Spaces:
Runtime error
Runtime error
| import torch | |
| import gradio as gr | |
| from transformers import pipeline | |
| from typing import Dict | |
| def food_not_food_classifier(text: str) -> Dict[str, float]: | |
| # Create the classifier pipeline | |
| food_not_food_classifier_pipeline = pipeline( | |
| task="text-classification", | |
| model="joadithya/learn_hf_food_not_food_text_classifier-distilbert-base-uncased", | |
| batch_size=32, | |
| device="cuda" if torch.cuda.is_available() else "cpu", | |
| top_k=None # Returning all possible labels for a given input | |
| ) | |
| # Get the outputs from the pipeline | |
| outputs = food_not_food_classifier_pipeline(text)[0] | |
| # Format output for Gradio | |
| output_dict = {} | |
| for item in outputs: | |
| output_dict[item["label"]] = item["score"] | |
| return output_dict | |
| description = """ | |
| A text classifier model to determine whether a caption is about food or not food. | |
| Fine-tuned from [DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased) on a [small dataset of food and not food captions](https://huggingface.co/datasets/mrdbourke/learn_hf_food_not_food_image_captions) | |
| """ | |
| demo = gr.Interface( | |
| fn=food_not_food_classifier, | |
| inputs="text", | |
| outputs=gr.Label(num_top_classes=2), | |
| title="Food Caption Classifier", | |
| description=description, | |
| examples=[["Nothing beats the taste of home"], | |
| ["Love served on a plate"], | |
| ["A toast with cherry on top"]] | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |