Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
# ======== Example Dummy Model ========
|
| 6 |
+
# Replace this with your own model loading
|
| 7 |
+
class DummyModel(torch.nn.Module):
|
| 8 |
+
def __init__(self):
|
| 9 |
+
super().__init__()
|
| 10 |
+
self.linear = torch.nn.Linear(2, 3) # 2 inputs (lat, lon) → 3 outputs
|
| 11 |
+
|
| 12 |
+
def forward(self, x):
|
| 13 |
+
return self.linear(x)
|
| 14 |
+
|
| 15 |
+
# load your trained model (replace with torch.load if you have .pt file)
|
| 16 |
+
model = DummyModel()
|
| 17 |
+
model.eval()
|
| 18 |
+
|
| 19 |
+
# ======== Prediction Function ========
|
| 20 |
+
def predict_score(lat, lon):
|
| 21 |
+
# Convert input to tensor
|
| 22 |
+
inputs = torch.tensor([[lat, lon]], dtype=torch.float32)
|
| 23 |
+
|
| 24 |
+
# Get model output
|
| 25 |
+
with torch.no_grad():
|
| 26 |
+
outputs = model(inputs).numpy().flatten()
|
| 27 |
+
|
| 28 |
+
# Unpack into respective values
|
| 29 |
+
score, num_banks, normal_score = outputs
|
| 30 |
+
|
| 31 |
+
# You can apply any post-processing here
|
| 32 |
+
return {
|
| 33 |
+
"Score": round(float(score), 3),
|
| 34 |
+
"Num Banks": round(float(num_banks), 3),
|
| 35 |
+
"Normal Score": round(float(normal_score), 3),
|
| 36 |
+
}
|
| 37 |
+
|
| 38 |
+
# ======== Gradio Interface ========
|
| 39 |
+
interface = gr.Interface(
|
| 40 |
+
fn=predict_score,
|
| 41 |
+
inputs=[
|
| 42 |
+
gr.Number(label="Latitude"),
|
| 43 |
+
gr.Number(label="Longitude"),
|
| 44 |
+
],
|
| 45 |
+
outputs=[
|
| 46 |
+
gr.Number(label="Score"),
|
| 47 |
+
gr.Number(label="Num Banks"),
|
| 48 |
+
gr.Number(label="Normal Score"),
|
| 49 |
+
],
|
| 50 |
+
title="Bank Location Scoring Model",
|
| 51 |
+
description="Enter latitude and longitude to get the predicted score, number of banks, and normalized score.",
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
interface.launch()
|