Spaces:
Sleeping
Sleeping
| import os | |
| import gradio as gr | |
| from dotenv import load_dotenv | |
| from langgraph.graph import START, StateGraph, MessagesState | |
| from langgraph.prebuilt import tools_condition, ToolNode | |
| from langchain_google_genai import ChatGoogleGenerativeAI | |
| from langchain_groq import ChatGroq | |
| from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint | |
| from langchain_community.embeddings import HuggingFaceEmbeddings | |
| from langchain_community.tools.tavily_search import TavilySearchResults | |
| from langchain_community.document_loaders import WikipediaLoader, ArxivLoader | |
| from langchain_community.vectorstores import SupabaseVectorStore | |
| from langchain_core.messages import SystemMessage, HumanMessage | |
| from langchain_core.tools import tool | |
| from supabase import create_client, Client | |
| # Load environment variables | |
| load_dotenv() | |
| # Tool definitions remain unchanged | |
| def multiply(a: int, b: int) -> int: | |
| return a * b | |
| def add(a: int, b: int) -> int: | |
| return a + b | |
| def subtract(a: int, b: int) -> int: | |
| return a - b | |
| def divide(a: int, b: int) -> int: | |
| if b == 0: | |
| raise ValueError("Cannot divide by zero.") | |
| return a / b | |
| def modulus(a: int, b: int) -> int: | |
| return a % b | |
| def wiki_search(query: str) -> str: | |
| search_docs = WikipediaLoader(query=query, load_max_docs=2).load() | |
| formatted_search_docs = "\n\n---\n\n".join( | |
| [f'<Document source="{doc.metadata["source"]}"/>\n{doc.page_content}\n</Document>' | |
| for doc in search_docs]) | |
| return {"wiki_results": formatted_search_docs} | |
| def web_search(query: str) -> str: | |
| search_docs = TavilySearchResults(max_results=3).invoke(query) | |
| formatted_search_docs = "\n\n---\n\n".join( | |
| [f'<Document source="{doc.metadata["source"]}"/>\n{doc.page_content}\n</Document>' | |
| for doc in search_docs]) | |
| return {"web_results": formatted_search_docs} | |
| def arvix_search(query: str) -> str: | |
| search_docs = ArxivLoader(query=query, load_max_docs=3).load() | |
| formatted_search_docs = "\n\n---\n\n".join( | |
| [f'<Document source="{doc.metadata["source"]}"/>\n{doc.page_content[:1000]}\n</Document>' | |
| for doc in search_docs]) | |
| return {"arvix_results": formatted_search_docs} | |
| # System prompt definition | |
| SYSTEM_PROMPT = """You are a helpful assistant. For every question, reply with only the answer—no explanation, | |
| no units, and no extra words. If the answer is a number, just return the number. | |
| If it is a word or phrase, return only that. If it is a list, return a comma-separated list with no extra words. | |
| Do not include any prefix, suffix, or explanation.""" | |
| sys_msg = SystemMessage(content=SYSTEM_PROMPT) | |
| # Initialize vector store | |
| embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") | |
| supabase: Client = create_client( | |
| os.environ["SUPABASE_URL"], | |
| os.environ["SUPABASE_SERVICE_KEY"] | |
| ) | |
| vector_store = SupabaseVectorStore( | |
| client=supabase, | |
| embedding=embeddings, | |
| table_name="documents", | |
| ) | |
| tools = [multiply, add, subtract, divide, modulus, | |
| wiki_search, web_search, arvix_search] | |
| # Build graph function with multi-provider support | |
| def build_graph(provider: str = "groq"): | |
| # Provider selection | |
| if provider == "google": | |
| llm = ChatGoogleGenerativeAI( | |
| model="gemini-2.0-flash", | |
| temperature=0, | |
| api_key=os.getenv("GOOGLE_API_KEY") | |
| ) | |
| elif provider == "groq": | |
| llm = ChatGroq( | |
| model="llama3-70b-8192", | |
| temperature=0, | |
| api_key=os.getenv("GROQ_API_KEY") | |
| ) | |
| elif provider == "huggingface": | |
| llm = ChatHuggingFace( | |
| llm=HuggingFaceEndpoint( | |
| endpoint_url="https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.2", | |
| temperature=0, | |
| api_key=os.getenv("HF_API_KEY") | |
| ) | |
| ) | |
| else: | |
| raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.") | |
| llm_with_tools = llm.bind_tools(tools) | |
| # Graph nodes | |
| def retriever(state: MessagesState): | |
| similar_question = vector_store.similarity_search(state["messages"][-1].content, k=1) | |
| if similar_question: | |
| example_msg = HumanMessage(content=f"Similar reference: {similar_question[0].page_content[:200]}...") | |
| return {"messages": state["messages"] + [example_msg]} | |
| return {"messages": state["messages"]} | |
| def assistant(state: MessagesState): | |
| return {"messages": [llm_with_tools.invoke(state["messages"])]} | |
| # Build graph | |
| builder = StateGraph(MessagesState) | |
| builder.add_node("retriever", retriever) | |
| builder.add_node("assistant", assistant) | |
| builder.add_node("tools", ToolNode(tools)) | |
| builder.add_edge(START, "retriever") | |
| builder.add_edge("retriever", "assistant") | |
| builder.add_conditional_edges( | |
| "assistant", | |
| tools_condition, | |
| ) | |
| builder.add_edge("tools", "assistant") | |
| return builder.compile() | |
| # Gradio interface | |
| def run_agent(question, provider): | |
| try: | |
| graph = build_graph(provider) | |
| messages = [HumanMessage(content=question)] | |
| result = graph.invoke({"messages": messages}) | |
| final_answer = result["messages"][-1].content | |
| return final_answer | |
| except Exception as e: | |
| return f"Error: {str(e)}" | |
| # Create Gradio interface | |
| with gr.Blocks() as demo: | |
| gr.Markdown("## LangGraph Multi-Provider Agent") | |
| provider = gr.Dropdown( | |
| choices=["groq", "google", "huggingface"], | |
| value="groq", | |
| label="LLM Provider" | |
| ) | |
| question = gr.Textbox(label="Your Question") | |
| submit_btn = gr.Button("Run Agent") | |
| output = gr.Textbox(label="Agent Response", interactive=False) | |
| submit_btn.click( | |
| fn=run_agent, | |
| inputs=[question, provider], | |
| outputs=output | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |