jonathanjordan21 commited on
Commit
aea93fc
·
verified ·
1 Parent(s): 0f96a0a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -7,8 +7,6 @@ import pandas as pd
7
 
8
  from utils import compute_features
9
 
10
- dataset = pd.read_csv("cleaned_df_noindex.csv")
11
- df_amenities = pd.read_csv("df_amenities.csv")
12
 
13
  class NegBinomialModel(nn.Module):
14
  def __init__(self, in_features):
@@ -32,14 +30,16 @@ def negbinom_loss(y, mu, alpha):
32
  )
33
  return -torch.mean(log_prob)
34
 
35
- model = NegBinomialModel(len(dataset.columns)-2)
36
  model.load_state_dict(torch.load("model_weights.pt"))
37
  model.eval()
38
 
39
- # ======== Prediction Function ========
40
  def predict_score(lat, lon):
41
  # Convert input to tensor
42
- inputs = torch.tensor([[lat, lon]], dtype=torch.float32)
 
 
 
43
 
44
  # Get model output
45
  with torch.no_grad():
 
7
 
8
  from utils import compute_features
9
 
 
 
10
 
11
  class NegBinomialModel(nn.Module):
12
  def __init__(self, in_features):
 
30
  )
31
  return -torch.mean(log_prob)
32
 
33
+ model = NegBinomialModel(17)
34
  model.load_state_dict(torch.load("model_weights.pt"))
35
  model.eval()
36
 
 
37
  def predict_score(lat, lon):
38
  # Convert input to tensor
39
+ # inputs = torch.tensor([[lat, lon]], dtype=torch.float32)
40
+ inputs = compute_features((lat,lon))
41
+
42
+ inputs = torch.tensor([lat,lon] + list(inputs.values))
43
 
44
  # Get model output
45
  with torch.no_grad():