Spaces:
Sleeping
Sleeping
Update veryfinal.py
Browse files- veryfinal.py +48 -58
veryfinal.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
"""Enhanced LangGraph + Agno Hybrid Agent System
|
| 2 |
|
| 3 |
import os
|
| 4 |
import time
|
|
@@ -31,6 +31,7 @@ from agno.models.google import Gemini
|
|
| 31 |
from agno.tools.tavily import TavilyTools
|
| 32 |
from agno.memory.agent import AgentMemory
|
| 33 |
from agno.storage.sqlite import SqliteStorage
|
|
|
|
| 34 |
|
| 35 |
load_dotenv()
|
| 36 |
|
|
@@ -64,17 +65,28 @@ gemini_limiter = PerformanceRateLimiter(28, "Gemini")
|
|
| 64 |
groq_limiter = PerformanceRateLimiter(28, "Groq")
|
| 65 |
nvidia_limiter = PerformanceRateLimiter(4, "NVIDIA")
|
| 66 |
|
| 67 |
-
# Create Agno agents with SQLite storage
|
| 68 |
def create_agno_agents():
|
|
|
|
| 69 |
storage = SqliteStorage(
|
| 70 |
table_name="agent_sessions",
|
| 71 |
db_file="tmp/agent_sessions.db",
|
| 72 |
auto_upgrade_schema=True
|
| 73 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
math_agent = Agent(
|
| 75 |
name="MathSpecialist",
|
| 76 |
model=Groq(
|
| 77 |
-
|
| 78 |
api_key=os.getenv("GROQ_API_KEY"),
|
| 79 |
temperature=0
|
| 80 |
),
|
|
@@ -82,21 +94,17 @@ def create_agno_agents():
|
|
| 82 |
instructions=[
|
| 83 |
"Solve math problems with precision",
|
| 84 |
"Show step-by-step calculations",
|
| 85 |
-
"Use calculation tools as needed",
|
| 86 |
"Finish with: FINAL ANSWER: [result]"
|
| 87 |
],
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
create_user_memories=True,
|
| 91 |
-
create_session_summary=True
|
| 92 |
-
),
|
| 93 |
show_tool_calls=False,
|
| 94 |
markdown=False
|
| 95 |
)
|
| 96 |
research_agent = Agent(
|
| 97 |
name="ResearchSpecialist",
|
| 98 |
model=Gemini(
|
| 99 |
-
|
| 100 |
api_key=os.getenv("GOOGLE_API_KEY"),
|
| 101 |
temperature=0
|
| 102 |
),
|
|
@@ -104,7 +112,6 @@ def create_agno_agents():
|
|
| 104 |
instructions=[
|
| 105 |
"Conduct thorough research using available tools",
|
| 106 |
"Synthesize information from multiple sources",
|
| 107 |
-
"Provide comprehensive, well-cited answers",
|
| 108 |
"Finish with: FINAL ANSWER: [answer]"
|
| 109 |
],
|
| 110 |
tools=[
|
|
@@ -116,11 +123,8 @@ def create_agno_agents():
|
|
| 116 |
format="markdown"
|
| 117 |
)
|
| 118 |
],
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
create_user_memories=True,
|
| 122 |
-
create_session_summary=True
|
| 123 |
-
),
|
| 124 |
show_tool_calls=False,
|
| 125 |
markdown=False
|
| 126 |
)
|
|
@@ -144,7 +148,7 @@ def subtract(a: int, b: int) -> int:
|
|
| 144 |
|
| 145 |
@tool
|
| 146 |
def divide(a: int, b: int) -> float:
|
| 147 |
-
"""Divide two numbers
|
| 148 |
if b == 0:
|
| 149 |
raise ValueError("Cannot divide by zero.")
|
| 150 |
return a / b
|
|
@@ -199,7 +203,6 @@ def setup_faiss():
|
|
| 199 |
print(f"FAISS setup failed: {e}")
|
| 200 |
return None
|
| 201 |
|
| 202 |
-
# State definition
|
| 203 |
class EnhancedAgentState(TypedDict):
|
| 204 |
messages: Annotated[List[HumanMessage|AIMessage], operator.add]
|
| 205 |
query: str
|
|
@@ -208,7 +211,6 @@ class EnhancedAgentState(TypedDict):
|
|
| 208 |
perf: Dict[str,Any]
|
| 209 |
agno_resp: str
|
| 210 |
|
| 211 |
-
# Hybrid system combining LangGraph and Agno
|
| 212 |
class HybridLangGraphAgnoSystem:
|
| 213 |
def __init__(self):
|
| 214 |
self.agno = create_agno_agents()
|
|
@@ -279,51 +281,39 @@ class HybridLangGraphAgnoSystem:
|
|
| 279 |
g.add_node("agno_research",agno_research)
|
| 280 |
g.add_node("lg_retrieval",lg_retrieval)
|
| 281 |
g.add_node("agno_general",agno_general)
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
for n in ["lg_math","agno_research","lg_retrieval","agno_general"]:
|
| 288 |
-
|
| 289 |
return g.compile(checkpointer=MemorySaver())
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
}
|
| 305 |
except Exception as e:
|
| 306 |
return {"answer":f"Error: {e}","performance_metrics":{},"provider_used":"Error"}
|
| 307 |
|
| 308 |
-
def build_graph(provider: str
|
| 309 |
-
""
|
| 310 |
-
Build and return the StateGraph for the requested provider.
|
| 311 |
-
- "hybrid" returns the HybridLangGraphAgnoSystem graph.
|
| 312 |
-
- "groq", "google", "nvidia" all fall back to the hybrid graph.
|
| 313 |
-
"""
|
| 314 |
-
if provider == "hybrid":
|
| 315 |
-
return HybridLangGraphAgnoSystem().graph
|
| 316 |
-
elif provider in ("groq", "google", "nvidia"):
|
| 317 |
-
# Simply reuse the hybrid graph under these names
|
| 318 |
return HybridLangGraphAgnoSystem().graph
|
| 319 |
-
|
| 320 |
-
raise ValueError(f"Only 'hybrid', 'groq', 'google', or 'nvidia' supported (got '{provider}')")
|
| 321 |
-
|
| 322 |
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
graph=build_graph()
|
| 326 |
msgs=[HumanMessage(content="What are the names of the US presidents who were assassinated?")]
|
| 327 |
-
|
| 328 |
for m in res["messages"]:
|
| 329 |
-
|
|
|
|
| 1 |
+
"""Enhanced LangGraph + Agno Hybrid Agent System"""
|
| 2 |
|
| 3 |
import os
|
| 4 |
import time
|
|
|
|
| 31 |
from agno.tools.tavily import TavilyTools
|
| 32 |
from agno.memory.agent import AgentMemory
|
| 33 |
from agno.storage.sqlite import SqliteStorage
|
| 34 |
+
from agno.memory.v2.db.sqlite import SqliteMemoryDb # Correct import for memory DB
|
| 35 |
|
| 36 |
load_dotenv()
|
| 37 |
|
|
|
|
| 65 |
groq_limiter = PerformanceRateLimiter(28, "Groq")
|
| 66 |
nvidia_limiter = PerformanceRateLimiter(4, "NVIDIA")
|
| 67 |
|
| 68 |
+
# Create Agno agents with corrected SQLite storage and memory
|
| 69 |
def create_agno_agents():
|
| 70 |
+
# 1. Storage for the agent's overall state (conversations, etc.)
|
| 71 |
storage = SqliteStorage(
|
| 72 |
table_name="agent_sessions",
|
| 73 |
db_file="tmp/agent_sessions.db",
|
| 74 |
auto_upgrade_schema=True
|
| 75 |
)
|
| 76 |
+
# 2. A separate database for the agent's memory
|
| 77 |
+
memory_db = SqliteMemoryDb(db_file="tmp/agent_memory.db")
|
| 78 |
+
|
| 79 |
+
# 3. The AgentMemory object, which uses the memory_db
|
| 80 |
+
agent_memory = AgentMemory(
|
| 81 |
+
db=memory_db, # Pass the SqliteMemoryDb here
|
| 82 |
+
create_user_memories=True,
|
| 83 |
+
create_session_summary=True
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
math_agent = Agent(
|
| 87 |
name="MathSpecialist",
|
| 88 |
model=Groq(
|
| 89 |
+
model="llama-3.3-70b-versatile",
|
| 90 |
api_key=os.getenv("GROQ_API_KEY"),
|
| 91 |
temperature=0
|
| 92 |
),
|
|
|
|
| 94 |
instructions=[
|
| 95 |
"Solve math problems with precision",
|
| 96 |
"Show step-by-step calculations",
|
|
|
|
| 97 |
"Finish with: FINAL ANSWER: [result]"
|
| 98 |
],
|
| 99 |
+
storage=storage, # Use SqliteStorage for the agent's persistence
|
| 100 |
+
memory=agent_memory, # Use the configured AgentMemory
|
|
|
|
|
|
|
|
|
|
| 101 |
show_tool_calls=False,
|
| 102 |
markdown=False
|
| 103 |
)
|
| 104 |
research_agent = Agent(
|
| 105 |
name="ResearchSpecialist",
|
| 106 |
model=Gemini(
|
| 107 |
+
model="gemini-2.0-flash-lite",
|
| 108 |
api_key=os.getenv("GOOGLE_API_KEY"),
|
| 109 |
temperature=0
|
| 110 |
),
|
|
|
|
| 112 |
instructions=[
|
| 113 |
"Conduct thorough research using available tools",
|
| 114 |
"Synthesize information from multiple sources",
|
|
|
|
| 115 |
"Finish with: FINAL ANSWER: [answer]"
|
| 116 |
],
|
| 117 |
tools=[
|
|
|
|
| 123 |
format="markdown"
|
| 124 |
)
|
| 125 |
],
|
| 126 |
+
storage=storage, # Use the same storage for persistence
|
| 127 |
+
memory=agent_memory, # Use the same memory configuration
|
|
|
|
|
|
|
|
|
|
| 128 |
show_tool_calls=False,
|
| 129 |
markdown=False
|
| 130 |
)
|
|
|
|
| 148 |
|
| 149 |
@tool
|
| 150 |
def divide(a: int, b: int) -> float:
|
| 151 |
+
"""Divide two numbers."""
|
| 152 |
if b == 0:
|
| 153 |
raise ValueError("Cannot divide by zero.")
|
| 154 |
return a / b
|
|
|
|
| 203 |
print(f"FAISS setup failed: {e}")
|
| 204 |
return None
|
| 205 |
|
|
|
|
| 206 |
class EnhancedAgentState(TypedDict):
|
| 207 |
messages: Annotated[List[HumanMessage|AIMessage], operator.add]
|
| 208 |
query: str
|
|
|
|
| 211 |
perf: Dict[str,Any]
|
| 212 |
agno_resp: str
|
| 213 |
|
|
|
|
| 214 |
class HybridLangGraphAgnoSystem:
|
| 215 |
def __init__(self):
|
| 216 |
self.agno = create_agno_agents()
|
|
|
|
| 281 |
g.add_node("agno_research",agno_research)
|
| 282 |
g.add_node("lg_retrieval",lg_retrieval)
|
| 283 |
g.add_node("agno_general",agno_general)
|
| 284 |
+
g.set_entry_point("router")
|
| 285 |
+
g.add_conditional_edges("router",pick,{
|
| 286 |
+
"lg_math":"lg_math","agno_research":"agno_research",
|
| 287 |
+
"lg_retrieval":"lg_retrieval","agno_general":"agno_general"
|
| 288 |
+
})
|
| 289 |
for n in ["lg_math","agno_research","lg_retrieval","agno_general"]:
|
| 290 |
+
g.add_edge(n,"END")
|
| 291 |
return g.compile(checkpointer=MemorySaver())
|
| 292 |
+
def process_query(self, q: str) -> Dict[str,Any]:
|
| 293 |
+
state={
|
| 294 |
+
"messages":[HumanMessage(content=q)],
|
| 295 |
+
"query":q,"agent_type":"","final_answer":"",
|
| 296 |
+
"perf":{},"agno_resp":""
|
| 297 |
+
}
|
| 298 |
+
cfg={"configurable":{"thread_id":f"hyb_{hash(q)}"}}
|
| 299 |
+
try:
|
| 300 |
+
out=self.graph.invoke(state,cfg)
|
| 301 |
+
return {
|
| 302 |
+
"answer":out["final_answer"],
|
| 303 |
+
"performance_metrics":out["perf"],
|
| 304 |
+
"provider_used":out["perf"].get("prov")
|
| 305 |
+
}
|
|
|
|
| 306 |
except Exception as e:
|
| 307 |
return {"answer":f"Error: {e}","performance_metrics":{},"provider_used":"Error"}
|
| 308 |
|
| 309 |
+
def build_graph(provider: str="hybrid"):
|
| 310 |
+
if provider=="hybrid":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 311 |
return HybridLangGraphAgnoSystem().graph
|
| 312 |
+
raise ValueError("Only 'hybrid' supported")
|
|
|
|
|
|
|
| 313 |
|
| 314 |
+
if __name__ == "__main__":
|
| 315 |
+
graph=build_graph()
|
|
|
|
| 316 |
msgs=[HumanMessage(content="What are the names of the US presidents who were assassinated?")]
|
| 317 |
+
res=graph.invoke({"messages":msgs},{"configurable":{"thread_id":"test"}})
|
| 318 |
for m in res["messages"]:
|
| 319 |
+
m.pretty_print()
|