Spaces:
Sleeping
Sleeping
| """ Enhanced LangGraph Agent Evaluation Runner - Final Version""" | |
| import os | |
| import gradio as gr | |
| import requests | |
| import pandas as pd | |
| from langchain_core.messages import HumanMessage | |
| from veryfinal import build_graph | |
| # --- Constants --- | |
| DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
| # --- Enhanced Agent Definition --- | |
| class EnhancedLangGraphAgent: | |
| """Enhanced LangGraph agent with proper response handling.""" | |
| def __init__(self): | |
| print("Enhanced LangGraph Agent initialized.") | |
| try: | |
| self.graph = build_graph(provider="groq") | |
| print("LangGraph built successfully.") | |
| except Exception as e: | |
| print(f"Error building graph: {e}") | |
| self.graph = None | |
| def __call__(self, question: str) -> str: | |
| print(f"Processing: {question[:100]}...") | |
| if self.graph is None: | |
| return "Error: Agent not properly initialized" | |
| try: | |
| # Create messages and config | |
| messages = [HumanMessage(content=question)] | |
| config = {"configurable": {"thread_id": f"eval_{hash(question)}"}} | |
| # Invoke the graph | |
| result = self.graph.invoke({"messages": messages}, config) | |
| # Extract the final answer | |
| if result and "messages" in result and result["messages"]: | |
| final_message = result["messages"][-1] | |
| if hasattr(final_message, 'content'): | |
| answer = final_message.content | |
| else: | |
| answer = str(final_message) | |
| # Clean up the answer | |
| if "FINAL ANSWER:" in answer: | |
| answer = answer.split("FINAL ANSWER:")[-1].strip() | |
| # Validate the answer | |
| if not answer or answer == question or len(answer.strip()) == 0: | |
| return "Information not available" | |
| return answer.strip() | |
| else: | |
| return "Information not available" | |
| except Exception as e: | |
| print(f"Error processing question: {e}") | |
| return f"Error: {str(e)}" | |
| def run_and_submit_all(profile: gr.OAuthProfile | None): | |
| """Fetch questions, run agent, and submit answers.""" | |
| space_id = os.getenv("SPACE_ID") | |
| if profile: | |
| username = f"{profile.username}" | |
| print(f"User logged in: {username}") | |
| else: | |
| print("User not logged in.") | |
| return "Please Login to Hugging Face with the button.", None | |
| api_url = DEFAULT_API_URL | |
| questions_url = f"{api_url}/questions" | |
| submit_url = f"{api_url}/submit" | |
| # 1. Instantiate Agent | |
| try: | |
| agent = EnhancedLangGraphAgent() | |
| if agent.graph is None: | |
| return "Error: Failed to initialize agent properly", None | |
| except Exception as e: | |
| print(f"Error instantiating agent: {e}") | |
| return f"Error initializing agent: {e}", None | |
| agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "No space ID available" | |
| # 2. Fetch Questions | |
| print(f"Fetching questions from: {questions_url}") | |
| try: | |
| response = requests.get(questions_url, timeout=15) | |
| response.raise_for_status() | |
| questions_data = response.json() | |
| if not questions_data: | |
| return "Fetched questions list is empty or invalid format.", None | |
| print(f"Fetched {len(questions_data)} questions.") | |
| except Exception as e: | |
| return f"Error fetching questions: {e}", None | |
| # 3. Run Agent | |
| results_log = [] | |
| answers_payload = [] | |
| print(f"Running Enhanced LangGraph agent on {len(questions_data)} questions...") | |
| for i, item in enumerate(questions_data): | |
| task_id = item.get("task_id") | |
| question_text = item.get("question") | |
| if not task_id or question_text is None: | |
| continue | |
| print(f"Processing question {i+1}/{len(questions_data)}: {task_id}") | |
| try: | |
| submitted_answer = agent(question_text) | |
| answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
| results_log.append({ | |
| "Task ID": task_id, | |
| "Question": question_text[:100] + "..." if len(question_text) > 100 else question_text, | |
| "Submitted Answer": submitted_answer[:200] + "..." if len(submitted_answer) > 200 else submitted_answer | |
| }) | |
| except Exception as e: | |
| error_msg = f"AGENT ERROR: {e}" | |
| answers_payload.append({"task_id": task_id, "submitted_answer": error_msg}) | |
| results_log.append({ | |
| "Task ID": task_id, | |
| "Question": question_text[:100] + "..." if len(question_text) > 100 else question_text, | |
| "Submitted Answer": error_msg | |
| }) | |
| if not answers_payload: | |
| return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
| # 4. Submit | |
| submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
| print(f"Submitting {len(answers_payload)} answers...") | |
| try: | |
| response = requests.post(submit_url, json=submission_data, timeout=60) | |
| response.raise_for_status() | |
| result_data = response.json() | |
| final_status = ( | |
| f"Submission Successful!\n" | |
| f"User: {result_data.get('username')}\n" | |
| f"Overall Score: {result_data.get('score', 'N/A')}% " | |
| f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
| f"Message: {result_data.get('message', 'No message received.')}" | |
| ) | |
| return final_status, pd.DataFrame(results_log) | |
| except Exception as e: | |
| return f"Submission Failed: {e}", pd.DataFrame(results_log) | |
| # --- Gradio Interface --- | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Enhanced LangGraph Agent - Final Version") | |
| gr.Markdown( | |
| """ | |
| **Features:** | |
| - β Proper LangGraph structure with tool integration | |
| - β Multi-LLM support (Groq, Google, HuggingFace) | |
| - β Enhanced search capabilities (Wikipedia, Tavily, ArXiv) | |
| - β Mathematical tools for calculations | |
| - β Vector store integration for similar questions | |
| - β Proper response formatting and validation | |
| - β Error handling and fallback mechanisms | |
| **Tools Available:** | |
| - Mathematical operations (add, subtract, multiply, divide, modulus) | |
| - Wikipedia search for encyclopedic information | |
| - Web search via Tavily for current information | |
| - ArXiv search for academic papers | |
| - Vector similarity search for related questions | |
| """ | |
| ) | |
| gr.LoginButton() | |
| run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary") | |
| status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
| results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
| run_button.click( | |
| fn=run_and_submit_all, | |
| outputs=[status_output, results_table] | |
| ) | |
| if __name__ == "__main__": | |
| print("\n" + "-"*30 + " Enhanced LangGraph Agent Starting " + "-"*30) | |
| demo.launch(debug=True, share=False) | |