Spaces:
Sleeping
Sleeping
| """LangGraph Agent with FAISS Vector Store and Custom Tools""" | |
| import os, time, random | |
| from dotenv import load_dotenv | |
| from typing import List, Dict, Any, TypedDict, Annotated | |
| import operator | |
| # LangGraph imports | |
| from langgraph.graph import START, StateGraph, MessagesState | |
| from langgraph.prebuilt import tools_condition | |
| from langgraph.prebuilt import ToolNode | |
| from langgraph.checkpoint.memory import MemorySaver | |
| # LangChain imports | |
| from langchain_core.messages import SystemMessage, HumanMessage | |
| from langchain_core.tools import tool | |
| from langchain_groq import ChatGroq | |
| from langchain_google_genai import ChatGoogleGenerativeAI | |
| from langchain_nvidia_ai_endpoints import ChatNVIDIA | |
| from langchain_community.tools.tavily_search import TavilySearchResults | |
| from langchain_community.document_loaders import WikipediaLoader, ArxivLoader | |
| from langchain_community.vectorstores import FAISS | |
| from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings | |
| from langchain.tools.retriever import create_retriever_tool | |
| from langchain_text_splitters import RecursiveCharacterTextSplitter | |
| from langchain_community.document_loaders import JSONLoader | |
| load_dotenv() | |
| # Advanced Rate Limiter (SILENT) | |
| class AdvancedRateLimiter: | |
| def __init__(self, requests_per_minute: int): | |
| self.requests_per_minute = requests_per_minute | |
| self.request_times = [] | |
| def wait_if_needed(self): | |
| current_time = time.time() | |
| # Clean old requests (older than 1 minute) | |
| self.request_times = [t for t in self.request_times if current_time - t < 60] | |
| # Check if we need to wait | |
| if len(self.request_times) >= self.requests_per_minute: | |
| wait_time = 60 - (current_time - self.request_times[0]) + random.uniform(2, 8) | |
| time.sleep(wait_time) | |
| # Record this request | |
| self.request_times.append(current_time) | |
| # Initialize rate limiters | |
| groq_limiter = AdvancedRateLimiter(requests_per_minute=30) | |
| gemini_limiter = AdvancedRateLimiter(requests_per_minute=2) | |
| nvidia_limiter = AdvancedRateLimiter(requests_per_minute=5) | |
| # Custom Tools | |
| def multiply(a: int, b: int) -> int: | |
| """Multiply two numbers. | |
| Args: | |
| a: first int | |
| b: second int | |
| """ | |
| return a * b | |
| def add(a: int, b: int) -> int: | |
| """Add two numbers. | |
| Args: | |
| a: first int | |
| b: second int | |
| """ | |
| return a + b | |
| def subtract(a: int, b: int) -> int: | |
| """Subtract two numbers. | |
| Args: | |
| a: first int | |
| b: second int | |
| """ | |
| return a - b | |
| def divide(a: int, b: int) -> float: | |
| """Divide two numbers. | |
| Args: | |
| a: first int | |
| b: second int | |
| """ | |
| if b == 0: | |
| raise ValueError("Cannot divide by zero.") | |
| return a / b | |
| def modulus(a: int, b: int) -> int: | |
| """Get the modulus of two numbers. | |
| Args: | |
| a: first int | |
| b: second int | |
| """ | |
| return a % b | |
| def wiki_search(query: str) -> str: | |
| """Search Wikipedia for a query and return maximum 2 results. | |
| Args: | |
| query: The search query.""" | |
| try: | |
| time.sleep(random.uniform(1, 3)) | |
| search_docs = WikipediaLoader(query=query, load_max_docs=2).load() | |
| formatted_search_docs = "\n\n---\n\n".join( | |
| [ | |
| f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' | |
| for doc in search_docs | |
| ]) | |
| return formatted_search_docs | |
| except Exception as e: | |
| return f"Wikipedia search failed: {str(e)}" | |
| def web_search(query: str) -> str: | |
| """Search Tavily for a query and return maximum 3 results. | |
| Args: | |
| query: The search query.""" | |
| try: | |
| time.sleep(random.uniform(2, 5)) | |
| search_docs = TavilySearchResults(max_results=3).invoke(query=query) | |
| formatted_search_docs = "\n\n---\n\n".join( | |
| [ | |
| f'<Document source="{doc.get("url", "")}" />\n{doc.get("content", "")}\n</Document>' | |
| for doc in search_docs | |
| ]) | |
| return formatted_search_docs | |
| except Exception as e: | |
| return f"Web search failed: {str(e)}" | |
| def arvix_search(query: str) -> str: | |
| """Search Arxiv for a query and return maximum 3 result. | |
| Args: | |
| query: The search query.""" | |
| try: | |
| time.sleep(random.uniform(1, 4)) | |
| search_docs = ArxivLoader(query=query, load_max_docs=3).load() | |
| formatted_search_docs = "\n\n---\n\n".join( | |
| [ | |
| f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>' | |
| for doc in search_docs | |
| ]) | |
| return formatted_search_docs | |
| except Exception as e: | |
| return f"ArXiv search failed: {str(e)}" | |
| # Load and process JSONL data for FAISS vector store | |
| def setup_faiss_vector_store(): | |
| """Setup FAISS vector database from JSONL metadata""" | |
| try: | |
| jq_schema = """ | |
| { | |
| page_content: .Question, | |
| metadata: { | |
| task_id: .task_id, | |
| Level: .Level, | |
| Final_answer: ."Final answer", | |
| file_name: .file_name, | |
| Steps: .["Annotator Metadata"].Steps, | |
| Number_of_steps: .["Annotator Metadata"]["Number of steps"], | |
| How_long: .["Annotator Metadata"]["How long did this take?"], | |
| Tools: .["Annotator Metadata"].Tools, | |
| Number_of_tools: .["Annotator Metadata"]["Number of tools"] | |
| } | |
| } | |
| """ | |
| # Load documents | |
| json_loader = JSONLoader(file_path="metadata.jsonl", jq_schema=jq_schema, json_lines=True, text_content=False) | |
| json_docs = json_loader.load() | |
| # Split documents | |
| text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=200) | |
| json_chunks = text_splitter.split_documents(json_docs) | |
| # Create FAISS vector store | |
| embeddings = NVIDIAEmbeddings( | |
| model="nvidia/nv-embedqa-e5-v5", | |
| api_key=os.getenv("NVIDIA_API_KEY") | |
| ) | |
| vector_store = FAISS.from_documents(json_chunks, embeddings) | |
| return vector_store | |
| except Exception as e: | |
| print(f"FAISS vector store setup failed: {e}") | |
| return None | |
| # Load system prompt | |
| try: | |
| with open("system_prompt.txt", "r", encoding="utf-8") as f: | |
| system_prompt = f.read() | |
| except FileNotFoundError: | |
| system_prompt = """You are a helpful assistant tasked with answering questions using a set of tools. | |
| Now, I will ask you a question. Report your thoughts, and finish your answer with the following template: | |
| FINAL ANSWER: [YOUR FINAL ANSWER]. | |
| YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string. | |
| Your answer should only start with "FINAL ANSWER: ", then follows with the answer.""" | |
| # System message | |
| sys_msg = SystemMessage(content=system_prompt) | |
| # Setup FAISS vector store and retriever | |
| vector_store = setup_faiss_vector_store() | |
| if vector_store: | |
| retriever = vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 3}) | |
| retriever_tool = create_retriever_tool( | |
| retriever=retriever, | |
| name="Question_Search", | |
| description="A tool to retrieve similar questions from a vector store.", | |
| ) | |
| else: | |
| retriever_tool = None | |
| # All tools | |
| all_tools = [ | |
| multiply, | |
| add, | |
| subtract, | |
| divide, | |
| modulus, | |
| wiki_search, | |
| web_search, | |
| arvix_search, | |
| ] | |
| if retriever_tool: | |
| all_tools.append(retriever_tool) | |
| # Build graph function | |
| def build_graph(provider: str = "groq"): | |
| """Build the LangGraph with rate limiting""" | |
| # Initialize LLMs with best free models | |
| if provider == "google": | |
| llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash-thinking-exp", temperature=0) | |
| elif provider == "groq": | |
| llm = ChatGroq(model="llama-3.3-70b-versatile", temperature=0) | |
| elif provider == "nvidia": | |
| llm = ChatNVIDIA(model="meta/llama-3.1-70b-instruct", temperature=0) | |
| else: | |
| raise ValueError("Invalid provider. Choose 'google', 'groq' or 'nvidia'.") | |
| # Bind tools to LLM | |
| llm_with_tools = llm.bind_tools(all_tools) | |
| # Node functions | |
| def assistant(state: MessagesState): | |
| """Assistant node with rate limiting""" | |
| if provider == "groq": | |
| groq_limiter.wait_if_needed() | |
| elif provider == "google": | |
| gemini_limiter.wait_if_needed() | |
| elif provider == "nvidia": | |
| nvidia_limiter.wait_if_needed() | |
| return {"messages": [llm_with_tools.invoke(state["messages"])]} | |
| def retriever_node(state: MessagesState): | |
| """Retriever node""" | |
| if vector_store and len(state["messages"]) > 0: | |
| try: | |
| similar_questions = vector_store.similarity_search(state["messages"][-1].content, k=1) | |
| if similar_questions: | |
| example_msg = HumanMessage( | |
| content=f"Here I provide a similar question and answer for reference: \n\n{similar_questions[0].page_content}", | |
| ) | |
| return {"messages": [sys_msg] + state["messages"] + [example_msg]} | |
| except Exception as e: | |
| print(f"Retriever error: {e}") | |
| return {"messages": [sys_msg] + state["messages"]} | |
| # Build graph | |
| builder = StateGraph(MessagesState) | |
| builder.add_node("retriever", retriever_node) | |
| builder.add_node("assistant", assistant) | |
| builder.add_node("tools", ToolNode(all_tools)) | |
| builder.add_edge(START, "retriever") | |
| builder.add_edge("retriever", "assistant") | |
| builder.add_conditional_edges("assistant", tools_condition) | |
| builder.add_edge("tools", "assistant") | |
| # Compile graph with memory | |
| memory = MemorySaver() | |
| return builder.compile(checkpointer=memory) | |
| # Test | |
| if __name__ == "__main__": | |
| question = "What are the names of the US presidents who were assassinated?" | |
| # Build the graph | |
| graph = build_graph(provider="groq") | |
| # Run the graph | |
| messages = [HumanMessage(content=question)] | |
| config = {"configurable": {"thread_id": "test_thread"}} | |
| result = graph.invoke({"messages": messages}, config) | |
| for m in result["messages"]: | |
| m.pretty_print() | |