Spaces:
Sleeping
Sleeping
Update veryfinal.py
Browse files- veryfinal.py +188 -78
veryfinal.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
import os, json
|
| 2 |
from dotenv import load_dotenv
|
| 3 |
|
| 4 |
# Load environment variables
|
|
@@ -7,6 +7,8 @@ load_dotenv()
|
|
| 7 |
# Imports
|
| 8 |
from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings
|
| 9 |
from langchain_groq import ChatGroq
|
|
|
|
|
|
|
| 10 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
| 11 |
from langchain_community.document_loaders import WikipediaLoader
|
| 12 |
from langchain_community.document_loaders import ArxivLoader
|
|
@@ -19,6 +21,26 @@ from langchain_text_splitters import RecursiveCharacterTextSplitter
|
|
| 19 |
from langchain_community.document_loaders import JSONLoader
|
| 20 |
from langgraph.prebuilt import create_react_agent
|
| 21 |
from langgraph.checkpoint.memory import MemorySaver
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
# Define all tools
|
| 24 |
@tool
|
|
@@ -78,14 +100,17 @@ def wiki_search(query: str) -> str:
|
|
| 78 |
args:
|
| 79 |
query: the query to search for
|
| 80 |
"""
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
@tool
|
| 91 |
def web_search(query: str) -> str:
|
|
@@ -94,13 +119,18 @@ def web_search(query: str) -> str:
|
|
| 94 |
Args:
|
| 95 |
query: The search query.
|
| 96 |
"""
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
@tool
|
| 106 |
def arxiv_search(query: str) -> str:
|
|
@@ -109,13 +139,16 @@ def arxiv_search(query: str) -> str:
|
|
| 109 |
Args:
|
| 110 |
query: The search query.
|
| 111 |
"""
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
# Load and process your JSONL data
|
| 121 |
jq_schema = """
|
|
@@ -146,8 +179,57 @@ json_chunks = text_splitter.split_documents(json_docs)
|
|
| 146 |
# Create vector database
|
| 147 |
database = FAISS.from_documents(json_chunks, NVIDIAEmbeddings())
|
| 148 |
|
| 149 |
-
# Initialize
|
| 150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
|
| 152 |
# Create retriever and retriever tool
|
| 153 |
retriever = database.as_retriever(search_type="similarity", search_kwargs={"k": 3})
|
|
@@ -181,62 +263,90 @@ agent_executor = create_react_agent(
|
|
| 181 |
checkpointer=memory
|
| 182 |
)
|
| 183 |
|
| 184 |
-
#
|
| 185 |
-
def
|
| 186 |
-
"""Run
|
| 187 |
-
config = {"configurable": {"thread_id": thread_id}}
|
| 188 |
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
|
| 200 |
-
|
| 201 |
-
{"messages": [system_msg, user_msg]},
|
| 202 |
-
config,
|
| 203 |
-
stream_mode="values"
|
| 204 |
-
):
|
| 205 |
-
step["messages"][-1].pretty_print()
|
| 206 |
|
| 207 |
-
#
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
config = {"configurable": {"thread_id": thread_id}}
|
| 211 |
-
|
| 212 |
-
try:
|
| 213 |
-
system_msg = SystemMessage(content='''You are a helpful assistant tasked with answering questions using a set of tools.
|
| 214 |
-
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template:
|
| 215 |
-
FINAL ANSWER: [YOUR FINAL ANSWER].
|
| 216 |
-
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
|
| 217 |
-
Your answer should only start with "FINAL ANSWER: ", then follows with the answer.''')
|
| 218 |
-
|
| 219 |
-
user_msg = HumanMessage(content=query)
|
| 220 |
-
result = []
|
| 221 |
-
|
| 222 |
-
for step in agent_executor.stream(
|
| 223 |
-
{"messages": [system_msg, user_msg]},
|
| 224 |
-
config,
|
| 225 |
-
stream_mode="values"
|
| 226 |
-
):
|
| 227 |
-
result = step["messages"]
|
| 228 |
-
|
| 229 |
-
return result[-1].content if result else "No response generated"
|
| 230 |
-
|
| 231 |
-
except Exception as e:
|
| 232 |
-
return f"Error occurred: {str(e)}"
|
| 233 |
|
| 234 |
-
# Main function
|
| 235 |
def main(query: str) -> str:
|
| 236 |
-
"""Main function to run the agent"""
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
|
| 241 |
-
#
|
| 242 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os, json, time, random
|
| 2 |
from dotenv import load_dotenv
|
| 3 |
|
| 4 |
# Load environment variables
|
|
|
|
| 7 |
# Imports
|
| 8 |
from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings
|
| 9 |
from langchain_groq import ChatGroq
|
| 10 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 11 |
+
from langchain_nvidia_ai_endpoints import ChatNVIDIA
|
| 12 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
| 13 |
from langchain_community.document_loaders import WikipediaLoader
|
| 14 |
from langchain_community.document_loaders import ArxivLoader
|
|
|
|
| 21 |
from langchain_community.document_loaders import JSONLoader
|
| 22 |
from langgraph.prebuilt import create_react_agent
|
| 23 |
from langgraph.checkpoint.memory import MemorySaver
|
| 24 |
+
from langchain_core.rate_limiters import InMemoryRateLimiter
|
| 25 |
+
|
| 26 |
+
# Rate limiters for different providers
|
| 27 |
+
groq_rate_limiter = InMemoryRateLimiter(
|
| 28 |
+
requests_per_second=0.5, # 30 requests per minute
|
| 29 |
+
check_every_n_seconds=0.1,
|
| 30 |
+
max_bucket_size=10
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
google_rate_limiter = InMemoryRateLimiter(
|
| 34 |
+
requests_per_second=0.33, # 20 requests per minute
|
| 35 |
+
check_every_n_seconds=0.1,
|
| 36 |
+
max_bucket_size=10
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
nvidia_rate_limiter = InMemoryRateLimiter(
|
| 40 |
+
requests_per_second=0.25, # 15 requests per minute
|
| 41 |
+
check_every_n_seconds=0.1,
|
| 42 |
+
max_bucket_size=10
|
| 43 |
+
)
|
| 44 |
|
| 45 |
# Define all tools
|
| 46 |
@tool
|
|
|
|
| 100 |
args:
|
| 101 |
query: the query to search for
|
| 102 |
"""
|
| 103 |
+
try:
|
| 104 |
+
loader = WikipediaLoader(query=query, load_max_docs=1)
|
| 105 |
+
data = loader.load()
|
| 106 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
| 107 |
+
[
|
| 108 |
+
f'\n{doc.page_content}\n'
|
| 109 |
+
for doc in data
|
| 110 |
+
])
|
| 111 |
+
return formatted_search_docs
|
| 112 |
+
except Exception as e:
|
| 113 |
+
return f"Wikipedia search failed: {str(e)}"
|
| 114 |
|
| 115 |
@tool
|
| 116 |
def web_search(query: str) -> str:
|
|
|
|
| 119 |
Args:
|
| 120 |
query: The search query.
|
| 121 |
"""
|
| 122 |
+
try:
|
| 123 |
+
# Add delay to prevent rate limiting
|
| 124 |
+
time.sleep(random.uniform(1, 3))
|
| 125 |
+
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
|
| 126 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
| 127 |
+
[
|
| 128 |
+
f'\n{doc.get("content", "")}\n'
|
| 129 |
+
for doc in search_docs
|
| 130 |
+
])
|
| 131 |
+
return formatted_search_docs
|
| 132 |
+
except Exception as e:
|
| 133 |
+
return f"Web search failed: {str(e)}"
|
| 134 |
|
| 135 |
@tool
|
| 136 |
def arxiv_search(query: str) -> str:
|
|
|
|
| 139 |
Args:
|
| 140 |
query: The search query.
|
| 141 |
"""
|
| 142 |
+
try:
|
| 143 |
+
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
|
| 144 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
| 145 |
+
[
|
| 146 |
+
f'\n{doc.page_content[:1000]}\n'
|
| 147 |
+
for doc in search_docs
|
| 148 |
+
])
|
| 149 |
+
return formatted_search_docs
|
| 150 |
+
except Exception as e:
|
| 151 |
+
return f"ArXiv search failed: {str(e)}"
|
| 152 |
|
| 153 |
# Load and process your JSONL data
|
| 154 |
jq_schema = """
|
|
|
|
| 179 |
# Create vector database
|
| 180 |
database = FAISS.from_documents(json_chunks, NVIDIAEmbeddings())
|
| 181 |
|
| 182 |
+
# Initialize LLMs with rate limiting
|
| 183 |
+
def create_rate_limited_llm(provider="groq"):
|
| 184 |
+
"""Create rate-limited LLM based on provider"""
|
| 185 |
+
|
| 186 |
+
if provider == "groq":
|
| 187 |
+
return ChatGroq(
|
| 188 |
+
model="llama-3.3-70b-versatile",
|
| 189 |
+
temperature=0,
|
| 190 |
+
api_key=os.getenv("GROQ_API_KEY"),
|
| 191 |
+
rate_limiter=groq_rate_limiter,
|
| 192 |
+
max_retries=2,
|
| 193 |
+
request_timeout=60
|
| 194 |
+
)
|
| 195 |
+
elif provider == "google":
|
| 196 |
+
return ChatGoogleGenerativeAI(
|
| 197 |
+
model="gemini-2.0-flash-exp",
|
| 198 |
+
temperature=0,
|
| 199 |
+
api_key=os.getenv("GOOGLE_API_KEY"),
|
| 200 |
+
rate_limiter=google_rate_limiter,
|
| 201 |
+
max_retries=2,
|
| 202 |
+
request_timeout=60
|
| 203 |
+
)
|
| 204 |
+
elif provider == "nvidia":
|
| 205 |
+
return ChatNVIDIA(
|
| 206 |
+
model="meta/llama-3.1-405b-instruct",
|
| 207 |
+
temperature=0,
|
| 208 |
+
api_key=os.getenv("NVIDIA_API_KEY"),
|
| 209 |
+
rate_limiter=nvidia_rate_limiter,
|
| 210 |
+
max_retries=2
|
| 211 |
+
)
|
| 212 |
+
|
| 213 |
+
# Create fallback chain with exponential backoff
|
| 214 |
+
def create_llm_with_smart_fallbacks():
|
| 215 |
+
"""Create LLM with intelligent fallback and rate limiting"""
|
| 216 |
+
|
| 217 |
+
# Primary: Groq (fastest)
|
| 218 |
+
primary_llm = create_rate_limited_llm("groq")
|
| 219 |
+
|
| 220 |
+
# Fallback 1: Google (most capable)
|
| 221 |
+
fallback_1 = create_rate_limited_llm("google")
|
| 222 |
+
|
| 223 |
+
# Fallback 2: NVIDIA (reliable)
|
| 224 |
+
fallback_2 = create_rate_limited_llm("nvidia")
|
| 225 |
+
|
| 226 |
+
# Create fallback chain
|
| 227 |
+
llm_with_fallbacks = primary_llm.with_fallbacks([fallback_1, fallback_2])
|
| 228 |
+
|
| 229 |
+
return llm_with_fallbacks
|
| 230 |
+
|
| 231 |
+
# Initialize LLM with smart fallbacks
|
| 232 |
+
llm = create_llm_with_smart_fallbacks()
|
| 233 |
|
| 234 |
# Create retriever and retriever tool
|
| 235 |
retriever = database.as_retriever(search_type="similarity", search_kwargs={"k": 3})
|
|
|
|
| 263 |
checkpointer=memory
|
| 264 |
)
|
| 265 |
|
| 266 |
+
# Enhanced robust agent run with exponential backoff
|
| 267 |
+
def robust_agent_run(query, thread_id="robust_conversation", max_retries=3):
|
| 268 |
+
"""Run agent with error handling, rate limiting, and exponential backoff"""
|
|
|
|
| 269 |
|
| 270 |
+
for attempt in range(max_retries):
|
| 271 |
+
try:
|
| 272 |
+
config = {"configurable": {"thread_id": f"{thread_id}_{attempt}"}}
|
| 273 |
+
|
| 274 |
+
system_msg = SystemMessage(content='''You are a helpful assistant tasked with answering questions using a set of tools.
|
| 275 |
+
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template:
|
| 276 |
+
FINAL ANSWER: [YOUR FINAL ANSWER].
|
| 277 |
+
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
|
| 278 |
+
Your answer should only start with "FINAL ANSWER: ", then follows with the answer.''')
|
| 279 |
+
|
| 280 |
+
user_msg = HumanMessage(content=query)
|
| 281 |
+
result = []
|
| 282 |
+
|
| 283 |
+
print(f"Attempt {attempt + 1}: Processing query...")
|
| 284 |
+
|
| 285 |
+
for step in agent_executor.stream(
|
| 286 |
+
{"messages": [system_msg, user_msg]},
|
| 287 |
+
config,
|
| 288 |
+
stream_mode="values"
|
| 289 |
+
):
|
| 290 |
+
result = step["messages"]
|
| 291 |
+
|
| 292 |
+
final_response = result[-1].content if result else "No response generated"
|
| 293 |
+
print(f"Query processed successfully on attempt {attempt + 1}")
|
| 294 |
+
return final_response
|
| 295 |
+
|
| 296 |
+
except Exception as e:
|
| 297 |
+
error_msg = str(e).lower()
|
| 298 |
+
|
| 299 |
+
# Check for rate limit errors
|
| 300 |
+
if any(keyword in error_msg for keyword in ['rate limit', 'too many requests', '429', 'quota exceeded']):
|
| 301 |
+
wait_time = (2 ** attempt) + random.uniform(1, 3) # Exponential backoff with jitter
|
| 302 |
+
print(f"Rate limit hit on attempt {attempt + 1}. Waiting {wait_time:.2f} seconds...")
|
| 303 |
+
time.sleep(wait_time)
|
| 304 |
+
|
| 305 |
+
if attempt == max_retries - 1:
|
| 306 |
+
return f"Rate limit exceeded after {max_retries} attempts: {str(e)}"
|
| 307 |
+
continue
|
| 308 |
+
|
| 309 |
+
# Check for other API errors
|
| 310 |
+
elif any(keyword in error_msg for keyword in ['api', 'connection', 'timeout', 'service unavailable']):
|
| 311 |
+
wait_time = (2 ** attempt) + random.uniform(0.5, 1.5)
|
| 312 |
+
print(f"API error on attempt {attempt + 1}. Retrying in {wait_time:.2f} seconds...")
|
| 313 |
+
time.sleep(wait_time)
|
| 314 |
+
|
| 315 |
+
if attempt == max_retries - 1:
|
| 316 |
+
return f"API error after {max_retries} attempts: {str(e)}"
|
| 317 |
+
continue
|
| 318 |
+
|
| 319 |
+
else:
|
| 320 |
+
# Non-recoverable error
|
| 321 |
+
return f"Error occurred: {str(e)}"
|
| 322 |
|
| 323 |
+
return "Maximum retries exceeded"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 324 |
|
| 325 |
+
# Main function with request tracking
|
| 326 |
+
request_count = 0
|
| 327 |
+
last_request_time = time.time()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 328 |
|
|
|
|
| 329 |
def main(query: str) -> str:
|
| 330 |
+
"""Main function to run the agent with request tracking"""
|
| 331 |
+
global request_count, last_request_time
|
| 332 |
+
|
| 333 |
+
current_time = time.time()
|
| 334 |
|
| 335 |
+
# Reset counter every minute
|
| 336 |
+
if current_time - last_request_time > 60:
|
| 337 |
+
request_count = 0
|
| 338 |
+
last_request_time = current_time
|
| 339 |
+
|
| 340 |
+
request_count += 1
|
| 341 |
+
print(f"Processing request #{request_count}")
|
| 342 |
+
|
| 343 |
+
# Add small delay between requests to prevent overwhelming APIs
|
| 344 |
+
if request_count > 1:
|
| 345 |
+
time.sleep(random.uniform(2, 5))
|
| 346 |
+
|
| 347 |
+
return robust_agent_run(query)
|
| 348 |
+
|
| 349 |
+
if __name__ == "__main__":
|
| 350 |
+
# Test the agent
|
| 351 |
+
result = main("What are the names of the US presidents who were assassinated?")
|
| 352 |
+
print(result)
|