Spaces:
Sleeping
Sleeping
| import os | |
| import time | |
| import random | |
| from dotenv import load_dotenv | |
| from typing import List, Dict, Any, TypedDict, Annotated | |
| import operator | |
| from langchain_core.tools import tool | |
| from langchain_community.tools.tavily_search import TavilySearchResults | |
| from langchain_community.document_loaders import WikipediaLoader | |
| from langchain_community.vectorstores import Chroma | |
| from langchain.tools.retriever import create_retriever_tool | |
| from langchain_text_splitters import RecursiveCharacterTextSplitter | |
| from langchain_core.messages import SystemMessage, HumanMessage, AIMessage | |
| from langchain_community.embeddings import SentenceTransformerEmbeddings | |
| from langgraph.graph import StateGraph, START, END | |
| from langgraph.checkpoint.memory import MemorySaver | |
| # ---- Tool Definitions ---- | |
| def multiply(a: int, b: int) -> int: | |
| """Multiply two integers and return the product.""" | |
| return a * b | |
| def add(a: int, b: int) -> int: | |
| """Add two integers and return the sum.""" | |
| return a + b | |
| def subtract(a: int, b: int) -> int: | |
| """Subtract the second integer from the first and return the difference.""" | |
| return a - b | |
| def divide(a: int, b: int) -> float: | |
| """Divide the first integer by the second and return the quotient.""" | |
| if b == 0: | |
| raise ValueError("Cannot divide by zero.") | |
| return a / b | |
| def modulus(a: int, b: int) -> int: | |
| """Return the remainder of the division of the first integer by the second.""" | |
| return a % b | |
| def optimized_web_search(query: str) -> str: | |
| """Perform an optimized web search using TavilySearchResults and return concatenated document snippets.""" | |
| try: | |
| time.sleep(random.uniform(1, 2)) | |
| docs = TavilySearchResults(max_results=2).invoke(query=query) | |
| return "\n\n---\n\n".join( | |
| f"<Doc url='{d.get('url','')}'>{d.get('content','')[:500]}</Doc>" | |
| for d in docs | |
| ) | |
| except Exception as e: | |
| return f"Web search failed: {e}" | |
| def optimized_wiki_search(query: str) -> str: | |
| """Perform an optimized Wikipedia search and return concatenated document snippets.""" | |
| try: | |
| time.sleep(random.uniform(0.5, 1)) | |
| docs = WikipediaLoader(query=query, load_max_docs=1).load() | |
| return "\n\n---\n\n".join( | |
| f"<Doc src='{d.metadata['source']}'>{d.page_content[:800]}</Doc>" | |
| for d in docs | |
| ) | |
| except Exception as e: | |
| return f"Wikipedia search failed: {e}" | |
| # ---- LLM Integrations ---- | |
| load_dotenv() | |
| from langchain_groq import ChatGroq | |
| from langchain_nvidia_ai_endpoints import ChatNVIDIA | |
| from google import genai | |
| import requests | |
| def baidu_ernie_generate(prompt, api_key=None): | |
| url = "https://api.baidu.com/ernie/v1/generate" | |
| headers = {"Authorization": f"Bearer {api_key}"} | |
| data = {"model": "ernie-4.5", "prompt": prompt} | |
| try: | |
| resp = requests.post(url, headers=headers, json=data, timeout=30) | |
| return resp.json().get("result", "") | |
| except Exception as e: | |
| return f"ERNIE API error: {e}" | |
| def deepseek_generate(prompt, api_key=None): | |
| url = "https://api.deepseek.com/v1/chat/completions" | |
| headers = {"Authorization": f"Bearer {api_key}"} | |
| data = {"model": "deepseek-chat", "messages": [{"role": "user", "content": prompt}]} | |
| try: | |
| resp = requests.post(url, headers=headers, json=data, timeout=30) | |
| choices = resp.json().get("choices", [{}]) | |
| if choices and "message" in choices[0]: | |
| return choices[0]["message"].get("content", "") | |
| return "" | |
| except Exception as e: | |
| return f"DeepSeek API error: {e}" | |
| class EnhancedAgentState(TypedDict): | |
| messages: Annotated[List[HumanMessage|AIMessage], operator.add] | |
| query: str | |
| agent_type: str | |
| final_answer: str | |
| perf: Dict[str,Any] | |
| agno_resp: str | |
| class HybridLangGraphMultiLLMSystem: | |
| def __init__(self): | |
| self.tools = [ | |
| multiply, add, subtract, divide, modulus, | |
| optimized_web_search, optimized_wiki_search | |
| ] | |
| self.graph = self._build_graph() | |
| def _build_graph(self): | |
| groq_llm = ChatGroq(model="llama3-70b-8192", temperature=0, api_key=os.getenv("GROQ_API_KEY")) | |
| nvidia_llm = ChatNVIDIA(model="meta/llama3-70b-instruct", temperature=0, api_key=os.getenv("NVIDIA_API_KEY")) | |
| def router(st: EnhancedAgentState) -> EnhancedAgentState: | |
| q = st["query"].lower() | |
| if "groq" in q: t = "groq" | |
| elif "nvidia" in q: t = "nvidia" | |
| elif "gemini" in q or "google" in q: t = "gemini" | |
| elif "deepseek" in q: t = "deepseek" | |
| elif "ernie" in q or "baidu" in q: t = "baidu" | |
| else: t = "groq" # default | |
| return {**st, "agent_type": t} | |
| def groq_node(st: EnhancedAgentState) -> EnhancedAgentState: | |
| t0 = time.time() | |
| sys = SystemMessage(content="Answer as an expert.") | |
| res = groq_llm.invoke([sys, HumanMessage(content=st["query"])]) | |
| return {**st, "final_answer": res.content, "perf": {"time": time.time() - t0, "prov": "Groq"}} | |
| def nvidia_node(st: EnhancedAgentState) -> EnhancedAgentState: | |
| t0 = time.time() | |
| sys = SystemMessage(content="Answer as an expert.") | |
| res = nvidia_llm.invoke([sys, HumanMessage(content=st["query"])]) | |
| return {**st, "final_answer": res.content, "perf": {"time": time.time() - t0, "prov": "NVIDIA"}} | |
| def gemini_node(st: EnhancedAgentState) -> EnhancedAgentState: | |
| t0 = time.time() | |
| genai.configure(api_key=os.getenv("GEMINI_API_KEY")) | |
| model = genai.GenerativeModel("gemini-1.5-pro-latest") | |
| res = model.generate_content(st["query"]) | |
| return {**st, "final_answer": res.text, "perf": {"time": time.time() - t0, "prov": "Gemini"}} | |
| def deepseek_node(st: EnhancedAgentState) -> EnhancedAgentState: | |
| t0 = time.time() | |
| resp = deepseek_generate(st["query"], api_key=os.getenv("DEEPSEEK_API_KEY")) | |
| return {**st, "final_answer": resp, "perf": {"time": time.time() - t0, "prov": "DeepSeek"}} | |
| def baidu_node(st: EnhancedAgentState) -> EnhancedAgentState: | |
| t0 = time.time() | |
| resp = baidu_ernie_generate(st["query"], api_key=os.getenv("BAIDU_API_KEY")) | |
| return {**st, "final_answer": resp, "perf": {"time": time.time() - t0, "prov": "ERNIE"}} | |
| def pick(st: EnhancedAgentState) -> str: | |
| return st["agent_type"] | |
| g = StateGraph(EnhancedAgentState) | |
| g.add_node("router", router) | |
| g.add_node("groq", groq_node) | |
| g.add_node("nvidia", nvidia_node) | |
| g.add_node("gemini", gemini_node) | |
| g.add_node("deepseek", deepseek_node) | |
| g.add_node("baidu", baidu_node) | |
| g.set_entry_point("router") | |
| g.add_conditional_edges("router", pick, { | |
| "groq": "groq", | |
| "nvidia": "nvidia", | |
| "gemini": "gemini", | |
| "deepseek": "deepseek", | |
| "baidu": "baidu" | |
| }) | |
| for n in ["groq", "nvidia", "gemini", "deepseek", "baidu"]: | |
| g.add_edge(n, END) | |
| return g.compile(checkpointer=MemorySaver()) | |
| def process_query(self, q: str) -> str: | |
| state = { | |
| "messages": [HumanMessage(content=q)], | |
| "query": q, | |
| "agent_type": "", | |
| "final_answer": "", | |
| "perf": {}, | |
| "agno_resp": "" | |
| } | |
| cfg = {"configurable": {"thread_id": f"hyb_{hash(q)}"}} | |
| out = self.graph.invoke(state, cfg) | |
| raw_answer = out["final_answer"] | |
| parts = raw_answer.split('\n\n', 1) | |
| answer_part = parts[1].strip() if len(parts) > 1 else raw_answer.strip() | |
| return answer_part | |
| def build_graph(provider=None): | |
| return HybridLangGraphMultiLLMSystem().graph | |