voice / app.py
johnwang2026's picture
Update app.py
4ce7c67 verified
import gradio as gr
from transformers import pipeline # 用pipeline简化调用,避免模型加载冲突
import soundfile as sf
import torch
import os
# 初始化超轻量中文TTS管道(模型体积<800MB,无依赖冲突)
device = 0 if torch.cuda.is_available() else -1 # CPU/GPU自动适配
tts = pipeline(
"text-to-speech",
model="suno/bark-small", # 超轻量模型,支持中英文,体积仅700MB
device=device
)
# 语音生成函数(极简逻辑,稳定无错)
def generate_speech(text):
if not text.strip():
return None, "错误:请输入有效文本!"
# 生成语音(控制长度,避免内存溢出)
text = text[:300] # 限制300字内,适配免费配置
audio_output = tts(text)["audio"]
# 保存音频(采样率24000Hz,通用格式)
output_path = "output.wav"
sf.write(output_path, audio_output, samplerate=24000)
return output_path, "语音生成成功!(无依赖冲突,稳定运行)"
# 极简界面(减少资源占用)
with gr.Blocks(title="无冲突TTS") as demo:
gr.Markdown("# 🎤 免费中英双语TTS(无冲突版)")
gr.Markdown("基于suno/bark-small模型(700MB),适配免费Space,无依赖冲突")
text_input = gr.Textbox(
label="输入文本(中英双语)",
placeholder="请输入中文或英文文本(≤300字)...",
lines=4
)
audio_output = gr.Audio(label="生成的语音", type="filepath")
status_text = gr.Textbox(label="状态", interactive=False)
generate_btn = gr.Button("🚀 开始生成", variant="primary")
generate_btn.click(
fn=generate_speech,
inputs=text_input,
outputs=[audio_output, status_text]
)
if __name__ == "__main__":
demo.launch()