].item() | |
| def step_index(self): | |
| """ | |
| The index counter for current timestep. It will increase 1 after each scheduler step. | |
| """ | |
| return self._step_index | |
| def begin_index(self): | |
| """ | |
| The index for the first timestep. It should be set from pipeline with `set_begin_index` method. | |
| """ | |
| return self._begin_index | |
| # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index | |
| def set_begin_index(self, begin_index: int = 0): | |
| """ | |
| Sets the begin index for the scheduler. This function should be run from pipeline before the inference. | |
| Args: | |
| begin_index (`int`): | |
| The begin index for the scheduler. | |
| """ | |
| self._begin_index = begin_index | |
| def scale_noise( | |
| self, | |
| sample: torch.FloatTensor, | |
| timestep: Union[float, torch.FloatTensor], | |
| noise: Optional[torch.FloatTensor] = None, | |
| ) -> torch.FloatTensor: | |
| """ | |
| Forward process in flow-matching | |
| Args: | |
| sample (`torch.FloatTensor`): | |
| The input sample. | |
| timestep (`int`, *optional*): | |
| The current timestep in the diffusion chain. | |
| Returns: | |
| `torch.FloatTensor`: | |
| A scaled input sample. | |
| """ | |
| if self.step_index is None: | |
| self._init_step_index(timestep) | |
| sigma = self.sigmas[self.step_index] | |
| sample = sigma * noise + (1.0 - sigma) * sample | |
| return sample | |
| def _sigma_to_t(self, sigma): | |
| return sigma * self.config.num_train_timesteps | |
| def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): | |
| """ | |
| Sets the discrete timesteps used for the diffusion chain (to be run before inference). | |
| Args: | |
| num_inference_steps (`int`): | |
| The number of diffusion steps used when generating samples with a pre-trained model. | |
| device (`str` or `torch.device`, *optional*): | |
| The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
| """ | |
| self.num_inference_steps = num_inference_steps | |
| timesteps = np.linspace( | |
| self._sigma_to_t(self.sigma_max), self._sigma_to_t(self.sigma_min), num_inference_steps | |
| ) | |
| sigmas = timesteps / self.config.num_train_timesteps | |
| sigmas = self.config.shift * sigmas / (1 + (self.config.shift - 1) * sigmas) | |
| sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device) | |
| timesteps = sigmas * self.config.num_train_timesteps | |
| timesteps = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2)]) | |
| self.timesteps = timesteps.to(device=device) | |
| sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)]) | |
| self.sigmas = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2), sigmas[-1:]]) | |
| # empty dt and derivative | |
| self.prev_derivative = None | |
| self.dt = None | |
| self._step_index = None | |
| self._begin_index = None | |
| def index_for_timestep(self, timestep, schedule_timesteps=None): | |
| if schedule_timesteps is None: | |
| schedule_timesteps = self.timesteps | |
| indices = (schedule_timesteps == timestep).nonzero() | |
| # The sigma index that is taken for the **very** first `step` | |
| # is always the second index (or the last index if there is only 1) | |
| # This way we can ensure we don't accidentally skip a sigma in | |
| # case we start in the middle of the denoising schedule (e.g. for image-to-image) | |
| pos = 1 if len(indices) > 1 else 0 | |
| return indices[pos].item() | |
| def _init_step_index(self, timestep): | |
| if self.begin_index is None: | |
| if isinstance(timestep, torch.Tensor): | |
| timestep = timestep.to(self.timesteps.device) | |
| self._step_index = self.index_for_timestep(timestep) | |
| else: | |
| self._step_index = self._begin_index | |
| def state_in_first_order(self): | |
| return self.dt is None | |
| def step( | |
| self, | |
| model_output: torch.FloatTensor, | |
| timestep: Union[float, torch.FloatTensor], | |
| sample: torch.FloatTensor, | |
| s_churn: float = 0.0, | |
| s_tmin: float = 0.0, | |
| s_tmax: float = float("inf"), | |
| s_noise: float = 1.0, | |
| generator: Optional[torch.Generator] = None, | |
| return_dict: bool = True, | |
| omega: Union[float, np.array] = 0.0 | |
| ) -> Union[FlowMatchHeunDiscreteSchedulerOutput, Tuple]: | |
| """ | |
| Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion | |
| process from the learned model outputs (most often the predicted noise). | |
| Args: | |
| model_output (`torch.FloatTensor`): | |
| The direct output from learned diffusion model. | |
| timestep (`float`): | |
| The current discrete timestep in the diffusion chain. | |
| sample (`torch.FloatTensor`): | |
| A current instance of a sample created by the diffusion process. | |
| s_churn (`float`): | |
| s_tmin (`float`): | |
| s_tmax (`float`): | |
| s_noise (`float`, defaults to 1.0): | |
| Scaling factor for noise added to the sample. | |
| generator (`torch.Generator`, *optional*): | |
| A random number generator. | |
| return_dict (`bool`): | |
| Whether or not to return a [`~schedulers.scheduling_Heun_discrete.HeunDiscreteSchedulerOutput`] or | |
| tuple. | |
| Returns: | |
| [`~schedulers.scheduling_Heun_discrete.HeunDiscreteSchedulerOutput`] or `tuple`: | |
| If return_dict is `True`, [`~schedulers.scheduling_Heun_discrete.HeunDiscreteSchedulerOutput`] is | |
| returned, otherwise a tuple is returned where the first element is the sample tensor. | |
| """ | |
| def logistic_function(x, L=0.9, U=1.1, x_0=0.0, k=1): | |
| # L = Lower bound | |
| # U = Upper bound | |
| # x_0 = Midpoint (x corresponding to y = 1.0) | |
| # k = Steepness, can adjust based on preference | |
| if isinstance(x, torch.Tensor): | |
| device_ = x.device | |
| x = x.to(torch.float).cpu().numpy() | |
| new_x = L + (U - L) / (1 + np.exp(-k * (x - x_0))) | |
| if isinstance(new_x, np.ndarray): | |
| new_x = torch.from_numpy(new_x).to(device_) | |
| return new_x | |
| self.omega_bef_rescale = omega | |
| omega = logistic_function(omega, k=0.1) | |
| self.omega_aft_rescale = omega | |
| if ( | |
| isinstance(timestep, int) | |
| or isinstance(timestep, torch.IntTensor) | |
| or isinstance(timestep, torch.LongTensor) | |
| ): | |
| raise ValueError( | |
| ( | |
| "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" | |
| " `HeunDiscreteScheduler.step()` is not supported. Make sure to pass" | |
| " one of the `scheduler.timesteps` as a timestep." | |
| ), | |
| ) | |
| if self.step_index is None: | |
| self._init_step_index(timestep) | |
| # Upcast to avoid precision issues when computing prev_sample | |
| sample = sample.to(torch.float32) | |
| if self.state_in_first_order: | |
| sigma = self.sigmas[self.step_index] | |
| sigma_next = self.sigmas[self.step_index + 1] | |
| else: | |
| # 2nd order / Heun's method | |
| sigma = self.sigmas[self.step_index - 1] | |
| sigma_next = self.sigmas[self.step_index] | |
| gamma = min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0 | |
| sigma_hat = sigma * (gamma + 1) | |
| if gamma > 0: | |
| noise = randn_tensor( | |
| model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator | |
| ) | |
| eps = noise * s_noise | |
| sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5 | |
| if self.state_in_first_order: | |
| # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise | |
| denoised = sample - model_output * sigma | |
| # 2. convert to an ODE derivative for 1st order | |
| derivative = (sample - denoised) / sigma_hat | |
| # 3. Delta timestep | |
| dt = sigma_next - sigma_hat | |
| # store for 2nd order step | |
| self.prev_derivative = derivative | |
| self.dt = dt | |
| self.sample = sample | |
| else: | |
| # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise | |
| denoised = sample - model_output * sigma_next | |
| # 2. 2nd order / Heun's method | |
| derivative = (sample - denoised) / sigma_next | |
| derivative = 0.5 * (self.prev_derivative + derivative) | |
| # 3. take prev timestep & sample | |
| dt = self.dt | |
| sample = self.sample | |
| # free dt and derivative | |
| # Note, this puts the scheduler in "first order mode" | |
| self.prev_derivative = None | |
| self.dt = None | |
| self.sample = None | |
| # original sample way | |
| # prev_sample = sample + derivative * dt | |
| dx = derivative * dt | |
| m = dx.mean() | |
| dx_ = (dx - m) * omega + m | |
| prev_sample = sample + dx_ | |
| # Cast sample back to model compatible dtype | |
| prev_sample = prev_sample.to(model_output.dtype) | |
| # upon completion increase step index by one | |
| self._step_index += 1 | |
| if not return_dict: | |
| return (prev_sample,) | |
| return FlowMatchHeunDiscreteSchedulerOutput(prev_sample=prev_sample) | |
| def __len__(self): | |
| return self.config.num_train_timesteps | |