Spaces:
Sleeping
Sleeping
Update veryfinal.py
Browse files- veryfinal.py +314 -154
veryfinal.py
CHANGED
|
@@ -1,83 +1,133 @@
|
|
| 1 |
-
import os,
|
| 2 |
from dotenv import load_dotenv
|
| 3 |
-
from typing import
|
|
|
|
| 4 |
|
| 5 |
# Load environment variables
|
| 6 |
load_dotenv()
|
| 7 |
|
| 8 |
-
#
|
| 9 |
-
from
|
| 10 |
-
from
|
| 11 |
-
from
|
| 12 |
-
from agno.tools.yfinance import YFinanceTools
|
| 13 |
|
| 14 |
-
#
|
| 15 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
#
|
| 18 |
-
from
|
| 19 |
|
| 20 |
-
# Advanced Rate Limiter
|
| 21 |
class AdvancedRateLimiter:
|
| 22 |
-
def __init__(self, requests_per_minute: int
|
| 23 |
self.requests_per_minute = requests_per_minute
|
| 24 |
-
self.tokens_per_minute = tokens_per_minute
|
| 25 |
self.request_times = []
|
| 26 |
-
self.token_usage = []
|
| 27 |
-
self.consecutive_failures = 0
|
| 28 |
|
| 29 |
-
def wait_if_needed(self
|
| 30 |
current_time = time.time()
|
| 31 |
-
|
| 32 |
# Clean old requests (older than 1 minute)
|
| 33 |
self.request_times = [t for t in self.request_times if current_time - t < 60]
|
| 34 |
-
self.token_usage = [(t, tokens) for t, tokens in self.token_usage if current_time - t < 60]
|
| 35 |
|
| 36 |
-
#
|
| 37 |
if len(self.request_times) >= self.requests_per_minute:
|
| 38 |
wait_time = 60 - (current_time - self.request_times[0]) + random.uniform(2, 8)
|
| 39 |
-
time.sleep(wait_time)
|
| 40 |
|
| 41 |
# Record this request
|
| 42 |
self.request_times.append(current_time)
|
| 43 |
-
if self.tokens_per_minute:
|
| 44 |
-
self.token_usage.append((current_time, estimated_tokens))
|
| 45 |
-
|
| 46 |
-
def record_success(self):
|
| 47 |
-
self.consecutive_failures = 0
|
| 48 |
-
|
| 49 |
-
def record_failure(self):
|
| 50 |
-
self.consecutive_failures += 1
|
| 51 |
|
| 52 |
# Initialize rate limiters for free tiers
|
| 53 |
-
groq_limiter = AdvancedRateLimiter(requests_per_minute=30
|
| 54 |
-
gemini_limiter = AdvancedRateLimiter(requests_per_minute=2
|
|
|
|
| 55 |
tavily_limiter = AdvancedRateLimiter(requests_per_minute=50)
|
| 56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
# Initialize Tavily client
|
| 58 |
-
tavily_client = TavilyClient(os.getenv("TAVILY_API_KEY"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
-
# Custom
|
|
|
|
| 61 |
def multiply_tool(a: float, b: float) -> float:
|
| 62 |
-
"""Multiply two numbers
|
| 63 |
return a * b
|
| 64 |
|
|
|
|
| 65 |
def add_tool(a: float, b: float) -> float:
|
| 66 |
-
"""Add two numbers
|
| 67 |
return a + b
|
| 68 |
|
|
|
|
| 69 |
def subtract_tool(a: float, b: float) -> float:
|
| 70 |
-
"""Subtract two numbers
|
| 71 |
return a - b
|
| 72 |
|
|
|
|
| 73 |
def divide_tool(a: float, b: float) -> float:
|
| 74 |
-
"""Divide two numbers
|
| 75 |
if b == 0:
|
| 76 |
raise ValueError("Cannot divide by zero.")
|
| 77 |
return a / b
|
| 78 |
|
|
|
|
| 79 |
def tavily_search_tool(query: str) -> str:
|
| 80 |
-
"""Search using Tavily
|
| 81 |
try:
|
| 82 |
tavily_limiter.wait_if_needed()
|
| 83 |
response = tavily_client.search(
|
|
@@ -97,106 +147,231 @@ def tavily_search_tool(query: str) -> str:
|
|
| 97 |
except Exception as e:
|
| 98 |
return f"Tavily search failed: {str(e)}"
|
| 99 |
|
|
|
|
| 100 |
def wiki_search_tool(query: str) -> str:
|
| 101 |
-
"""Search Wikipedia
|
| 102 |
try:
|
| 103 |
-
time.sleep(random.uniform(1, 3))
|
|
|
|
| 104 |
loader = WikipediaLoader(query=query, load_max_docs=1)
|
| 105 |
data = loader.load()
|
| 106 |
return "\n\n---\n\n".join([doc.page_content[:1000] for doc in data])
|
| 107 |
except Exception as e:
|
| 108 |
return f"Wikipedia search failed: {str(e)}"
|
| 109 |
|
| 110 |
-
|
| 111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
try:
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
except Exception as e:
|
| 117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
api_key=os.getenv("GROQ_API_KEY"),
|
| 129 |
-
temperature=0
|
| 130 |
-
),
|
| 131 |
-
tools=[multiply_tool, add_tool, subtract_tool, divide_tool],
|
| 132 |
-
instructions=[
|
| 133 |
-
"You are a mathematical specialist with access to calculation tools.",
|
| 134 |
-
"Use the appropriate math tools for calculations.",
|
| 135 |
-
"Show your work step by step.",
|
| 136 |
-
"Always provide precise numerical answers.",
|
| 137 |
-
"Finish with: FINAL ANSWER: [numerical result]"
|
| 138 |
-
],
|
| 139 |
-
show_tool_calls=False, # SILENT
|
| 140 |
-
markdown=False
|
| 141 |
-
)
|
| 142 |
|
| 143 |
-
#
|
| 144 |
-
|
| 145 |
-
name="Research Specialist",
|
| 146 |
-
model=Gemini(
|
| 147 |
-
id="gemini-2.0-flash-thinking-exp",
|
| 148 |
-
api_key=os.getenv("GOOGLE_API_KEY"),
|
| 149 |
-
temperature=0
|
| 150 |
-
),
|
| 151 |
-
tools=[tavily_search_tool, wiki_search_tool, arxiv_search_tool], # All synchronous now
|
| 152 |
-
instructions=[
|
| 153 |
-
"You are a research specialist with access to multiple search tools.",
|
| 154 |
-
"Use Tavily search for current web information, Wikipedia for encyclopedic content, and ArXiv for academic papers.",
|
| 155 |
-
"Always cite sources and provide well-researched answers.",
|
| 156 |
-
"Synthesize information from multiple sources when possible.",
|
| 157 |
-
"Finish with: FINAL ANSWER: [your researched answer]"
|
| 158 |
-
],
|
| 159 |
-
show_tool_calls=False, # SILENT
|
| 160 |
-
markdown=False
|
| 161 |
-
)
|
| 162 |
|
| 163 |
-
#
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
model=Groq(
|
| 167 |
-
id="llama-3.3-70b-versatile",
|
| 168 |
-
api_key=os.getenv("GROQ_API_KEY"),
|
| 169 |
-
temperature=0
|
| 170 |
-
),
|
| 171 |
-
tools=[tavily_search_tool, wiki_search_tool], # All synchronous now
|
| 172 |
-
instructions=[
|
| 173 |
-
"You are the main coordinator agent.",
|
| 174 |
-
"Analyze queries and provide comprehensive responses.",
|
| 175 |
-
"Use Tavily search for current information and Wikipedia for background context.",
|
| 176 |
-
"Always finish with: FINAL ANSWER: [your final answer]"
|
| 177 |
-
],
|
| 178 |
-
show_tool_calls=False, # SILENT
|
| 179 |
-
markdown=False
|
| 180 |
-
)
|
| 181 |
|
| 182 |
-
|
| 183 |
-
"
|
| 184 |
-
"
|
| 185 |
-
|
| 186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
def __init__(self):
|
| 193 |
-
self.agents = create_agno_agents()
|
| 194 |
self.request_count = 0
|
| 195 |
self.last_request_time = time.time()
|
|
|
|
| 196 |
|
| 197 |
-
def
|
| 198 |
-
"""
|
|
|
|
| 199 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
# Global rate limiting (SILENT)
|
| 201 |
current_time = time.time()
|
| 202 |
if current_time - self.last_request_time > 3600:
|
|
@@ -207,47 +382,32 @@ class AgnoMultiAgentSystem:
|
|
| 207 |
|
| 208 |
# Add delay between requests (SILENT)
|
| 209 |
if self.request_count > 1:
|
| 210 |
-
time.sleep(random.uniform(3, 10))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
|
| 212 |
-
for
|
| 213 |
-
|
| 214 |
-
# Route to appropriate agent based on query type (SILENT)
|
| 215 |
-
if any(word in query.lower() for word in ['calculate', 'math', 'multiply', 'add', 'subtract', 'divide', 'compute']):
|
| 216 |
-
response = self.agents["math"].run(query, stream=False)
|
| 217 |
-
|
| 218 |
-
elif any(word in query.lower() for word in ['search', 'find', 'research', 'what is', 'who is', 'when', 'where']):
|
| 219 |
-
response = self.agents["research"].run(query, stream=False)
|
| 220 |
-
|
| 221 |
-
else:
|
| 222 |
-
response = self.agents["coordinator"].run(query, stream=False)
|
| 223 |
-
|
| 224 |
-
return response.content if hasattr(response, 'content') else str(response)
|
| 225 |
-
|
| 226 |
-
except Exception as e:
|
| 227 |
-
error_msg = str(e).lower()
|
| 228 |
-
|
| 229 |
-
if any(keyword in error_msg for keyword in ['rate limit', '429', 'quota', 'too many requests']):
|
| 230 |
-
wait_time = (2 ** attempt) + random.uniform(15, 45)
|
| 231 |
-
time.sleep(wait_time) # Changed from asyncio.sleep
|
| 232 |
-
continue
|
| 233 |
-
|
| 234 |
-
elif attempt == max_retries - 1:
|
| 235 |
-
try:
|
| 236 |
-
return self.agents["coordinator"].run(f"Answer this as best you can: {query}", stream=False)
|
| 237 |
-
except:
|
| 238 |
-
return f"Error: {str(e)}"
|
| 239 |
-
|
| 240 |
-
else:
|
| 241 |
-
wait_time = (2 ** attempt) + random.uniform(2, 8)
|
| 242 |
-
time.sleep(wait_time) # Changed from asyncio.sleep
|
| 243 |
|
| 244 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 245 |
|
| 246 |
-
#
|
| 247 |
def main(query: str) -> str:
|
| 248 |
-
"""Main function using
|
| 249 |
-
|
| 250 |
-
return
|
| 251 |
|
| 252 |
def get_final_answer(query: str) -> str:
|
| 253 |
"""Extract only the FINAL ANSWER from the response"""
|
|
@@ -260,6 +420,6 @@ def get_final_answer(query: str) -> str:
|
|
| 260 |
return full_response.strip()
|
| 261 |
|
| 262 |
if __name__ == "__main__":
|
| 263 |
-
# Test the
|
| 264 |
result = get_final_answer("What are the names of the US presidents who were assassinated?")
|
| 265 |
print(result)
|
|
|
|
| 1 |
+
import os, time, random
|
| 2 |
from dotenv import load_dotenv
|
| 3 |
+
from typing import List, Dict, Any, TypedDict, Annotated
|
| 4 |
+
import operator
|
| 5 |
|
| 6 |
# Load environment variables
|
| 7 |
load_dotenv()
|
| 8 |
|
| 9 |
+
# LangGraph imports
|
| 10 |
+
from langgraph.graph import StateGraph, END
|
| 11 |
+
from langgraph.prebuilt import create_react_agent
|
| 12 |
+
from langgraph.checkpoint.memory import MemorySaver
|
|
|
|
| 13 |
|
| 14 |
+
# LangChain imports
|
| 15 |
+
from langchain_core.messages import HumanMessage, AIMessage, SystemMessage
|
| 16 |
+
from langchain_core.tools import tool
|
| 17 |
+
from langchain_groq import ChatGroq
|
| 18 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 19 |
+
from langchain_nvidia_ai_endpoints import ChatNVIDIA
|
| 20 |
+
from langchain_core.rate_limiters import InMemoryRateLimiter
|
| 21 |
|
| 22 |
+
# Tavily import
|
| 23 |
+
from tavily import TavilyClient
|
| 24 |
|
| 25 |
+
# Advanced Rate Limiter (SILENT)
|
| 26 |
class AdvancedRateLimiter:
|
| 27 |
+
def __init__(self, requests_per_minute: int):
|
| 28 |
self.requests_per_minute = requests_per_minute
|
|
|
|
| 29 |
self.request_times = []
|
|
|
|
|
|
|
| 30 |
|
| 31 |
+
def wait_if_needed(self):
|
| 32 |
current_time = time.time()
|
|
|
|
| 33 |
# Clean old requests (older than 1 minute)
|
| 34 |
self.request_times = [t for t in self.request_times if current_time - t < 60]
|
|
|
|
| 35 |
|
| 36 |
+
# Check if we need to wait
|
| 37 |
if len(self.request_times) >= self.requests_per_minute:
|
| 38 |
wait_time = 60 - (current_time - self.request_times[0]) + random.uniform(2, 8)
|
| 39 |
+
time.sleep(wait_time)
|
| 40 |
|
| 41 |
# Record this request
|
| 42 |
self.request_times.append(current_time)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
# Initialize rate limiters for free tiers
|
| 45 |
+
groq_limiter = AdvancedRateLimiter(requests_per_minute=30)
|
| 46 |
+
gemini_limiter = AdvancedRateLimiter(requests_per_minute=2)
|
| 47 |
+
nvidia_limiter = AdvancedRateLimiter(requests_per_minute=5) # NVIDIA free tier
|
| 48 |
tavily_limiter = AdvancedRateLimiter(requests_per_minute=50)
|
| 49 |
|
| 50 |
+
# Initialize LangChain rate limiters for NVIDIA
|
| 51 |
+
nvidia_rate_limiter = InMemoryRateLimiter(
|
| 52 |
+
requests_per_second=0.083, # 5 requests per minute
|
| 53 |
+
check_every_n_seconds=0.1,
|
| 54 |
+
max_bucket_size=5
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
# Initialize LLMs with best free models
|
| 58 |
+
groq_llm = ChatGroq(
|
| 59 |
+
model="llama-3.3-70b-versatile",
|
| 60 |
+
api_key=os.getenv("GROQ_API_KEY"),
|
| 61 |
+
temperature=0
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
gemini_llm = ChatGoogleGenerativeAI(
|
| 65 |
+
model="gemini-2.0-flash-thinking-exp",
|
| 66 |
+
api_key=os.getenv("GOOGLE_API_KEY"),
|
| 67 |
+
temperature=0
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
# Best NVIDIA models based on search results
|
| 71 |
+
nvidia_general_llm = ChatNVIDIA(
|
| 72 |
+
model="meta/llama3-70b-instruct", # Best general model from NVIDIA
|
| 73 |
+
api_key=os.getenv("NVIDIA_API_KEY"),
|
| 74 |
+
temperature=0,
|
| 75 |
+
max_tokens=4000,
|
| 76 |
+
rate_limiter=nvidia_rate_limiter
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
nvidia_code_llm = ChatNVIDIA(
|
| 80 |
+
model="meta/codellama-70b", # Best code generation model from NVIDIA
|
| 81 |
+
api_key=os.getenv("NVIDIA_API_KEY"),
|
| 82 |
+
temperature=0,
|
| 83 |
+
max_tokens=4000,
|
| 84 |
+
rate_limiter=nvidia_rate_limiter
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
nvidia_math_llm = ChatNVIDIA(
|
| 88 |
+
model="mistralai/mixtral-8x22b-instruct-v0.1", # Best reasoning model from NVIDIA
|
| 89 |
+
api_key=os.getenv("NVIDIA_API_KEY"),
|
| 90 |
+
temperature=0,
|
| 91 |
+
max_tokens=4000,
|
| 92 |
+
rate_limiter=nvidia_rate_limiter
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
# Initialize Tavily client
|
| 96 |
+
tavily_client = TavilyClient(api_key=os.getenv("TAVILY_API_KEY"))
|
| 97 |
+
|
| 98 |
+
# Define State
|
| 99 |
+
class AgentState(TypedDict):
|
| 100 |
+
messages: Annotated[List[HumanMessage | AIMessage], operator.add]
|
| 101 |
+
query: str
|
| 102 |
+
agent_type: str
|
| 103 |
+
final_answer: str
|
| 104 |
|
| 105 |
+
# Custom Tools
|
| 106 |
+
@tool
|
| 107 |
def multiply_tool(a: float, b: float) -> float:
|
| 108 |
+
"""Multiply two numbers together"""
|
| 109 |
return a * b
|
| 110 |
|
| 111 |
+
@tool
|
| 112 |
def add_tool(a: float, b: float) -> float:
|
| 113 |
+
"""Add two numbers together"""
|
| 114 |
return a + b
|
| 115 |
|
| 116 |
+
@tool
|
| 117 |
def subtract_tool(a: float, b: float) -> float:
|
| 118 |
+
"""Subtract two numbers"""
|
| 119 |
return a - b
|
| 120 |
|
| 121 |
+
@tool
|
| 122 |
def divide_tool(a: float, b: float) -> float:
|
| 123 |
+
"""Divide two numbers"""
|
| 124 |
if b == 0:
|
| 125 |
raise ValueError("Cannot divide by zero.")
|
| 126 |
return a / b
|
| 127 |
|
| 128 |
+
@tool
|
| 129 |
def tavily_search_tool(query: str) -> str:
|
| 130 |
+
"""Search the web using Tavily for current information"""
|
| 131 |
try:
|
| 132 |
tavily_limiter.wait_if_needed()
|
| 133 |
response = tavily_client.search(
|
|
|
|
| 147 |
except Exception as e:
|
| 148 |
return f"Tavily search failed: {str(e)}"
|
| 149 |
|
| 150 |
+
@tool
|
| 151 |
def wiki_search_tool(query: str) -> str:
|
| 152 |
+
"""Search Wikipedia for encyclopedic information"""
|
| 153 |
try:
|
| 154 |
+
time.sleep(random.uniform(1, 3))
|
| 155 |
+
from langchain_community.document_loaders import WikipediaLoader
|
| 156 |
loader = WikipediaLoader(query=query, load_max_docs=1)
|
| 157 |
data = loader.load()
|
| 158 |
return "\n\n---\n\n".join([doc.page_content[:1000] for doc in data])
|
| 159 |
except Exception as e:
|
| 160 |
return f"Wikipedia search failed: {str(e)}"
|
| 161 |
|
| 162 |
+
# Define tools for each agent type
|
| 163 |
+
math_tools = [multiply_tool, add_tool, subtract_tool, divide_tool]
|
| 164 |
+
research_tools = [tavily_search_tool, wiki_search_tool]
|
| 165 |
+
coordinator_tools = [tavily_search_tool, wiki_search_tool]
|
| 166 |
+
|
| 167 |
+
# Node functions
|
| 168 |
+
def router_node(state: AgentState) -> AgentState:
|
| 169 |
+
"""Route queries to appropriate agent type"""
|
| 170 |
+
query = state["query"].lower()
|
| 171 |
+
|
| 172 |
+
if any(word in query for word in ['calculate', 'math', 'multiply', 'add', 'subtract', 'divide', 'compute']):
|
| 173 |
+
agent_type = "math"
|
| 174 |
+
elif any(word in query for word in ['code', 'program', 'python', 'javascript', 'function', 'algorithm']):
|
| 175 |
+
agent_type = "code"
|
| 176 |
+
elif any(word in query for word in ['search', 'find', 'research', 'what is', 'who is', 'when', 'where']):
|
| 177 |
+
agent_type = "research"
|
| 178 |
+
else:
|
| 179 |
+
agent_type = "coordinator"
|
| 180 |
+
|
| 181 |
+
return {**state, "agent_type": agent_type}
|
| 182 |
+
|
| 183 |
+
def math_agent_node(state: AgentState) -> AgentState:
|
| 184 |
+
"""Mathematical specialist agent using NVIDIA Mixtral"""
|
| 185 |
+
nvidia_limiter.wait_if_needed()
|
| 186 |
+
|
| 187 |
+
system_message = SystemMessage(content="""You are a mathematical specialist with access to calculation tools.
|
| 188 |
+
Use the appropriate math tools for calculations.
|
| 189 |
+
Show your work step by step.
|
| 190 |
+
Always provide precise numerical answers.
|
| 191 |
+
Finish with: FINAL ANSWER: [numerical result]""")
|
| 192 |
+
|
| 193 |
+
# Create math agent with NVIDIA's best reasoning model
|
| 194 |
+
math_agent = create_react_agent(nvidia_math_llm, math_tools)
|
| 195 |
+
|
| 196 |
+
# Process query
|
| 197 |
+
messages = [system_message, HumanMessage(content=state["query"])]
|
| 198 |
+
config = {"configurable": {"thread_id": "math_thread"}}
|
| 199 |
+
|
| 200 |
try:
|
| 201 |
+
result = math_agent.invoke({"messages": messages}, config)
|
| 202 |
+
final_message = result["messages"][-1].content
|
| 203 |
+
|
| 204 |
+
return {
|
| 205 |
+
**state,
|
| 206 |
+
"messages": state["messages"] + [AIMessage(content=final_message)],
|
| 207 |
+
"final_answer": final_message
|
| 208 |
+
}
|
| 209 |
except Exception as e:
|
| 210 |
+
error_msg = f"Math agent error: {str(e)}"
|
| 211 |
+
return {
|
| 212 |
+
**state,
|
| 213 |
+
"messages": state["messages"] + [AIMessage(content=error_msg)],
|
| 214 |
+
"final_answer": error_msg
|
| 215 |
+
}
|
| 216 |
|
| 217 |
+
def code_agent_node(state: AgentState) -> AgentState:
|
| 218 |
+
"""Code generation specialist agent using NVIDIA CodeLlama"""
|
| 219 |
+
nvidia_limiter.wait_if_needed()
|
| 220 |
|
| 221 |
+
system_message = SystemMessage(content="""You are an expert coding AI specialist.
|
| 222 |
+
Generate clean, efficient, and well-documented code.
|
| 223 |
+
Explain your code solutions clearly.
|
| 224 |
+
Always provide working code examples.
|
| 225 |
+
Finish with: FINAL ANSWER: [your code solution]""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
|
| 227 |
+
# Create code agent with NVIDIA's best code model
|
| 228 |
+
code_agent = create_react_agent(nvidia_code_llm, [])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
|
| 230 |
+
# Process query
|
| 231 |
+
messages = [system_message, HumanMessage(content=state["query"])]
|
| 232 |
+
config = {"configurable": {"thread_id": "code_thread"}}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 233 |
|
| 234 |
+
try:
|
| 235 |
+
result = code_agent.invoke({"messages": messages}, config)
|
| 236 |
+
final_message = result["messages"][-1].content
|
| 237 |
+
|
| 238 |
+
return {
|
| 239 |
+
**state,
|
| 240 |
+
"messages": state["messages"] + [AIMessage(content=final_message)],
|
| 241 |
+
"final_answer": final_message
|
| 242 |
+
}
|
| 243 |
+
except Exception as e:
|
| 244 |
+
error_msg = f"Code agent error: {str(e)}"
|
| 245 |
+
return {
|
| 246 |
+
**state,
|
| 247 |
+
"messages": state["messages"] + [AIMessage(content=error_msg)],
|
| 248 |
+
"final_answer": error_msg
|
| 249 |
+
}
|
| 250 |
|
| 251 |
+
def research_agent_node(state: AgentState) -> AgentState:
|
| 252 |
+
"""Research specialist agent using Gemini"""
|
| 253 |
+
gemini_limiter.wait_if_needed()
|
| 254 |
|
| 255 |
+
system_message = SystemMessage(content="""You are a research specialist with access to web search and Wikipedia.
|
| 256 |
+
Use appropriate search tools to gather comprehensive information.
|
| 257 |
+
Always cite sources and provide well-researched answers.
|
| 258 |
+
Synthesize information from multiple sources when possible.
|
| 259 |
+
Finish with: FINAL ANSWER: [your researched answer]""")
|
| 260 |
+
|
| 261 |
+
# Create research agent
|
| 262 |
+
research_agent = create_react_agent(gemini_llm, research_tools)
|
| 263 |
+
|
| 264 |
+
# Process query
|
| 265 |
+
messages = [system_message, HumanMessage(content=state["query"])]
|
| 266 |
+
config = {"configurable": {"thread_id": "research_thread"}}
|
| 267 |
+
|
| 268 |
+
try:
|
| 269 |
+
result = research_agent.invoke({"messages": messages}, config)
|
| 270 |
+
final_message = result["messages"][-1].content
|
| 271 |
+
|
| 272 |
+
return {
|
| 273 |
+
**state,
|
| 274 |
+
"messages": state["messages"] + [AIMessage(content=final_message)],
|
| 275 |
+
"final_answer": final_message
|
| 276 |
+
}
|
| 277 |
+
except Exception as e:
|
| 278 |
+
error_msg = f"Research agent error: {str(e)}"
|
| 279 |
+
return {
|
| 280 |
+
**state,
|
| 281 |
+
"messages": state["messages"] + [AIMessage(content=error_msg)],
|
| 282 |
+
"final_answer": error_msg
|
| 283 |
+
}
|
| 284 |
+
|
| 285 |
+
def coordinator_agent_node(state: AgentState) -> AgentState:
|
| 286 |
+
"""Coordinator agent using NVIDIA Llama3"""
|
| 287 |
+
nvidia_limiter.wait_if_needed()
|
| 288 |
+
|
| 289 |
+
system_message = SystemMessage(content="""You are the main coordinator agent.
|
| 290 |
+
Analyze queries and provide comprehensive responses.
|
| 291 |
+
Use search tools for factual information when needed.
|
| 292 |
+
Always finish with: FINAL ANSWER: [your final answer]""")
|
| 293 |
+
|
| 294 |
+
# Create coordinator agent with NVIDIA's best general model
|
| 295 |
+
coordinator_agent = create_react_agent(nvidia_general_llm, coordinator_tools)
|
| 296 |
+
|
| 297 |
+
# Process query
|
| 298 |
+
messages = [system_message, HumanMessage(content=state["query"])]
|
| 299 |
+
config = {"configurable": {"thread_id": "coordinator_thread"}}
|
| 300 |
+
|
| 301 |
+
try:
|
| 302 |
+
result = coordinator_agent.invoke({"messages": messages}, config)
|
| 303 |
+
final_message = result["messages"][-1].content
|
| 304 |
+
|
| 305 |
+
return {
|
| 306 |
+
**state,
|
| 307 |
+
"messages": state["messages"] + [AIMessage(content=final_message)],
|
| 308 |
+
"final_answer": final_message
|
| 309 |
+
}
|
| 310 |
+
except Exception as e:
|
| 311 |
+
error_msg = f"Coordinator agent error: {str(e)}"
|
| 312 |
+
return {
|
| 313 |
+
**state,
|
| 314 |
+
"messages": state["messages"] + [AIMessage(content=error_msg)],
|
| 315 |
+
"final_answer": error_msg
|
| 316 |
+
}
|
| 317 |
+
|
| 318 |
+
# Conditional routing function
|
| 319 |
+
def route_agent(state: AgentState) -> str:
|
| 320 |
+
"""Route to appropriate agent based on agent_type"""
|
| 321 |
+
agent_type = state.get("agent_type", "coordinator")
|
| 322 |
+
|
| 323 |
+
if agent_type == "math":
|
| 324 |
+
return "math_agent"
|
| 325 |
+
elif agent_type == "code":
|
| 326 |
+
return "code_agent"
|
| 327 |
+
elif agent_type == "research":
|
| 328 |
+
return "research_agent"
|
| 329 |
+
else:
|
| 330 |
+
return "coordinator_agent"
|
| 331 |
+
|
| 332 |
+
# LangGraph Multi-Agent System
|
| 333 |
+
class LangGraphMultiAgentSystem:
|
| 334 |
def __init__(self):
|
|
|
|
| 335 |
self.request_count = 0
|
| 336 |
self.last_request_time = time.time()
|
| 337 |
+
self.graph = self._create_graph()
|
| 338 |
|
| 339 |
+
def _create_graph(self) -> StateGraph:
|
| 340 |
+
"""Create the LangGraph workflow"""
|
| 341 |
+
workflow = StateGraph(AgentState)
|
| 342 |
|
| 343 |
+
# Add nodes
|
| 344 |
+
workflow.add_node("router", router_node)
|
| 345 |
+
workflow.add_node("math_agent", math_agent_node)
|
| 346 |
+
workflow.add_node("code_agent", code_agent_node)
|
| 347 |
+
workflow.add_node("research_agent", research_agent_node)
|
| 348 |
+
workflow.add_node("coordinator_agent", coordinator_agent_node)
|
| 349 |
+
|
| 350 |
+
# Add edges
|
| 351 |
+
workflow.set_entry_point("router")
|
| 352 |
+
workflow.add_conditional_edges(
|
| 353 |
+
"router",
|
| 354 |
+
route_agent,
|
| 355 |
+
{
|
| 356 |
+
"math_agent": "math_agent",
|
| 357 |
+
"code_agent": "code_agent",
|
| 358 |
+
"research_agent": "research_agent",
|
| 359 |
+
"coordinator_agent": "coordinator_agent"
|
| 360 |
+
}
|
| 361 |
+
)
|
| 362 |
+
|
| 363 |
+
# All agents end the workflow
|
| 364 |
+
workflow.add_edge("math_agent", END)
|
| 365 |
+
workflow.add_edge("code_agent", END)
|
| 366 |
+
workflow.add_edge("research_agent", END)
|
| 367 |
+
workflow.add_edge("coordinator_agent", END)
|
| 368 |
+
|
| 369 |
+
# Compile the graph
|
| 370 |
+
memory = MemorySaver()
|
| 371 |
+
return workflow.compile(checkpointer=memory)
|
| 372 |
+
|
| 373 |
+
def process_query(self, query: str) -> str:
|
| 374 |
+
"""Process query using LangGraph multi-agent system"""
|
| 375 |
# Global rate limiting (SILENT)
|
| 376 |
current_time = time.time()
|
| 377 |
if current_time - self.last_request_time > 3600:
|
|
|
|
| 382 |
|
| 383 |
# Add delay between requests (SILENT)
|
| 384 |
if self.request_count > 1:
|
| 385 |
+
time.sleep(random.uniform(3, 10))
|
| 386 |
+
|
| 387 |
+
# Initial state
|
| 388 |
+
initial_state = {
|
| 389 |
+
"messages": [HumanMessage(content=query)],
|
| 390 |
+
"query": query,
|
| 391 |
+
"agent_type": "",
|
| 392 |
+
"final_answer": ""
|
| 393 |
+
}
|
| 394 |
|
| 395 |
+
# Configuration for the graph
|
| 396 |
+
config = {"configurable": {"thread_id": f"thread_{self.request_count}"}}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 397 |
|
| 398 |
+
try:
|
| 399 |
+
# Run the graph
|
| 400 |
+
final_state = self.graph.invoke(initial_state, config)
|
| 401 |
+
return final_state.get("final_answer", "No response generated")
|
| 402 |
+
|
| 403 |
+
except Exception as e:
|
| 404 |
+
return f"Error: {str(e)}"
|
| 405 |
|
| 406 |
+
# Main functions
|
| 407 |
def main(query: str) -> str:
|
| 408 |
+
"""Main function using LangGraph multi-agent system"""
|
| 409 |
+
langgraph_system = LangGraphMultiAgentSystem()
|
| 410 |
+
return langgraph_system.process_query(query)
|
| 411 |
|
| 412 |
def get_final_answer(query: str) -> str:
|
| 413 |
"""Extract only the FINAL ANSWER from the response"""
|
|
|
|
| 420 |
return full_response.strip()
|
| 421 |
|
| 422 |
if __name__ == "__main__":
|
| 423 |
+
# Test the LangGraph system - CLEAN OUTPUT ONLY
|
| 424 |
result = get_final_answer("What are the names of the US presidents who were assassinated?")
|
| 425 |
print(result)
|