evaluate-chain / app.py
jonathanjordan21's picture
Update app.py
c4cb75d verified
raw
history blame
4.57 kB
import gradio as gr
import pandas as pd
import json
import uuid
import requests
def convert_inputs(user_input, var):
if var == "__random__":
return [f"session_{uuid.uuid4()}" for _ in user_input]
if not isinstance(var, list):
var = [var]
var += var*(len(user_input)//len(var) + 1)
diff = len(var) - len(user_input)
var = var[:-diff]
return var
def process_inputs(user_input_json, session_id_json, project_id, chat_url, update_vars_json, output_vars_json, token):
# Convert JSON strings into Python lists
user_input = json.loads(user_input_json)
session_id = json.loads(session_id_json)
# project_id = json.loads(project_id_json)
update_vars = json.loads(update_vars_json)
output_vars = json.loads(output_vars_json)
session_id = convert_inputs(user_input,session_id)
# project_id = convert_inputs(user_input,project_id)
update_vars = convert_inputs(user_input,update_vars)
output_vars = convert_inputs(user_input,output_vars)
# --- Your function logic here ---
df = pd.DataFrame({
"user_input": user_input,
"session_id": session_id,
"project_id": project_id,
"chat_url": [chat_url] * len(user_input),
"update_variables": update_vars,
"output_variables": output_vars,
"answer": [[] * len(x) if isinstance(x, list) else [] for x in user_input]
})
return df
def run_chat(chat_url, project_id, session_id, user_input, update_variables, output_variables, token):
req = requests.post(
chat_url,
json={
"project_id": project_id,
"session_id": session_id,
"user_input": user_input,
"update_variables": update_variables,
"output_variables": output_variables
},
headers={"Authorization" : f"Bearer {token}"}
)
print("[REQ CONTENT]", req.content)
out = req.json()["data"]["results"]
print("[OUT]",out)
return out.encode('utf-8').decode('unicode_escape')
def run_process(df):
for index, row in df.iterrows():
if isinstance(row["user_input"], list):
answer = []
for user_input in row["user_input"]:
answer.append(
run_chat(
row["chat_url"],
row["project_id"],#: project_id,
row["session_id"],#: session_id,
user_input,#: user_input,
row["update_variables"],#: update_variables,
row["output_variables"],
row["token"]
)
)
else:
answer = run_chat(
row["chat_url"],
row["project_id"],#: project_id,
row["session_id"],#: session_id,
row["user_input"],#: user_input,
row["update_variables"],#: update_variables,
row["output_variables"],
row["token"]
)
df.loc[index, "answer"] = answer
csv_path = "output.csv"
df.to_csv(csv_path, index=False)
return csv_path
with gr.Blocks() as demo:
gr.Markdown("## πŸ’¬ JSON Input ➜ DataFrame ➜ CSV Export")
user_input = gr.Code(label="user_input (list[str] or list[list[str]])", language="json", value='["Hello", ["Hi", "How are you?"]]')
session_id = gr.Code(label="""session_id (list[str] or str or "__random__")""", language="json", value='"__random__"')
# project_id = gr.Code(label="project_id (list[str])", language="json", value='["p1", "p2"]')
project_id = gr.Textbox(label="Project ID", value="[project_id]")
chat_url = gr.Textbox(label="CHAT URL", value="https://example.com/chat")
token = gr.Textbox(label="TOKEN", value="[token]")
update_vars = gr.Code(label="update_variables (list[dict] or dict)", language="json", value='{}')
output_vars = gr.Code(label="output_variables (list[str] or str)", language="json", value='"results"')
run_btn = gr.Button("Run Function")
df_output = gr.Dataframe(label="Output DataFrame", interactive=True)
process_btn = gr.Button("Process")
file_output = gr.File(label="Download CSV")
process_btn.click(
fn=run_process,
inputs=df_output,
outputs=file_output
)
run_btn.click(
fn=process_inputs,
inputs=[user_input, session_id, project_id, chat_url, update_vars, output_vars, token],
outputs=df_output
)
demo.launch()