File size: 2,722 Bytes
2fe4149
 
 
 
ea40bfb
 
 
 
 
 
 
 
 
 
 
 
 
 
20511e3
 
 
 
 
 
 
 
ea40bfb
 
 
 
 
 
 
 
 
20511e3
 
 
 
 
 
 
17370e6
 
20511e3
 
4510b89
 
 
20511e3
 
4510b89
20511e3
 
2fe4149
20511e3
 
 
 
 
 
 
 
2fe4149
20511e3
2fe4149
4510b89
 
 
 
2fe4149
 
4510b89
 
e24b691
4510b89
 
 
20511e3
 
 
4510b89
20511e3
2fe4149
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import gradio as gr
import pandas as pd
import json


def convert_inputs(user_input, var):
    if isinstance(var, str):
        var = [var]
        
    diff = len(var) - len(user_input) 

    if diff < 0:
        for _ in range(diff*-1):
            var.append(var[0])
        var += var[0:diff*-1] * (1+(len(var[0:diff*-1]) - diff))
    elif diff > 0:
        var = var[:-diff]

def process_inputs(user_input_json, session_id_json, project_id_json, chat_url, update_vars_json, output_vars_json):
    # Convert JSON strings into Python lists
    user_input = json.loads(user_input_json)
    session_id = json.loads(session_id_json)
    project_id = json.loads(project_id_json)
    update_vars = json.loads(update_vars_json)
    output_vars = json.loads(output_vars_json)

    if isinstance(session_id, str):
        session_id = [session_id]
    if isinstance(project_id, str):
        session_id = [project_id]
    if isinstance(chat_url, str):
        session_id = [session_id]

    

    # --- Your function logic here ---
    df = pd.DataFrame({
        "user_input": user_input,
        "session_id": session_id,
        "project_id": project_id,
        "chat_url": [chat_url] * len(user_input),
        "update_variables": update_vars,
        "output_variables": output_vars,
        "answer": [[] * len(x) if isinstance(x, list) else [] for x in user_input]
    })

    return df

def run_process(df):
    csv_path = "output.csv"
    df.to_csv(csv_path, index=False)
    return csv_path


with gr.Blocks() as demo:
    gr.Markdown("## 💬 JSON Input ➜ DataFrame ➜ CSV Export")

    user_input = gr.Code(label="user_input (list[str] or list[list[str]])", language="json", value='["Hello", ["Hi", "How are you?"]]')
    session_id = gr.Code(label="session_id (list[str])", language="json", value='["s1", "s2"]')
    project_id = gr.Code(label="project_id (list[str])", language="json", value='["p1", "p2"]')
    chat_url = gr.Textbox(label="chat_url", value="https://example.com/chat")
    update_vars = gr.Code(label="update_variables (list[str])", language="json", value='["update1", "update2"]')
    output_vars = gr.Code(label="output_variables (list[str])", language="json", value='["out1", "out2"]')

    run_btn = gr.Button("Run Function")

    df_output = gr.Dataframe(label="Output DataFrame", interactive=True)
    
    process_btn = gr.Button("Process")
    
    file_output = gr.File(label="Download CSV")

    process_btn.click(
        fn=run_process,
        inputs=df_output,
        outputs=file_output
    )

    run_btn.click(
        fn=process_inputs,
        inputs=[user_input, session_id, project_id, chat_url, update_vars, output_vars],
        outputs=df_output
    )

demo.launch()