Spaces:
Sleeping
Sleeping
Update veryfinal.py
Browse files- veryfinal.py +96 -75
veryfinal.py
CHANGED
|
@@ -7,7 +7,6 @@ load_dotenv()
|
|
| 7 |
# Imports
|
| 8 |
from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings
|
| 9 |
from langchain_groq import ChatGroq
|
| 10 |
-
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 11 |
from langchain_nvidia_ai_endpoints import ChatNVIDIA
|
| 12 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
| 13 |
from langchain_community.document_loaders import WikipediaLoader
|
|
@@ -42,7 +41,57 @@ nvidia_rate_limiter = InMemoryRateLimiter(
|
|
| 42 |
max_bucket_size=10
|
| 43 |
)
|
| 44 |
|
| 45 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
@tool
|
| 47 |
def multiply(a: int | float, b: int | float) -> int | float:
|
| 48 |
"""Multiply two numbers.
|
|
@@ -94,6 +143,7 @@ def modulus(a: int | float, b: int | float) -> int | float:
|
|
| 94 |
"""
|
| 95 |
return a % b
|
| 96 |
|
|
|
|
| 97 |
@tool
|
| 98 |
def wiki_search(query: str) -> str:
|
| 99 |
"""Search the wikipedia for a query and return the first paragraph
|
|
@@ -120,7 +170,6 @@ def web_search(query: str) -> str:
|
|
| 120 |
query: The search query.
|
| 121 |
"""
|
| 122 |
try:
|
| 123 |
-
# Add delay to prevent rate limiting
|
| 124 |
time.sleep(random.uniform(1, 3))
|
| 125 |
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
|
| 126 |
formatted_search_docs = "\n\n---\n\n".join(
|
|
@@ -179,58 +228,6 @@ json_chunks = text_splitter.split_documents(json_docs)
|
|
| 179 |
# Create vector database
|
| 180 |
database = FAISS.from_documents(json_chunks, NVIDIAEmbeddings())
|
| 181 |
|
| 182 |
-
# Initialize LLMs with rate limiting
|
| 183 |
-
def create_rate_limited_llm(provider="groq"):
|
| 184 |
-
"""Create rate-limited LLM based on provider"""
|
| 185 |
-
|
| 186 |
-
if provider == "groq":
|
| 187 |
-
return ChatGroq(
|
| 188 |
-
model="llama-3.3-70b-versatile",
|
| 189 |
-
temperature=0,
|
| 190 |
-
api_key=os.getenv("GROQ_API_KEY"),
|
| 191 |
-
rate_limiter=groq_rate_limiter,
|
| 192 |
-
max_retries=2,
|
| 193 |
-
request_timeout=60
|
| 194 |
-
)
|
| 195 |
-
elif provider == "google":
|
| 196 |
-
return ChatGoogleGenerativeAI(
|
| 197 |
-
model="gemini-2.0-flash-exp",
|
| 198 |
-
temperature=0,
|
| 199 |
-
api_key=os.getenv("GOOGLE_API_KEY"),
|
| 200 |
-
rate_limiter=google_rate_limiter,
|
| 201 |
-
max_retries=2,
|
| 202 |
-
timeout=60
|
| 203 |
-
)
|
| 204 |
-
elif provider == "nvidia":
|
| 205 |
-
return ChatNVIDIA(
|
| 206 |
-
model="meta/llama-3.1-405b-instruct",
|
| 207 |
-
temperature=0,
|
| 208 |
-
api_key=os.getenv("NVIDIA_API_KEY"),
|
| 209 |
-
rate_limiter=nvidia_rate_limiter,
|
| 210 |
-
max_retries=2
|
| 211 |
-
)
|
| 212 |
-
|
| 213 |
-
# Create fallback chain with exponential backoff
|
| 214 |
-
def create_llm_with_smart_fallbacks():
|
| 215 |
-
"""Create LLM with intelligent fallback and rate limiting"""
|
| 216 |
-
|
| 217 |
-
# Primary: Groq (fastest)
|
| 218 |
-
primary_llm = create_rate_limited_llm("groq")
|
| 219 |
-
|
| 220 |
-
# Fallback 1: Google (most capable)
|
| 221 |
-
fallback_1 = create_rate_limited_llm("google")
|
| 222 |
-
|
| 223 |
-
# Fallback 2: NVIDIA (reliable)
|
| 224 |
-
fallback_2 = create_rate_limited_llm("nvidia")
|
| 225 |
-
|
| 226 |
-
# Create fallback chain
|
| 227 |
-
llm_with_fallbacks = primary_llm.with_fallbacks([fallback_1, fallback_2])
|
| 228 |
-
|
| 229 |
-
return llm_with_fallbacks
|
| 230 |
-
|
| 231 |
-
# Initialize LLM with smart fallbacks
|
| 232 |
-
llm = create_llm_with_smart_fallbacks()
|
| 233 |
-
|
| 234 |
# Create retriever and retriever tool
|
| 235 |
retriever = database.as_retriever(search_type="similarity", search_kwargs={"k": 3})
|
| 236 |
|
|
@@ -240,47 +237,74 @@ retriever_tool = create_retriever_tool(
|
|
| 240 |
description="Search for similar questions and their solutions from the knowledge base."
|
| 241 |
)
|
| 242 |
|
| 243 |
-
# Combine all tools
|
| 244 |
tools = [
|
|
|
|
| 245 |
multiply,
|
| 246 |
add,
|
| 247 |
subtract,
|
| 248 |
divide,
|
| 249 |
modulus,
|
|
|
|
|
|
|
| 250 |
wiki_search,
|
| 251 |
web_search,
|
| 252 |
arxiv_search,
|
| 253 |
-
retriever_tool
|
|
|
|
|
|
|
|
|
|
|
|
|
| 254 |
]
|
| 255 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 256 |
# Create memory for conversation
|
| 257 |
memory = MemorySaver()
|
| 258 |
|
| 259 |
-
# Create the agent
|
| 260 |
agent_executor = create_react_agent(
|
| 261 |
-
model=
|
| 262 |
tools=tools,
|
| 263 |
checkpointer=memory
|
| 264 |
)
|
| 265 |
|
| 266 |
-
# Enhanced robust agent run
|
| 267 |
def robust_agent_run(query, thread_id="robust_conversation", max_retries=3):
|
| 268 |
-
"""Run agent with error handling, rate limiting, and
|
| 269 |
|
| 270 |
for attempt in range(max_retries):
|
| 271 |
try:
|
| 272 |
config = {"configurable": {"thread_id": f"{thread_id}_{attempt}"}}
|
| 273 |
|
| 274 |
-
system_msg = SystemMessage(content='''You are a helpful assistant
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 279 |
|
| 280 |
user_msg = HumanMessage(content=query)
|
| 281 |
result = []
|
| 282 |
|
| 283 |
-
print(f"Attempt {attempt + 1}: Processing query...")
|
| 284 |
|
| 285 |
for step in agent_executor.stream(
|
| 286 |
{"messages": [system_msg, user_msg]},
|
|
@@ -296,9 +320,8 @@ def robust_agent_run(query, thread_id="robust_conversation", max_retries=3):
|
|
| 296 |
except Exception as e:
|
| 297 |
error_msg = str(e).lower()
|
| 298 |
|
| 299 |
-
# Check for rate limit errors
|
| 300 |
if any(keyword in error_msg for keyword in ['rate limit', 'too many requests', '429', 'quota exceeded']):
|
| 301 |
-
wait_time = (2 ** attempt) + random.uniform(1, 3)
|
| 302 |
print(f"Rate limit hit on attempt {attempt + 1}. Waiting {wait_time:.2f} seconds...")
|
| 303 |
time.sleep(wait_time)
|
| 304 |
|
|
@@ -306,7 +329,6 @@ def robust_agent_run(query, thread_id="robust_conversation", max_retries=3):
|
|
| 306 |
return f"Rate limit exceeded after {max_retries} attempts: {str(e)}"
|
| 307 |
continue
|
| 308 |
|
| 309 |
-
# Check for other API errors
|
| 310 |
elif any(keyword in error_msg for keyword in ['api', 'connection', 'timeout', 'service unavailable']):
|
| 311 |
wait_time = (2 ** attempt) + random.uniform(0.5, 1.5)
|
| 312 |
print(f"API error on attempt {attempt + 1}. Retrying in {wait_time:.2f} seconds...")
|
|
@@ -317,7 +339,6 @@ def robust_agent_run(query, thread_id="robust_conversation", max_retries=3):
|
|
| 317 |
continue
|
| 318 |
|
| 319 |
else:
|
| 320 |
-
# Non-recoverable error
|
| 321 |
return f"Error occurred: {str(e)}"
|
| 322 |
|
| 323 |
return "Maximum retries exceeded"
|
|
@@ -327,7 +348,7 @@ request_count = 0
|
|
| 327 |
last_request_time = time.time()
|
| 328 |
|
| 329 |
def main(query: str) -> str:
|
| 330 |
-
"""Main function to run the agent
|
| 331 |
global request_count, last_request_time
|
| 332 |
|
| 333 |
current_time = time.time()
|
|
@@ -338,15 +359,15 @@ def main(query: str) -> str:
|
|
| 338 |
last_request_time = current_time
|
| 339 |
|
| 340 |
request_count += 1
|
| 341 |
-
print(f"Processing request #{request_count}")
|
| 342 |
|
| 343 |
-
# Add
|
| 344 |
if request_count > 1:
|
| 345 |
time.sleep(random.uniform(2, 5))
|
| 346 |
|
| 347 |
return robust_agent_run(query)
|
| 348 |
|
| 349 |
if __name__ == "__main__":
|
| 350 |
-
# Test the agent
|
| 351 |
result = main("What are the names of the US presidents who were assassinated?")
|
| 352 |
print(result)
|
|
|
|
| 7 |
# Imports
|
| 8 |
from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings
|
| 9 |
from langchain_groq import ChatGroq
|
|
|
|
| 10 |
from langchain_nvidia_ai_endpoints import ChatNVIDIA
|
| 11 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
| 12 |
from langchain_community.document_loaders import WikipediaLoader
|
|
|
|
| 41 |
max_bucket_size=10
|
| 42 |
)
|
| 43 |
|
| 44 |
+
# Initialize individual LLMs
|
| 45 |
+
groq_llm = ChatGroq(
|
| 46 |
+
model="llama-3.3-70b-versatile",
|
| 47 |
+
temperature=0,
|
| 48 |
+
api_key=os.getenv("GROQ_API_KEY"),
|
| 49 |
+
rate_limiter=groq_rate_limiter,
|
| 50 |
+
max_retries=2,
|
| 51 |
+
request_timeout=60
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
nvidia_llm = ChatNVIDIA(
|
| 55 |
+
model="meta/llama-3.1-405b-instruct",
|
| 56 |
+
temperature=0,
|
| 57 |
+
api_key=os.getenv("NVIDIA_API_KEY"),
|
| 58 |
+
rate_limiter=nvidia_rate_limiter,
|
| 59 |
+
max_retries=2
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
# Create LLM tools that can be selected by the agent
|
| 63 |
+
@tool
|
| 64 |
+
def groq_reasoning_tool(query: str) -> str:
|
| 65 |
+
"""Use Groq's Llama model for fast reasoning, mathematical calculations, and logical problems.
|
| 66 |
+
Best for: Math problems, logical reasoning, quick calculations, code generation.
|
| 67 |
+
|
| 68 |
+
Args:
|
| 69 |
+
query: The question or problem to solve
|
| 70 |
+
"""
|
| 71 |
+
try:
|
| 72 |
+
time.sleep(random.uniform(1, 2)) # Rate limiting
|
| 73 |
+
response = groq_llm.invoke([HumanMessage(content=query)])
|
| 74 |
+
return f"Groq Response: {response.content}"
|
| 75 |
+
except Exception as e:
|
| 76 |
+
return f"Groq tool failed: {str(e)}"
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
@tool
|
| 80 |
+
def nvidia_specialist_tool(query: str) -> str:
|
| 81 |
+
"""Use NVIDIA's large model for specialized tasks, technical questions, and domain expertise.
|
| 82 |
+
Best for: Technical questions, specialized domains, scientific problems, detailed analysis.
|
| 83 |
+
|
| 84 |
+
Args:
|
| 85 |
+
query: The specialized question or technical problem
|
| 86 |
+
"""
|
| 87 |
+
try:
|
| 88 |
+
time.sleep(random.uniform(2, 4)) # Rate limiting
|
| 89 |
+
response = nvidia_llm.invoke([HumanMessage(content=query)])
|
| 90 |
+
return f"NVIDIA Response: {response.content}"
|
| 91 |
+
except Exception as e:
|
| 92 |
+
return f"NVIDIA tool failed: {str(e)}"
|
| 93 |
+
|
| 94 |
+
# Define calculation tools
|
| 95 |
@tool
|
| 96 |
def multiply(a: int | float, b: int | float) -> int | float:
|
| 97 |
"""Multiply two numbers.
|
|
|
|
| 143 |
"""
|
| 144 |
return a % b
|
| 145 |
|
| 146 |
+
# Define search tools
|
| 147 |
@tool
|
| 148 |
def wiki_search(query: str) -> str:
|
| 149 |
"""Search the wikipedia for a query and return the first paragraph
|
|
|
|
| 170 |
query: The search query.
|
| 171 |
"""
|
| 172 |
try:
|
|
|
|
| 173 |
time.sleep(random.uniform(1, 3))
|
| 174 |
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
|
| 175 |
formatted_search_docs = "\n\n---\n\n".join(
|
|
|
|
| 228 |
# Create vector database
|
| 229 |
database = FAISS.from_documents(json_chunks, NVIDIAEmbeddings())
|
| 230 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
# Create retriever and retriever tool
|
| 232 |
retriever = database.as_retriever(search_type="similarity", search_kwargs={"k": 3})
|
| 233 |
|
|
|
|
| 237 |
description="Search for similar questions and their solutions from the knowledge base."
|
| 238 |
)
|
| 239 |
|
| 240 |
+
# Combine all tools including LLM tools
|
| 241 |
tools = [
|
| 242 |
+
# Math tools
|
| 243 |
multiply,
|
| 244 |
add,
|
| 245 |
subtract,
|
| 246 |
divide,
|
| 247 |
modulus,
|
| 248 |
+
|
| 249 |
+
# Search tools
|
| 250 |
wiki_search,
|
| 251 |
web_search,
|
| 252 |
arxiv_search,
|
| 253 |
+
retriever_tool,
|
| 254 |
+
|
| 255 |
+
# LLM tools - agent can choose which LLM to use
|
| 256 |
+
groq_reasoning_tool,
|
| 257 |
+
nvidia_specialist_tool
|
| 258 |
]
|
| 259 |
|
| 260 |
+
# Use a lightweight coordinator LLM (Groq for speed)
|
| 261 |
+
coordinator_llm = ChatGroq(
|
| 262 |
+
model="llama-3.3-70b-versatile",
|
| 263 |
+
temperature=0,
|
| 264 |
+
api_key=os.getenv("GROQ_API_KEY"),
|
| 265 |
+
rate_limiter=groq_rate_limiter
|
| 266 |
+
)
|
| 267 |
+
|
| 268 |
# Create memory for conversation
|
| 269 |
memory = MemorySaver()
|
| 270 |
|
| 271 |
+
# Create the agent with coordinator LLM
|
| 272 |
agent_executor = create_react_agent(
|
| 273 |
+
model=coordinator_llm,
|
| 274 |
tools=tools,
|
| 275 |
checkpointer=memory
|
| 276 |
)
|
| 277 |
|
| 278 |
+
# Enhanced robust agent run
|
| 279 |
def robust_agent_run(query, thread_id="robust_conversation", max_retries=3):
|
| 280 |
+
"""Run agent with error handling, rate limiting, and LLM tool selection"""
|
| 281 |
|
| 282 |
for attempt in range(max_retries):
|
| 283 |
try:
|
| 284 |
config = {"configurable": {"thread_id": f"{thread_id}_{attempt}"}}
|
| 285 |
|
| 286 |
+
system_msg = SystemMessage(content='''You are a helpful assistant with access to multiple specialized LLM tools and other utilities.
|
| 287 |
+
|
| 288 |
+
AVAILABLE LLM TOOLS:
|
| 289 |
+
- groq_reasoning_tool: Fast reasoning, math, calculations, code (use for quick logical problems)
|
| 290 |
+
- google_analysis_tool: Complex analysis, creative tasks, detailed explanations (use for comprehensive analysis)
|
| 291 |
+
- nvidia_specialist_tool: Technical questions, specialized domains, scientific problems (use for expert-level tasks)
|
| 292 |
+
|
| 293 |
+
TOOL SELECTION STRATEGY:
|
| 294 |
+
- For math/calculations: Use basic math tools (add, multiply, etc.) OR groq_reasoning_tool for complex math
|
| 295 |
+
- For factual questions: Use web_search, wiki_search, or arxiv_search first
|
| 296 |
+
- For analysis/reasoning: Choose the most appropriate LLM tool based on complexity
|
| 297 |
+
- For technical/scientific: Use nvidia_specialist_tool
|
| 298 |
+
- For creative/comprehensive: Use google_analysis_tool
|
| 299 |
+
- For quick logical problems: Use groq_reasoning_tool
|
| 300 |
+
|
| 301 |
+
Always finish with: FINAL ANSWER: [YOUR FINAL ANSWER]
|
| 302 |
+
Your answer should be a number OR few words OR comma separated list as appropriate.''')
|
| 303 |
|
| 304 |
user_msg = HumanMessage(content=query)
|
| 305 |
result = []
|
| 306 |
|
| 307 |
+
print(f"Attempt {attempt + 1}: Processing query with multi-LLM agent...")
|
| 308 |
|
| 309 |
for step in agent_executor.stream(
|
| 310 |
{"messages": [system_msg, user_msg]},
|
|
|
|
| 320 |
except Exception as e:
|
| 321 |
error_msg = str(e).lower()
|
| 322 |
|
|
|
|
| 323 |
if any(keyword in error_msg for keyword in ['rate limit', 'too many requests', '429', 'quota exceeded']):
|
| 324 |
+
wait_time = (2 ** attempt) + random.uniform(1, 3)
|
| 325 |
print(f"Rate limit hit on attempt {attempt + 1}. Waiting {wait_time:.2f} seconds...")
|
| 326 |
time.sleep(wait_time)
|
| 327 |
|
|
|
|
| 329 |
return f"Rate limit exceeded after {max_retries} attempts: {str(e)}"
|
| 330 |
continue
|
| 331 |
|
|
|
|
| 332 |
elif any(keyword in error_msg for keyword in ['api', 'connection', 'timeout', 'service unavailable']):
|
| 333 |
wait_time = (2 ** attempt) + random.uniform(0.5, 1.5)
|
| 334 |
print(f"API error on attempt {attempt + 1}. Retrying in {wait_time:.2f} seconds...")
|
|
|
|
| 339 |
continue
|
| 340 |
|
| 341 |
else:
|
|
|
|
| 342 |
return f"Error occurred: {str(e)}"
|
| 343 |
|
| 344 |
return "Maximum retries exceeded"
|
|
|
|
| 348 |
last_request_time = time.time()
|
| 349 |
|
| 350 |
def main(query: str) -> str:
|
| 351 |
+
"""Main function to run the multi-LLM agent"""
|
| 352 |
global request_count, last_request_time
|
| 353 |
|
| 354 |
current_time = time.time()
|
|
|
|
| 359 |
last_request_time = current_time
|
| 360 |
|
| 361 |
request_count += 1
|
| 362 |
+
print(f"Processing request #{request_count} with multi-LLM agent")
|
| 363 |
|
| 364 |
+
# Add delay between requests
|
| 365 |
if request_count > 1:
|
| 366 |
time.sleep(random.uniform(2, 5))
|
| 367 |
|
| 368 |
return robust_agent_run(query)
|
| 369 |
|
| 370 |
if __name__ == "__main__":
|
| 371 |
+
# Test the multi-LLM agent
|
| 372 |
result = main("What are the names of the US presidents who were assassinated?")
|
| 373 |
print(result)
|