Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -9,6 +9,64 @@ import json
|
|
| 9 |
import random
|
| 10 |
import re
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
app = Flask(__name__)
|
| 14 |
|
|
|
|
| 9 |
import random
|
| 10 |
import re
|
| 11 |
|
| 12 |
+
import numpy as np
|
| 13 |
+
import emoji, json
|
| 14 |
+
from torchmoji.global_variables import PRETRAINED_PATH, VOCAB_PATH
|
| 15 |
+
from torchmoji.sentence_tokenizer import SentenceTokenizer
|
| 16 |
+
from torchmoji.model_def import torchmoji_emojis
|
| 17 |
+
import torch
|
| 18 |
+
|
| 19 |
+
# Emoji map in emoji_overview.png
|
| 20 |
+
EMOJIS = ":joy: :unamused: :weary: :sob: :heart_eyes: \
|
| 21 |
+
:pensive: :ok_hand: :blush: :heart: :smirk: \
|
| 22 |
+
:grin: :notes: :flushed: :100: :sleeping: \
|
| 23 |
+
:relieved: :relaxed: :raised_hands: :two_hearts: :expressionless: \
|
| 24 |
+
:sweat_smile: :pray: :confused: :kissing_heart: :heartbeat: \
|
| 25 |
+
:neutral_face: :information_desk_person: :disappointed: :see_no_evil: :tired_face: \
|
| 26 |
+
:v: :sunglasses: :rage: :thumbsup: :cry: \
|
| 27 |
+
:sleepy: :yum: :triumph: :hand: :mask: \
|
| 28 |
+
:clap: :eyes: :gun: :persevere: :smiling_imp: \
|
| 29 |
+
:sweat: :broken_heart: :yellow_heart: :musical_note: :speak_no_evil: \
|
| 30 |
+
:wink: :skull: :confounded: :smile: :stuck_out_tongue_winking_eye: \
|
| 31 |
+
:angry: :no_good: :muscle: :facepunch: :purple_heart: \
|
| 32 |
+
:sparkling_heart: :blue_heart: :grimacing: :sparkles:".split(' ')
|
| 33 |
+
|
| 34 |
+
def top_elements(array, k):
|
| 35 |
+
ind = np.argpartition(array, -k)[-k:]
|
| 36 |
+
return ind[np.argsort(array[ind])][::-1]
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
with open("vocabulary.json", 'r') as f:
|
| 40 |
+
vocabulary = json.load(f)
|
| 41 |
+
|
| 42 |
+
st = SentenceTokenizer(vocabulary, 100)
|
| 43 |
+
|
| 44 |
+
emojimodel = torchmoji_emojis("pytorch_model.bin")
|
| 45 |
+
|
| 46 |
+
if USE_GPU:
|
| 47 |
+
emojimodel.to("cuda:0")
|
| 48 |
+
|
| 49 |
+
def deepmojify(sentence, top_n=5, prob_only=False):
|
| 50 |
+
list_emojis = []
|
| 51 |
+
def top_elements(array, k):
|
| 52 |
+
ind = np.argpartition(array, -k)[-k:]
|
| 53 |
+
return ind[np.argsort(array[ind])][::-1]
|
| 54 |
+
|
| 55 |
+
tokenized, _, _ = st.tokenize_sentences([sentence])
|
| 56 |
+
tokenized = np.array(tokenized).astype(int) # convert to float first
|
| 57 |
+
if USE_GPU:
|
| 58 |
+
tokenized = torch.tensor(tokenized).cuda() # then convert to PyTorch tensor
|
| 59 |
+
|
| 60 |
+
prob = emojimodel.forward(tokenized)[0]
|
| 61 |
+
if not USE_GPU:
|
| 62 |
+
prob = torch.tensor(prob)
|
| 63 |
+
if prob_only:
|
| 64 |
+
return prob
|
| 65 |
+
emoji_ids = top_elements(prob.cpu().numpy(), top_n)
|
| 66 |
+
emojis = map(lambda x: EMOJIS[x], emoji_ids)
|
| 67 |
+
list_emojis.append(emoji.emojize(f"{' '.join(emojis)}", language='alias'))
|
| 68 |
+
# returning the emojis as a list named as list_emojis
|
| 69 |
+
return list_emojis, prob
|
| 70 |
|
| 71 |
app = Flask(__name__)
|
| 72 |
|