Spaces:
Running
Running
Commit
·
5abd3c7
1
Parent(s):
5b4b496
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,143 +2,58 @@ from flask import Flask, request, jsonify
|
|
| 2 |
import asyncio
|
| 3 |
from hypercorn.asyncio import serve
|
| 4 |
from hypercorn.config import Config
|
| 5 |
-
import torch.nn.functional as F
|
| 6 |
-
from torch import nn
|
| 7 |
import os
|
| 8 |
os.environ['CURL_CA_BUNDLE'] = ''
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
from sentence_transformers import SentenceTransformer
|
| 14 |
-
sentencemodel = SentenceTransformer('johnpaulbin/toxic-gte-small-3')
|
| 15 |
-
|
| 16 |
-
USE_GPU = False
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
""" Use torchMoji to predict emojis from a single text input
|
| 20 |
-
"""
|
| 21 |
-
|
| 22 |
-
import numpy as np
|
| 23 |
-
import emoji, json
|
| 24 |
-
from torchmoji.global_variables import PRETRAINED_PATH, VOCAB_PATH
|
| 25 |
-
from torchmoji.sentence_tokenizer import SentenceTokenizer
|
| 26 |
-
from torchmoji.model_def import torchmoji_emojis
|
| 27 |
-
import torch
|
| 28 |
-
|
| 29 |
-
# Emoji map in emoji_overview.png
|
| 30 |
-
EMOJIS = ":joy: :unamused: :weary: :sob: :heart_eyes: \
|
| 31 |
-
:pensive: :ok_hand: :blush: :heart: :smirk: \
|
| 32 |
-
:grin: :notes: :flushed: :100: :sleeping: \
|
| 33 |
-
:relieved: :relaxed: :raised_hands: :two_hearts: :expressionless: \
|
| 34 |
-
:sweat_smile: :pray: :confused: :kissing_heart: :heartbeat: \
|
| 35 |
-
:neutral_face: :information_desk_person: :disappointed: :see_no_evil: :tired_face: \
|
| 36 |
-
:v: :sunglasses: :rage: :thumbsup: :cry: \
|
| 37 |
-
:sleepy: :yum: :triumph: :hand: :mask: \
|
| 38 |
-
:clap: :eyes: :gun: :persevere: :smiling_imp: \
|
| 39 |
-
:sweat: :broken_heart: :yellow_heart: :musical_note: :speak_no_evil: \
|
| 40 |
-
:wink: :skull: :confounded: :smile: :stuck_out_tongue_winking_eye: \
|
| 41 |
-
:angry: :no_good: :muscle: :facepunch: :purple_heart: \
|
| 42 |
-
:sparkling_heart: :blue_heart: :grimacing: :sparkles:".split(' ')
|
| 43 |
-
|
| 44 |
-
def top_elements(array, k):
|
| 45 |
-
ind = np.argpartition(array, -k)[-k:]
|
| 46 |
-
return ind[np.argsort(array[ind])][::-1]
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
with open("vocabulary.json", 'r') as f:
|
| 50 |
-
vocabulary = json.load(f)
|
| 51 |
-
|
| 52 |
-
st = SentenceTokenizer(vocabulary, 100)
|
| 53 |
|
| 54 |
-
|
| 55 |
|
| 56 |
-
if USE_GPU:
|
| 57 |
-
emojimodel.to("cuda:0")
|
| 58 |
|
| 59 |
-
def deepmojify(sentence, top_n=5, prob_only=False):
|
| 60 |
-
list_emojis = []
|
| 61 |
-
def top_elements(array, k):
|
| 62 |
-
ind = np.argpartition(array, -k)[-k:]
|
| 63 |
-
return ind[np.argsort(array[ind])][::-1]
|
| 64 |
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
tokenized = torch.tensor(tokenized).cuda() # then convert to PyTorch tensor
|
| 69 |
|
| 70 |
-
prob = emojimodel.forward(tokenized)[0]
|
| 71 |
-
if not USE_GPU:
|
| 72 |
-
prob = torch.tensor(prob)
|
| 73 |
-
if prob_only:
|
| 74 |
-
return prob
|
| 75 |
-
emoji_ids = top_elements(prob.cpu().numpy(), top_n)
|
| 76 |
-
emojis = map(lambda x: EMOJIS[x], emoji_ids)
|
| 77 |
-
list_emojis.append(emoji.emojize(f"{' '.join(emojis)}", language='alias'))
|
| 78 |
-
# returning the emojis as a list named as list_emojis
|
| 79 |
-
return list_emojis, prob
|
| 80 |
|
|
|
|
| 81 |
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
nn.BatchNorm1d(300), # Batch normalization
|
| 86 |
-
|
| 87 |
-
nn.Linear(300, 300), # Increase the number of neurons
|
| 88 |
-
nn.ReLU(),
|
| 89 |
-
nn.BatchNorm1d(300), # Batch normalization
|
| 90 |
-
|
| 91 |
-
nn.Linear(300, 200), # Increase the number of neurons
|
| 92 |
-
nn.ReLU(),
|
| 93 |
-
nn.BatchNorm1d(200), # Batch normalization
|
| 94 |
-
|
| 95 |
-
nn.Linear(200, 125), # Increase the number of neurons
|
| 96 |
-
nn.ReLU(),
|
| 97 |
-
nn.BatchNorm1d(125), # Batch normalization
|
| 98 |
-
|
| 99 |
-
nn.Linear(125, 2),
|
| 100 |
-
nn.Dropout(0.05) # Dropout
|
| 101 |
-
)
|
| 102 |
-
|
| 103 |
-
model.load_state_dict(torch.load("large.pth", map_location=torch.device('cpu')))
|
| 104 |
-
model.eval()
|
| 105 |
-
|
| 106 |
-
@app.route('/infer', methods=['POST'])
|
| 107 |
-
def translate():
|
| 108 |
-
data = request.get_json()
|
| 109 |
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
else:
|
| 119 |
-
output = "false"
|
| 120 |
|
| 121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
def translateverbose():
|
| 126 |
data = request.get_json()
|
| 127 |
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
INPUT = torch.cat((probs, embedding))
|
| 132 |
-
output = F.softmax(model(INPUT.view(1, -1)), dim=1)
|
| 133 |
|
| 134 |
-
if
|
| 135 |
-
|
|
|
|
| 136 |
else:
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
return output
|
| 140 |
|
| 141 |
-
# Define more routes for other operations like download_model, etc.
|
| 142 |
if __name__ == "__main__":
|
| 143 |
config = Config()
|
| 144 |
config.bind = ["0.0.0.0:7860"] # You can specify the host and port here
|
|
|
|
| 2 |
import asyncio
|
| 3 |
from hypercorn.asyncio import serve
|
| 4 |
from hypercorn.config import Config
|
|
|
|
|
|
|
| 5 |
import os
|
| 6 |
os.environ['CURL_CA_BUNDLE'] = ''
|
| 7 |
|
| 8 |
+
def install_package():
|
| 9 |
+
command = "pip install git+https://github.com/johnpaulbin/googletranslate flask"
|
| 10 |
+
os.system(command)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
install_package()
|
| 13 |
|
|
|
|
|
|
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
from googletranslate import translate
|
| 17 |
+
import json
|
| 18 |
+
import random
|
|
|
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
+
app = Flask(__name__)
|
| 22 |
|
| 23 |
+
@app.route('/', methods=['GET'])
|
| 24 |
+
def home():
|
| 25 |
+
return "HI! Use /translate POST"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
+
# Load the JSON data into memory
|
| 28 |
+
def load_json_data(file_path):
|
| 29 |
+
with open(file_path, 'r') as file:
|
| 30 |
+
data = json.load(file)
|
| 31 |
+
return data
|
| 32 |
|
| 33 |
+
# Assuming your JSON structure is a list of dictionaries
|
| 34 |
+
json_data = load_json_data('englishspanishpairs.json')
|
|
|
|
|
|
|
| 35 |
|
| 36 |
+
@app.route('/spanish')
|
| 37 |
+
def random_spanish_pair():
|
| 38 |
+
# Select a random English-Spanish pair
|
| 39 |
+
random_pair = random.choice(json_data)
|
| 40 |
+
return jsonify(random_pair)
|
| 41 |
|
| 42 |
+
@app.route('/translate', methods=['POST'])
|
| 43 |
+
def dotranslate():
|
|
|
|
| 44 |
data = request.get_json()
|
| 45 |
|
| 46 |
+
txt = data.get('txt')
|
| 47 |
+
src = data.get('src', 'en')
|
| 48 |
+
dest = data.get('dest', 'es')
|
|
|
|
|
|
|
| 49 |
|
| 50 |
+
if txt:
|
| 51 |
+
translation = translate(txt, dest=dest, src=src)
|
| 52 |
+
return jsonify({'translation': translation}), 200
|
| 53 |
else:
|
| 54 |
+
return jsonify({'error': 'No text provided'}), 400
|
| 55 |
+
|
|
|
|
| 56 |
|
|
|
|
| 57 |
if __name__ == "__main__":
|
| 58 |
config = Config()
|
| 59 |
config.bind = ["0.0.0.0:7860"] # You can specify the host and port here
|