File size: 1,617 Bytes
aa13416
8544385
 
aa13416
8544385
 
aa13416
 
 
 
 
8544385
 
 
 
 
aa13416
 
8544385
 
 
 
 
 
784c138
8544385
 
 
aa13416
8544385
aa13416
8544385
aa13416
8544385
aa13416
8544385
aa13416
 
 
 
 
 
 
 
 
784c138
8544385
 
 
 
 
 
 
 
 
 
aa13416
 
 
 
 
8544385
aa13416
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import gradio as gr
import os
import requests

CHAT_URL = os.getenv("CHAT_URL")
PROJECT_ID = os.getenv("PROJECT_ID")

def respond(
    message,
    history: list[dict[str, str]],
    system_message,
    token,
    # max_tokens,
    # temperature,
    # top_p,
    # hf_token: gr.OAuthToken,
):

    req = requests.post(
        CHAT_URL,
        json={
            "project_id": PROJECT_ID,
            "session_id":system_message,
            "user_input":message,
            # "output_variables": ["results", "category_list"]
        },
        headers={"Authorization" : f"Bearer {token}"}
    )

    print("[REQ CONTENT]", req.content)

    out = req.json()["data"]["results"]

    print("[OUT]",out)

    return out.encode('utf-8').decode('unicode_escape')


"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
chatbot = gr.ChatInterface(
    respond,
    type="messages",
    additional_inputs=[
        gr.Textbox(value="<<TEST_123>>", label="session_id"),
        gr.Textbox(value="[TOKEN]", label="token"),
        # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        # gr.Slider(
        #     minimum=0.1,
        #     maximum=1.0,
        #     value=0.95,
        #     step=0.05,
        #     label="Top-p (nucleus sampling)",
        # ),
    ],
)

with gr.Blocks() as demo:
    chatbot.render()
    title = gr.HTML("<h3>Use #ai to ask the ai</h3>")


if __name__ == "__main__":
    demo.launch()