Spaces:
Sleeping
Sleeping
Update veryfinal.py
Browse files- veryfinal.py +5 -6
veryfinal.py
CHANGED
|
@@ -15,9 +15,8 @@ from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
|
|
| 15 |
from langchain_core.tools import tool
|
| 16 |
from langchain_groq import ChatGroq
|
| 17 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 18 |
-
from langchain_nvidia_ai_endpoints import ChatNVIDIA
|
| 19 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
| 20 |
-
from langchain_community.document_loaders import WikipediaLoader
|
| 21 |
from langchain_community.vectorstores import FAISS
|
| 22 |
from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings
|
| 23 |
from langchain.tools.retriever import create_retriever_tool
|
|
@@ -30,7 +29,7 @@ from agno.models.groq import Groq
|
|
| 30 |
from agno.models.google import Gemini
|
| 31 |
from agno.tools.duckduckgo import DuckDuckGoTools
|
| 32 |
from agno.memory.agent import AgentMemory
|
| 33 |
-
from agno.storage.
|
| 34 |
|
| 35 |
load_dotenv()
|
| 36 |
|
|
@@ -73,7 +72,7 @@ def create_agno_agents():
|
|
| 73 |
"""Create high-performance Agno agents"""
|
| 74 |
|
| 75 |
# Storage for persistent memory
|
| 76 |
-
storage =
|
| 77 |
table_name="agent_sessions",
|
| 78 |
db_file="tmp/agent_storage.db"
|
| 79 |
)
|
|
@@ -81,7 +80,7 @@ def create_agno_agents():
|
|
| 81 |
# Math specialist using Groq (fastest)
|
| 82 |
math_agent = Agent(
|
| 83 |
name="MathSpecialist",
|
| 84 |
-
model=
|
| 85 |
model="llama-3.3-70b-versatile",
|
| 86 |
api_key=os.getenv("GROQ_API_KEY"),
|
| 87 |
temperature=0
|
|
@@ -105,7 +104,7 @@ def create_agno_agents():
|
|
| 105 |
# Research specialist using Gemini (most capable)
|
| 106 |
research_agent = Agent(
|
| 107 |
name="ResearchSpecialist",
|
| 108 |
-
model=
|
| 109 |
model="gemini-2.0-flash-lite",
|
| 110 |
api_key=os.getenv("GOOGLE_API_KEY"),
|
| 111 |
temperature=0
|
|
|
|
| 15 |
from langchain_core.tools import tool
|
| 16 |
from langchain_groq import ChatGroq
|
| 17 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
|
|
|
| 18 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
| 19 |
+
from langchain_community.document_loaders import WikipediaLoader
|
| 20 |
from langchain_community.vectorstores import FAISS
|
| 21 |
from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings
|
| 22 |
from langchain.tools.retriever import create_retriever_tool
|
|
|
|
| 29 |
from agno.models.google import Gemini
|
| 30 |
from agno.tools.duckduckgo import DuckDuckGoTools
|
| 31 |
from agno.memory.agent import AgentMemory
|
| 32 |
+
from agno.storage.sqlite import SqliteStorage
|
| 33 |
|
| 34 |
load_dotenv()
|
| 35 |
|
|
|
|
| 72 |
"""Create high-performance Agno agents"""
|
| 73 |
|
| 74 |
# Storage for persistent memory
|
| 75 |
+
storage = SqliteStorage(
|
| 76 |
table_name="agent_sessions",
|
| 77 |
db_file="tmp/agent_storage.db"
|
| 78 |
)
|
|
|
|
| 80 |
# Math specialist using Groq (fastest)
|
| 81 |
math_agent = Agent(
|
| 82 |
name="MathSpecialist",
|
| 83 |
+
model=Groq(
|
| 84 |
model="llama-3.3-70b-versatile",
|
| 85 |
api_key=os.getenv("GROQ_API_KEY"),
|
| 86 |
temperature=0
|
|
|
|
| 104 |
# Research specialist using Gemini (most capable)
|
| 105 |
research_agent = Agent(
|
| 106 |
name="ResearchSpecialist",
|
| 107 |
+
model=Gemini(
|
| 108 |
model="gemini-2.0-flash-lite",
|
| 109 |
api_key=os.getenv("GOOGLE_API_KEY"),
|
| 110 |
temperature=0
|