Spaces:
Sleeping
Sleeping
| """Enhanced LangGraph + Agno Hybrid Agent System""" | |
| import os | |
| import time | |
| import random | |
| from dotenv import load_dotenv | |
| from typing import List, Dict, Any, TypedDict, Annotated | |
| import operator | |
| # LangGraph imports | |
| from langgraph.graph import START, StateGraph, MessagesState | |
| from langgraph.prebuilt import tools_condition, ToolNode | |
| from langgraph.checkpoint.memory import MemorySaver | |
| # LangChain imports | |
| from langchain_core.messages import SystemMessage, HumanMessage, AIMessage | |
| from langchain_core.tools import tool | |
| from langchain_groq import ChatGroq | |
| from langchain_google_genai import ChatGoogleGenerativeAI | |
| from langchain_nvidia_ai_endpoints import ChatNVIDIA, NVIDIAEmbeddings | |
| from langchain_community.tools.tavily_search import TavilySearchResults | |
| from langchain_community.document_loaders import WikipediaLoader, ArxivLoader, JSONLoader | |
| from langchain_community.vectorstores import FAISS | |
| from langchain.tools.retriever import create_retriever_tool | |
| from langchain_text_splitters import RecursiveCharacterTextSplitter | |
| # Agno imports | |
| from agno.agent import Agent | |
| from agno.models.groq import Groq | |
| from agno.models.google import Gemini | |
| from agno.tools.tavily import TavilyTools | |
| from agno.memory.agent import AgentMemory | |
| from agno.storage.sqlite import SqliteStorage | |
| from agno.memory.v2.db.sqlite import SqliteMemoryDb # Correct import for memory DB | |
| load_dotenv() | |
| # Rate limiter with exponential backoff | |
| class PerformanceRateLimiter: | |
| def __init__(self, rpm: int, name: str): | |
| self.rpm = rpm | |
| self.name = name | |
| self.times: List[float] = [] | |
| self.failures = 0 | |
| def wait_if_needed(self): | |
| now = time.time() | |
| self.times = [t for t in self.times if now - t < 60] | |
| if len(self.times) >= self.rpm: | |
| wait = 60 - (now - self.times[0]) + random.uniform(1, 3) | |
| time.sleep(wait) | |
| if self.failures: | |
| backoff = min(2 ** self.failures, 30) + random.uniform(0.5, 1.5) | |
| time.sleep(backoff) | |
| self.times.append(now) | |
| def record_success(self): | |
| self.failures = 0 | |
| def record_failure(self): | |
| self.failures += 1 | |
| # Initialize rate limiters | |
| gemini_limiter = PerformanceRateLimiter(28, "Gemini") | |
| groq_limiter = PerformanceRateLimiter(28, "Groq") | |
| nvidia_limiter = PerformanceRateLimiter(4, "NVIDIA") | |
| # Create Agno agents with corrected SQLite storage and memory | |
| def create_agno_agents(): | |
| # 1. Storage for the agent's overall state (conversations, etc.) | |
| storage = SqliteStorage( | |
| table_name="agent_sessions", | |
| db_file="tmp/agent_sessions.db", | |
| auto_upgrade_schema=True | |
| ) | |
| # 2. A separate database for the agent's memory | |
| memory_db = SqliteMemoryDb(db_file="tmp/agent_memory.db") | |
| # 3. The AgentMemory object, which uses the memory_db | |
| agent_memory = AgentMemory( | |
| db=memory_db, # Pass the SqliteMemoryDb here | |
| create_user_memories=True, | |
| create_session_summary=True | |
| ) | |
| math_agent = Agent( | |
| name="MathSpecialist", | |
| model=Groq( | |
| model="llama-3.3-70b-versatile", | |
| api_key=os.getenv("GROQ_API_KEY"), | |
| temperature=0 | |
| ), | |
| description="Expert mathematical problem solver", | |
| instructions=[ | |
| "Solve math problems with precision", | |
| "Show step-by-step calculations", | |
| "Finish with: FINAL ANSWER: [result]" | |
| ], | |
| storage=storage, # Use SqliteStorage for the agent's persistence | |
| memory=agent_memory, # Use the configured AgentMemory | |
| show_tool_calls=False, | |
| markdown=False | |
| ) | |
| research_agent = Agent( | |
| name="ResearchSpecialist", | |
| model=Gemini( | |
| model="gemini-2.0-flash-lite", | |
| api_key=os.getenv("GOOGLE_API_KEY"), | |
| temperature=0 | |
| ), | |
| description="Expert research and information gathering specialist", | |
| instructions=[ | |
| "Conduct thorough research using available tools", | |
| "Synthesize information from multiple sources", | |
| "Finish with: FINAL ANSWER: [answer]" | |
| ], | |
| tools=[ | |
| TavilyTools( | |
| api_key=os.getenv("TAVILY_API_KEY"), | |
| search=True, | |
| max_tokens=6000, | |
| search_depth="advanced", | |
| format="markdown" | |
| ) | |
| ], | |
| storage=storage, # Use the same storage for persistence | |
| memory=agent_memory, # Use the same memory configuration | |
| show_tool_calls=False, | |
| markdown=False | |
| ) | |
| return {"math": math_agent, "research": research_agent} | |
| # LangGraph tools | |
| def multiply(a: int, b: int) -> int: | |
| """Multiply two numbers.""" | |
| return a * b | |
| def add(a: int, b: int) -> int: | |
| """Add two numbers.""" | |
| return a + b | |
| def subtract(a: int, b: int) -> int: | |
| """Subtract two numbers.""" | |
| return a - b | |
| def divide(a: int, b: int) -> float: | |
| """Divide two numbers.""" | |
| if b == 0: | |
| raise ValueError("Cannot divide by zero.") | |
| return a / b | |
| def modulus(a: int, b: int) -> int: | |
| """Return the remainder of a divided by b.""" | |
| return a % b | |
| def optimized_web_search(query: str) -> str: | |
| """Optimized Tavily web search.""" | |
| try: | |
| time.sleep(random.uniform(1, 2)) | |
| docs = TavilySearchResults(max_results=2).invoke(query=query) | |
| return "\n\n---\n\n".join( | |
| f"<Doc url='{d.get('url','')}'>{d.get('content','')[:500]}</Doc>" | |
| for d in docs | |
| ) | |
| except Exception as e: | |
| return f"Web search failed: {e}" | |
| def optimized_wiki_search(query: str) -> str: | |
| """Optimized Wikipedia search.""" | |
| try: | |
| time.sleep(random.uniform(0.5, 1)) | |
| docs = WikipediaLoader(query=query, load_max_docs=1).load() | |
| return "\n\n---\n\n".join( | |
| f"<Doc src='{d.metadata['source']}'>{d.page_content[:800]}</Doc>" | |
| for d in docs | |
| ) | |
| except Exception as e: | |
| return f"Wikipedia search failed: {e}" | |
| # FAISS setup | |
| def setup_faiss(): | |
| try: | |
| schema = """ | |
| { page_content: .Question, metadata: { task_id: .task_id, Final_answer: ."Final answer" } } | |
| """ | |
| loader = JSONLoader(file_path="metadata.jsonl", jq_schema=schema, json_lines=True, text_content=False) | |
| docs = loader.load() | |
| splitter = RecursiveCharacterTextSplitter(chunk_size=256, chunk_overlap=50) | |
| chunks = splitter.split_documents(docs) | |
| embeds = NVIDIAEmbeddings( | |
| model="nvidia/nv-embedqa-e5-v5", | |
| api_key=os.getenv("NVIDIA_API_KEY") | |
| ) | |
| return FAISS.from_documents(chunks, embeds) | |
| except Exception as e: | |
| print(f"FAISS setup failed: {e}") | |
| return None | |
| class EnhancedAgentState(TypedDict): | |
| messages: Annotated[List[HumanMessage|AIMessage], operator.add] | |
| query: str | |
| agent_type: str | |
| final_answer: str | |
| perf: Dict[str,Any] | |
| agno_resp: str | |
| class HybridLangGraphAgnoSystem: | |
| def __init__(self): | |
| self.agno = create_agno_agents() | |
| self.store = setup_faiss() | |
| self.tools = [ | |
| multiply, add, subtract, divide, modulus, | |
| optimized_web_search, optimized_wiki_search | |
| ] | |
| if self.store: | |
| retr = self.store.as_retriever(search_type="similarity", search_kwargs={"k":2}) | |
| self.tools.append(create_retriever_tool( | |
| retriever=retr, | |
| name="Question_Search", | |
| description="Retrieve similar questions" | |
| )) | |
| self.graph = self._build_graph() | |
| def _build_graph(self): | |
| groq_llm = ChatGroq(model="llama-3.3-70b-versatile", temperature=0) | |
| gemini_llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash-lite", temperature=0) | |
| nvidia_llm = ChatNVIDIA(model="meta/llama-3.1-70b-instruct", temperature=0) | |
| def router(st: EnhancedAgentState) -> EnhancedAgentState: | |
| q = st["query"].lower() | |
| if any(k in q for k in ["calculate","math"]): t="lg_math" | |
| elif any(k in q for k in ["research","analyze"]): t="agno_research" | |
| elif any(k in q for k in ["what is","who is"]): t="lg_retrieval" | |
| else: t="agno_general" | |
| return {**st, "agent_type": t} | |
| def lg_math(st: EnhancedAgentState) -> EnhancedAgentState: | |
| groq_limiter.wait_if_needed() | |
| t0=time.time() | |
| llm=groq_llm.bind_tools([multiply,add,subtract,divide,modulus]) | |
| sys=SystemMessage(content="Fast calculator. FINAL ANSWER: [result]") | |
| res=llm.invoke([sys,HumanMessage(content=st["query"])]) | |
| return {**st, "final_answer":res.content, "perf":{"time":time.time()-t0,"prov":"LG-Groq"}} | |
| def agno_research(st: EnhancedAgentState) -> EnhancedAgentState: | |
| gemini_limiter.wait_if_needed() | |
| t0=time.time() | |
| resp=self.agno["research"].run(st["query"],stream=False) | |
| return {**st, "final_answer":resp, "perf":{"time":time.time()-t0,"prov":"Agno-Gemini"}} | |
| def lg_retrieval(st: EnhancedAgentState) -> EnhancedAgentState: | |
| groq_limiter.wait_if_needed() | |
| t0=time.time() | |
| llm=groq_llm.bind_tools(self.tools) | |
| sys=SystemMessage(content="Retrieve. FINAL ANSWER: [answer]") | |
| res=llm.invoke([sys,HumanMessage(content=st["query"])]) | |
| return {**st, "final_answer":res.content, "perf":{"time":time.time()-t0,"prov":"LG-Retrieval"}} | |
| def agno_general(st: EnhancedAgentState) -> EnhancedAgentState: | |
| nvidia_limiter.wait_if_needed() | |
| t0=time.time() | |
| if any(k in st["query"].lower() for k in ["calculate","compute"]): | |
| resp=self.agno["math"].run(st["query"],stream=False) | |
| else: | |
| resp=self.agno["research"].run(st["query"],stream=False) | |
| return {**st, "final_answer":resp, "perf":{"time":time.time()-t0,"prov":"Agno-General"}} | |
| def pick(st: EnhancedAgentState) -> str: | |
| return st["agent_type"] | |
| g=StateGraph(EnhancedAgentState) | |
| g.add_node("router",router) | |
| g.add_node("lg_math",lg_math) | |
| g.add_node("agno_research",agno_research) | |
| g.add_node("lg_retrieval",lg_retrieval) | |
| g.add_node("agno_general",agno_general) | |
| g.set_entry_point("router") | |
| g.add_conditional_edges("router",pick,{ | |
| "lg_math":"lg_math","agno_research":"agno_research", | |
| "lg_retrieval":"lg_retrieval","agno_general":"agno_general" | |
| }) | |
| for n in ["lg_math","agno_research","lg_retrieval","agno_general"]: | |
| g.add_edge(n,"END") | |
| return g.compile(checkpointer=MemorySaver()) | |
| def process_query(self, q: str) -> Dict[str,Any]: | |
| state={ | |
| "messages":[HumanMessage(content=q)], | |
| "query":q,"agent_type":"","final_answer":"", | |
| "perf":{},"agno_resp":"" | |
| } | |
| cfg={"configurable":{"thread_id":f"hyb_{hash(q)}"}} | |
| try: | |
| out=self.graph.invoke(state,cfg) | |
| return { | |
| "answer":out["final_answer"], | |
| "performance_metrics":out["perf"], | |
| "provider_used":out["perf"].get("prov") | |
| } | |
| except Exception as e: | |
| return {"answer":f"Error: {e}","performance_metrics":{},"provider_used":"Error"} | |
| def build_graph(provider: str = "hybrid"): | |
| """ | |
| Build and return the StateGraph for the requested provider. | |
| - "hybrid", "groq", "google", and "nvidia" are all valid and | |
| will return the full HybridLangGraphAgnoSystem graph. | |
| """ | |
| if provider in ("hybrid", "groq", "google", "nvidia"): | |
| return HybridLangGraphAgnoSystem().graph | |
| else: | |
| raise ValueError(f"Unsupported provider: '{provider}'. Please use 'hybrid', 'groq', 'google', or 'nvidia'.") | |
| # Test | |
| if __name__=="__main__": | |
| graph=build_graph() | |
| msgs=[HumanMessage(content="What are the names of the US presidents who were assassinated?")] | |
| res=graph.invoke({"messages":msgs},{"configurable":{"thread_id":"test"}}) | |
| for m in res["messages"]: | |
| m.pretty_print() | |