jonathanjordan21's picture
Update app.py
a6df1c4 verified
import gradio as gr
import torch
from torch import nn
import numpy as np
import pandas as pd
from utils import compute_features
from scipy.stats import nbinom
class NegBinomialModel(nn.Module):
def __init__(self, in_features):
super().__init__()
self.linear = nn.Linear(in_features, 1)
self.alpha = nn.Parameter(torch.tensor(0.5))
def forward(self, x):
# safer activation than exp()
mu = torch.exp(torch.clamp(self.linear(x), min=-5, max=5))
alpha = torch.clamp(self.alpha, min=1e-3, max=10)
return mu.squeeze(), alpha
model = NegBinomialModel(16)
model.load_state_dict(torch.load("model_weights.pt", map_location='cpu'))
model.eval()
# MU_BANKS = 2.6035915713614286
# STD_BANKS = 3.0158890435512125
def predict_score(lat, lon):
# Convert input to tensor
# inputs = torch.tensor([[lat, lon]], dtype=torch.float32)
inputs = compute_features((lat,lon))
print("[INPUTS]", inputs)
num_banks = inputs.pop("num_banks_in_radius", 0)
inputs = torch.tensor([lat,lon] + list(inputs.values()), dtype=torch.float32)
# Get model output
with torch.no_grad():
mu_pred, alpha = model(inputs)
# Unpack into respective values
mu_pred = mu_pred.numpy().flatten()
# r = 1/alpha
# p = r / (r + mu_pred)
# # Compute pmf and mode
# k_mode = int((r - 1) * (1 - p) / p) # mode of NB
# p_k = nbinom.pmf(num_banks, r, p)
# p_mode = nbinom.pmf(k_mode, r, p)
# # Score normalized 0–100
# score = (p_k / p_mode) * 100
# score = np.clip(score, 0, 100)
# diff = (num_banks - mu_pred) / (mu_pred + 1e-6)
# # score = (1 - np.tanh(diff))
# print("[TANH]", np.tanh(diff))
diff = mu_pred - num_banks
score = 100 / (1 + np.exp(-alpha * diff))
score = np.abs(1 + np.tanh(diff)) / 2 * 100
# score = (1 * np.abs(mu_pred + 0.1)) * 100
# You can apply any post-processing here
return (
round(float(score), 3),
num_banks,
round(float(mu_pred), 3),
# round(float(log_score),3)
# "Normal Score": round(float(normal_score), 3),
)
# ======== Gradio Interface ========
interface = gr.Interface(
fn=predict_score,
inputs=[
gr.Number(label="Latitude"),
gr.Number(label="Longitude"),
],
outputs=[
gr.Number(label="Score (0 - 100)"),
gr.Number(label="Number of Current Banks"),
gr.Number(label="Number of Ideal Banks"),
# gr.Number(label="Log Score Probability"),
],
title="Bank Location Scoring Model",
description="Enter latitude and longitude to get the predicted score, number of banks, and normalized score.",
)
interface.launch()