Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,79 +1,36 @@
|
|
| 1 |
-
""" Multi-LLM Agent Evaluation Runner"""
|
| 2 |
import os
|
| 3 |
-
import inspect
|
| 4 |
import gradio as gr
|
| 5 |
import requests
|
| 6 |
import pandas as pd
|
| 7 |
from langchain_core.messages import HumanMessage
|
| 8 |
from veryfinal import build_graph
|
| 9 |
|
| 10 |
-
# --- Constants ---
|
| 11 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
"""A multi-provider LangGraph agent supporting Groq, DeepSeek, and Baidu."""
|
| 16 |
def __init__(self):
|
| 17 |
-
print("
|
| 18 |
-
|
| 19 |
-
self.graph = build_graph(provider="groq") # Using Groq as default
|
| 20 |
-
print("Multi-LLM Graph built successfully.")
|
| 21 |
-
except Exception as e:
|
| 22 |
-
print(f"Error building graph: {e}")
|
| 23 |
-
self.graph = None
|
| 24 |
|
| 25 |
def __call__(self, question: str) -> str:
|
| 26 |
-
print(f"Agent received question: {question}")
|
| 27 |
-
|
| 28 |
-
if self.graph is None:
|
| 29 |
-
return "Error: Agent not properly initialized"
|
| 30 |
-
|
| 31 |
-
# Create complete state structure that matches EnhancedAgentState
|
| 32 |
state = {
|
| 33 |
"messages": [HumanMessage(content=question)],
|
| 34 |
-
"query": question,
|
| 35 |
"agent_type": "",
|
| 36 |
"final_answer": "",
|
| 37 |
"perf": {},
|
| 38 |
"agno_resp": ""
|
| 39 |
}
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
try:
|
| 43 |
-
result = self.graph.invoke(state, config)
|
| 44 |
-
|
| 45 |
-
# Handle different response formats
|
| 46 |
-
if isinstance(result, dict):
|
| 47 |
-
if 'messages' in result and result['messages']:
|
| 48 |
-
answer = result['messages'][-1].content
|
| 49 |
-
elif 'final_answer' in result:
|
| 50 |
-
answer = result['final_answer']
|
| 51 |
-
else:
|
| 52 |
-
answer = str(result)
|
| 53 |
-
else:
|
| 54 |
-
answer = str(result)
|
| 55 |
-
|
| 56 |
-
# Extract final answer if present
|
| 57 |
-
if "FINAL ANSWER:" in answer:
|
| 58 |
-
return answer.split("FINAL ANSWER:")[-1].strip()
|
| 59 |
-
else:
|
| 60 |
-
return answer.strip()
|
| 61 |
-
|
| 62 |
-
except Exception as e:
|
| 63 |
-
error_msg = f"Error: {str(e)}"
|
| 64 |
-
print(error_msg)
|
| 65 |
-
return error_msg
|
| 66 |
|
| 67 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
| 68 |
-
""
|
| 69 |
-
Fetches all questions, runs the Enhanced Multi-LLM Agent on them,
|
| 70 |
-
submits all answers, and displays the results.
|
| 71 |
-
"""
|
| 72 |
-
# --- Determine HF Space Runtime URL and Repo URL ---
|
| 73 |
-
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
| 74 |
-
|
| 75 |
if profile:
|
| 76 |
-
username= f"{profile.username}"
|
| 77 |
print(f"User logged in: {username}")
|
| 78 |
else:
|
| 79 |
print("User not logged in.")
|
|
@@ -83,78 +40,52 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
| 83 |
questions_url = f"{api_url}/questions"
|
| 84 |
submit_url = f"{api_url}/submit"
|
| 85 |
|
| 86 |
-
# 1. Instantiate Agent
|
| 87 |
try:
|
| 88 |
-
agent =
|
| 89 |
-
if agent.graph is None:
|
| 90 |
-
return "Error: Failed to initialize agent properly", None
|
| 91 |
except Exception as e:
|
| 92 |
print(f"Error instantiating agent: {e}")
|
| 93 |
return f"Error initializing agent: {e}", None
|
| 94 |
-
|
| 95 |
-
agent_code
|
| 96 |
-
print(f"Agent code URL: {agent_code}")
|
| 97 |
|
| 98 |
-
# 2. Fetch Questions
|
| 99 |
print(f"Fetching questions from: {questions_url}")
|
| 100 |
try:
|
| 101 |
response = requests.get(questions_url, timeout=15)
|
| 102 |
response.raise_for_status()
|
| 103 |
questions_data = response.json()
|
| 104 |
if not questions_data:
|
| 105 |
-
|
| 106 |
-
|
| 107 |
print(f"Fetched {len(questions_data)} questions.")
|
| 108 |
-
except
|
| 109 |
print(f"Error fetching questions: {e}")
|
| 110 |
return f"Error fetching questions: {e}", None
|
| 111 |
-
except Exception as e:
|
| 112 |
-
print(f"An unexpected error occurred fetching questions: {e}")
|
| 113 |
-
return f"An unexpected error occurred fetching questions: {e}", None
|
| 114 |
|
| 115 |
-
# 3. Run your Agent
|
| 116 |
results_log = []
|
| 117 |
answers_payload = []
|
| 118 |
-
print(f"Running
|
| 119 |
-
|
| 120 |
-
for i, item in enumerate(questions_data):
|
| 121 |
task_id = item.get("task_id")
|
| 122 |
question_text = item.get("question")
|
| 123 |
-
|
| 124 |
if not task_id or question_text is None:
|
| 125 |
print(f"Skipping item with missing task_id or question: {item}")
|
| 126 |
continue
|
| 127 |
-
|
| 128 |
-
print(f"Processing question {i+1}/{len(questions_data)}: {task_id}")
|
| 129 |
-
|
| 130 |
try:
|
| 131 |
submitted_answer = agent(question_text)
|
| 132 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 133 |
-
results_log.append({
|
| 134 |
-
"Task ID": task_id,
|
| 135 |
-
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
|
| 136 |
-
"Submitted Answer": submitted_answer[:200] + "..." if len(submitted_answer) > 200 else submitted_answer
|
| 137 |
-
})
|
| 138 |
except Exception as e:
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
answers_payload.append({"task_id": task_id, "submitted_answer": error_msg})
|
| 142 |
-
results_log.append({
|
| 143 |
-
"Task ID": task_id,
|
| 144 |
-
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
|
| 145 |
-
"Submitted Answer": error_msg
|
| 146 |
-
})
|
| 147 |
|
| 148 |
if not answers_payload:
|
| 149 |
print("Agent did not produce any answers to submit.")
|
| 150 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
| 151 |
|
| 152 |
-
# 4. Prepare Submission
|
| 153 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
| 154 |
-
status_update = f"
|
| 155 |
print(status_update)
|
| 156 |
|
| 157 |
-
# 5. Submit
|
| 158 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
| 159 |
try:
|
| 160 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
|
@@ -176,33 +107,24 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
| 176 |
results_df = pd.DataFrame(results_log)
|
| 177 |
return status_message, results_df
|
| 178 |
|
| 179 |
-
# --- Build Gradio Interface using Blocks ---
|
| 180 |
with gr.Blocks() as demo:
|
| 181 |
-
gr.Markdown("#
|
| 182 |
gr.Markdown(
|
| 183 |
"""
|
| 184 |
**Instructions:**
|
| 185 |
-
1.
|
| 186 |
-
2.
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
-
|
| 192 |
-
- **Web Search**: Tavily and Wikipedia integration
|
| 193 |
-
- **Error Handling**: Robust fallback mechanisms
|
| 194 |
-
- **Rate Limiting**: Optimized for free tier usage
|
| 195 |
-
|
| 196 |
-
**Supported Models:**
|
| 197 |
-
- **Groq**: Llama 3.1 70B Versatile (fast inference)
|
| 198 |
-
- **DeepSeek**: DeepSeek Chat (reasoning-focused)
|
| 199 |
-
- **Baidu**: ERNIE (Chinese language optimized)
|
| 200 |
"""
|
| 201 |
)
|
| 202 |
|
| 203 |
gr.LoginButton()
|
| 204 |
|
| 205 |
-
run_button = gr.Button("Run Evaluation & Submit All Answers"
|
| 206 |
|
| 207 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
| 208 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
|
@@ -213,5 +135,5 @@ with gr.Blocks() as demo:
|
|
| 213 |
)
|
| 214 |
|
| 215 |
if __name__ == "__main__":
|
| 216 |
-
print("\n" + "-"*30 + "
|
| 217 |
demo.launch(debug=True, share=False)
|
|
|
|
|
|
|
| 1 |
import os
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
import requests
|
| 4 |
import pandas as pd
|
| 5 |
from langchain_core.messages import HumanMessage
|
| 6 |
from veryfinal import build_graph
|
| 7 |
|
|
|
|
| 8 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 9 |
|
| 10 |
+
class BasicAgent:
|
| 11 |
+
"""A langgraph agent."""
|
|
|
|
| 12 |
def __init__(self):
|
| 13 |
+
print("BasicAgent initialized.")
|
| 14 |
+
self.graph = build_graph()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
def __call__(self, question: str) -> str:
|
| 17 |
+
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
| 18 |
+
# Always pass the full state expected by the graph
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
state = {
|
| 20 |
"messages": [HumanMessage(content=question)],
|
| 21 |
+
"query": question,
|
| 22 |
"agent_type": "",
|
| 23 |
"final_answer": "",
|
| 24 |
"perf": {},
|
| 25 |
"agno_resp": ""
|
| 26 |
}
|
| 27 |
+
result = self.graph.invoke(state)
|
| 28 |
+
return result.get("final_answer", "")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
| 31 |
+
space_id = os.getenv("SPACE_ID")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
if profile:
|
| 33 |
+
username = f"{profile.username}"
|
| 34 |
print(f"User logged in: {username}")
|
| 35 |
else:
|
| 36 |
print("User not logged in.")
|
|
|
|
| 40 |
questions_url = f"{api_url}/questions"
|
| 41 |
submit_url = f"{api_url}/submit"
|
| 42 |
|
|
|
|
| 43 |
try:
|
| 44 |
+
agent = BasicAgent()
|
|
|
|
|
|
|
| 45 |
except Exception as e:
|
| 46 |
print(f"Error instantiating agent: {e}")
|
| 47 |
return f"Error initializing agent: {e}", None
|
| 48 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
| 49 |
+
print(agent_code)
|
|
|
|
| 50 |
|
|
|
|
| 51 |
print(f"Fetching questions from: {questions_url}")
|
| 52 |
try:
|
| 53 |
response = requests.get(questions_url, timeout=15)
|
| 54 |
response.raise_for_status()
|
| 55 |
questions_data = response.json()
|
| 56 |
if not questions_data:
|
| 57 |
+
print("Fetched questions list is empty.")
|
| 58 |
+
return "Fetched questions list is empty or invalid format.", None
|
| 59 |
print(f"Fetched {len(questions_data)} questions.")
|
| 60 |
+
except Exception as e:
|
| 61 |
print(f"Error fetching questions: {e}")
|
| 62 |
return f"Error fetching questions: {e}", None
|
|
|
|
|
|
|
|
|
|
| 63 |
|
|
|
|
| 64 |
results_log = []
|
| 65 |
answers_payload = []
|
| 66 |
+
print(f"Running agent on {len(questions_data)} questions...")
|
| 67 |
+
for item in questions_data:
|
|
|
|
| 68 |
task_id = item.get("task_id")
|
| 69 |
question_text = item.get("question")
|
|
|
|
| 70 |
if not task_id or question_text is None:
|
| 71 |
print(f"Skipping item with missing task_id or question: {item}")
|
| 72 |
continue
|
|
|
|
|
|
|
|
|
|
| 73 |
try:
|
| 74 |
submitted_answer = agent(question_text)
|
| 75 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 76 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
except Exception as e:
|
| 78 |
+
print(f"Error running agent on task {task_id}: {e}")
|
| 79 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
if not answers_payload:
|
| 82 |
print("Agent did not produce any answers to submit.")
|
| 83 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
| 84 |
|
|
|
|
| 85 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
| 86 |
+
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
| 87 |
print(status_update)
|
| 88 |
|
|
|
|
| 89 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
| 90 |
try:
|
| 91 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
|
|
|
| 107 |
results_df = pd.DataFrame(results_log)
|
| 108 |
return status_message, results_df
|
| 109 |
|
|
|
|
| 110 |
with gr.Blocks() as demo:
|
| 111 |
+
gr.Markdown("# Basic Agent Evaluation Runner")
|
| 112 |
gr.Markdown(
|
| 113 |
"""
|
| 114 |
**Instructions:**
|
| 115 |
+
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
| 116 |
+
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
| 117 |
+
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
| 118 |
+
---
|
| 119 |
+
**Disclaimers:**
|
| 120 |
+
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
| 121 |
+
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
"""
|
| 123 |
)
|
| 124 |
|
| 125 |
gr.LoginButton()
|
| 126 |
|
| 127 |
+
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
| 128 |
|
| 129 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
| 130 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
|
|
|
| 135 |
)
|
| 136 |
|
| 137 |
if __name__ == "__main__":
|
| 138 |
+
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
| 139 |
demo.launch(debug=True, share=False)
|