Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
""" Enhanced Multi-LLM Agent Evaluation Runner
|
| 2 |
import os
|
| 3 |
import gradio as gr
|
| 4 |
import requests
|
|
@@ -11,56 +11,70 @@ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
| 11 |
|
| 12 |
# --- Enhanced Agent Definition ---
|
| 13 |
class EnhancedMultiLLMAgent:
|
| 14 |
-
"""A multi-provider LangGraph agent with
|
| 15 |
def __init__(self):
|
| 16 |
-
print("Enhanced Multi-LLM Agent
|
| 17 |
try:
|
| 18 |
self.graph = build_graph(provider="groq")
|
| 19 |
-
print("
|
| 20 |
except Exception as e:
|
| 21 |
print(f"Error building graph: {e}")
|
| 22 |
self.graph = None
|
| 23 |
|
| 24 |
def __call__(self, question: str) -> str:
|
| 25 |
-
print(f"Agent received question
|
| 26 |
|
| 27 |
if self.graph is None:
|
| 28 |
return "Error: Agent not properly initialized"
|
| 29 |
|
| 30 |
-
#
|
| 31 |
state = {
|
| 32 |
"messages": [HumanMessage(content=question)],
|
| 33 |
-
"query": question, #
|
| 34 |
"agent_type": "",
|
| 35 |
"final_answer": "",
|
| 36 |
"perf": {},
|
| 37 |
-
"agno_resp": ""
|
| 38 |
-
"tools_used": [],
|
| 39 |
-
"reasoning": "",
|
| 40 |
-
"confidence": ""
|
| 41 |
}
|
| 42 |
-
#
|
| 43 |
config = {"configurable": {"thread_id": f"eval_{hash(question)}"}}
|
| 44 |
|
| 45 |
try:
|
| 46 |
result = self.graph.invoke(state, config)
|
| 47 |
|
| 48 |
-
#
|
| 49 |
if isinstance(result, dict):
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
elif 'final_answer' in result:
|
| 53 |
answer = result['final_answer']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
else:
|
| 55 |
answer = str(result)
|
| 56 |
else:
|
| 57 |
answer = str(result)
|
| 58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
# Extract final answer if present
|
| 60 |
if "FINAL ANSWER:" in answer:
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
except Exception as e:
|
| 66 |
error_msg = f"Error: {str(e)}"
|
|
@@ -68,10 +82,7 @@ class EnhancedMultiLLMAgent:
|
|
| 68 |
return error_msg
|
| 69 |
|
| 70 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
| 71 |
-
"""
|
| 72 |
-
Fetches all questions, runs the Enhanced Multi-LLM Agent on them,
|
| 73 |
-
submits all answers, and displays the results.
|
| 74 |
-
"""
|
| 75 |
space_id = os.getenv("SPACE_ID")
|
| 76 |
|
| 77 |
if profile:
|
|
@@ -114,7 +125,7 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
| 114 |
# 3. Run your Agent
|
| 115 |
results_log = []
|
| 116 |
answers_payload = []
|
| 117 |
-
print(f"Running Enhanced Multi-LLM agent
|
| 118 |
|
| 119 |
for i, item in enumerate(questions_data):
|
| 120 |
task_id = item.get("task_id")
|
|
@@ -128,6 +139,11 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
| 128 |
|
| 129 |
try:
|
| 130 |
submitted_answer = agent(question_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 132 |
results_log.append({
|
| 133 |
"Task ID": task_id,
|
|
@@ -175,36 +191,26 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
| 175 |
results_df = pd.DataFrame(results_log)
|
| 176 |
return status_message, results_df
|
| 177 |
|
| 178 |
-
# --- Build Gradio Interface
|
| 179 |
with gr.Blocks() as demo:
|
| 180 |
-
gr.Markdown("# Enhanced Multi-LLM Agent
|
| 181 |
gr.Markdown(
|
| 182 |
"""
|
| 183 |
**Instructions:**
|
| 184 |
1. Log in to your Hugging Face account using the button below.
|
| 185 |
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
| 186 |
|
| 187 |
-
**
|
| 188 |
-
-
|
| 189 |
-
-
|
| 190 |
-
-
|
| 191 |
-
-
|
| 192 |
-
-
|
| 193 |
-
- **Error Handling**: Robust fallback mechanisms and comprehensive logging
|
| 194 |
-
|
| 195 |
-
**Routing Examples:**
|
| 196 |
-
- Standard: "What is the capital of France?" β Llama-3 8B
|
| 197 |
-
- Complex: "Analyze quantum computing principles" β Llama-3 70B
|
| 198 |
-
- Search: "Find information about Mercedes Sosa" β Search-Enhanced
|
| 199 |
-
- Agno: "agno llama-70: Systematic analysis of AI ethics" β Agno Llama-3 70B
|
| 200 |
-
- Provider-specific: "google: Explain machine learning" β Google Gemini
|
| 201 |
"""
|
| 202 |
)
|
| 203 |
|
| 204 |
gr.LoginButton()
|
| 205 |
-
|
| 206 |
run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
|
| 207 |
-
|
| 208 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
| 209 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
| 210 |
|
|
@@ -214,5 +220,5 @@ with gr.Blocks() as demo:
|
|
| 214 |
)
|
| 215 |
|
| 216 |
if __name__ == "__main__":
|
| 217 |
-
print("\n" + "-"*30 + " Enhanced Multi-LLM Agent
|
| 218 |
demo.launch(debug=True, share=False)
|
|
|
|
| 1 |
+
""" Enhanced Multi-LLM Agent Evaluation Runner - CORRECTED VERSION"""
|
| 2 |
import os
|
| 3 |
import gradio as gr
|
| 4 |
import requests
|
|
|
|
| 11 |
|
| 12 |
# --- Enhanced Agent Definition ---
|
| 13 |
class EnhancedMultiLLMAgent:
|
| 14 |
+
"""A multi-provider LangGraph agent with proper response handling."""
|
| 15 |
def __init__(self):
|
| 16 |
+
print("Enhanced Multi-LLM Agent initialized.")
|
| 17 |
try:
|
| 18 |
self.graph = build_graph(provider="groq")
|
| 19 |
+
print("Multi-LLM Graph built successfully.")
|
| 20 |
except Exception as e:
|
| 21 |
print(f"Error building graph: {e}")
|
| 22 |
self.graph = None
|
| 23 |
|
| 24 |
def __call__(self, question: str) -> str:
|
| 25 |
+
print(f"Agent received question: {question[:100]}...")
|
| 26 |
|
| 27 |
if self.graph is None:
|
| 28 |
return "Error: Agent not properly initialized"
|
| 29 |
|
| 30 |
+
# Create complete state structure
|
| 31 |
state = {
|
| 32 |
"messages": [HumanMessage(content=question)],
|
| 33 |
+
"query": question, # Critical: this must match the question
|
| 34 |
"agent_type": "",
|
| 35 |
"final_answer": "",
|
| 36 |
"perf": {},
|
| 37 |
+
"agno_resp": ""
|
|
|
|
|
|
|
|
|
|
| 38 |
}
|
| 39 |
+
# Always provide the required config with thread_id
|
| 40 |
config = {"configurable": {"thread_id": f"eval_{hash(question)}"}}
|
| 41 |
|
| 42 |
try:
|
| 43 |
result = self.graph.invoke(state, config)
|
| 44 |
|
| 45 |
+
# CORRECTED: Proper response extraction
|
| 46 |
if isinstance(result, dict):
|
| 47 |
+
# First try to get final_answer from the state
|
| 48 |
+
if 'final_answer' in result and result['final_answer']:
|
|
|
|
| 49 |
answer = result['final_answer']
|
| 50 |
+
# Fallback to messages if final_answer is empty
|
| 51 |
+
elif 'messages' in result and result['messages']:
|
| 52 |
+
last_message = result['messages'][-1]
|
| 53 |
+
if hasattr(last_message, 'content'):
|
| 54 |
+
answer = last_message.content
|
| 55 |
+
else:
|
| 56 |
+
answer = str(last_message)
|
| 57 |
else:
|
| 58 |
answer = str(result)
|
| 59 |
else:
|
| 60 |
answer = str(result)
|
| 61 |
|
| 62 |
+
# Clean the answer
|
| 63 |
+
answer = answer.strip()
|
| 64 |
+
|
| 65 |
+
# CRITICAL FIX: Ensure we don't return the question as answer
|
| 66 |
+
if answer == question or answer.startswith(question):
|
| 67 |
+
return "Information not available"
|
| 68 |
+
|
| 69 |
# Extract final answer if present
|
| 70 |
if "FINAL ANSWER:" in answer:
|
| 71 |
+
answer = answer.split("FINAL ANSWER:")[-1].strip()
|
| 72 |
+
|
| 73 |
+
# Additional validation
|
| 74 |
+
if not answer or len(answer.strip()) == 0:
|
| 75 |
+
return "No answer generated"
|
| 76 |
+
|
| 77 |
+
return answer
|
| 78 |
|
| 79 |
except Exception as e:
|
| 80 |
error_msg = f"Error: {str(e)}"
|
|
|
|
| 82 |
return error_msg
|
| 83 |
|
| 84 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
| 85 |
+
"""Fetch questions, run agent, and submit answers."""
|
|
|
|
|
|
|
|
|
|
| 86 |
space_id = os.getenv("SPACE_ID")
|
| 87 |
|
| 88 |
if profile:
|
|
|
|
| 125 |
# 3. Run your Agent
|
| 126 |
results_log = []
|
| 127 |
answers_payload = []
|
| 128 |
+
print(f"Running Enhanced Multi-LLM agent on {len(questions_data)} questions...")
|
| 129 |
|
| 130 |
for i, item in enumerate(questions_data):
|
| 131 |
task_id = item.get("task_id")
|
|
|
|
| 139 |
|
| 140 |
try:
|
| 141 |
submitted_answer = agent(question_text)
|
| 142 |
+
|
| 143 |
+
# Additional validation to prevent question repetition
|
| 144 |
+
if submitted_answer == question_text or submitted_answer.startswith(question_text):
|
| 145 |
+
submitted_answer = "Information not available"
|
| 146 |
+
|
| 147 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 148 |
results_log.append({
|
| 149 |
"Task ID": task_id,
|
|
|
|
| 191 |
results_df = pd.DataFrame(results_log)
|
| 192 |
return status_message, results_df
|
| 193 |
|
| 194 |
+
# --- Build Gradio Interface ---
|
| 195 |
with gr.Blocks() as demo:
|
| 196 |
+
gr.Markdown("# Enhanced Multi-LLM Agent - CORRECTED VERSION")
|
| 197 |
gr.Markdown(
|
| 198 |
"""
|
| 199 |
**Instructions:**
|
| 200 |
1. Log in to your Hugging Face account using the button below.
|
| 201 |
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
| 202 |
|
| 203 |
+
**FIXES APPLIED:**
|
| 204 |
+
- β
Proper response extraction from graph state
|
| 205 |
+
- β
Prevention of question repetition as answer
|
| 206 |
+
- β
Enhanced prompt engineering for better responses
|
| 207 |
+
- β
Improved error handling and validation
|
| 208 |
+
- β
Search-enhanced processing for information retrieval
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
"""
|
| 210 |
)
|
| 211 |
|
| 212 |
gr.LoginButton()
|
|
|
|
| 213 |
run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
|
|
|
|
| 214 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
| 215 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
| 216 |
|
|
|
|
| 220 |
)
|
| 221 |
|
| 222 |
if __name__ == "__main__":
|
| 223 |
+
print("\n" + "-"*30 + " Enhanced Multi-LLM Agent CORRECTED Starting " + "-"*30)
|
| 224 |
demo.launch(debug=True, share=False)
|