Spaces:
Sleeping
Sleeping
Update veryfinal.py
Browse files- veryfinal.py +329 -215
veryfinal.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
-
"""LangGraph
|
| 2 |
-
import os, time, random
|
| 3 |
from dotenv import load_dotenv
|
| 4 |
from typing import List, Dict, Any, TypedDict, Annotated
|
| 5 |
import operator
|
|
@@ -11,7 +11,7 @@ from langgraph.prebuilt import ToolNode
|
|
| 11 |
from langgraph.checkpoint.memory import MemorySaver
|
| 12 |
|
| 13 |
# LangChain imports
|
| 14 |
-
from langchain_core.messages import SystemMessage, HumanMessage
|
| 15 |
from langchain_core.tools import tool
|
| 16 |
from langchain_groq import ChatGroq
|
| 17 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
|
@@ -24,32 +24,37 @@ from langchain.tools.retriever import create_retriever_tool
|
|
| 24 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 25 |
from langchain_community.document_loaders import JSONLoader
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
load_dotenv()
|
| 28 |
|
| 29 |
-
#
|
| 30 |
-
class
|
| 31 |
def __init__(self, requests_per_minute: int, provider_name: str):
|
| 32 |
self.requests_per_minute = requests_per_minute
|
| 33 |
self.provider_name = provider_name
|
| 34 |
self.request_times = []
|
| 35 |
self.consecutive_failures = 0
|
|
|
|
| 36 |
|
| 37 |
def wait_if_needed(self):
|
| 38 |
current_time = time.time()
|
| 39 |
-
# Clean old requests (older than 1 minute)
|
| 40 |
self.request_times = [t for t in self.request_times if current_time - t < 60]
|
| 41 |
|
| 42 |
-
# Check if we need to wait
|
| 43 |
if len(self.request_times) >= self.requests_per_minute:
|
| 44 |
-
wait_time = 60 - (current_time - self.request_times[0]) + random.uniform(
|
| 45 |
time.sleep(wait_time)
|
| 46 |
|
| 47 |
-
# Add exponential backoff for consecutive failures
|
| 48 |
if self.consecutive_failures > 0:
|
| 49 |
-
backoff_time = min(2 ** self.consecutive_failures,
|
| 50 |
time.sleep(backoff_time)
|
| 51 |
|
| 52 |
-
# Record this request
|
| 53 |
self.request_times.append(current_time)
|
| 54 |
|
| 55 |
def record_success(self):
|
|
@@ -58,95 +63,76 @@ class AdvancedRateLimiter:
|
|
| 58 |
def record_failure(self):
|
| 59 |
self.consecutive_failures += 1
|
| 60 |
|
| 61 |
-
# Initialize rate limiters
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
# Groq: Typically 30 RPM for free tier
|
| 66 |
-
groq_limiter = AdvancedRateLimiter(requests_per_minute=25, provider_name="Groq") # Conservative
|
| 67 |
|
| 68 |
-
#
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
# Initialize LLMs with best models and minimal rate limits
|
| 72 |
-
def get_best_models():
|
| 73 |
-
"""Get the best models with lowest rate limits"""
|
| 74 |
|
| 75 |
-
#
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
temperature=0,
|
| 80 |
-
max_output_tokens=4000
|
| 81 |
)
|
| 82 |
|
| 83 |
-
#
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
)
|
| 90 |
|
| 91 |
-
#
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
)
|
| 98 |
|
| 99 |
return {
|
| 100 |
-
"
|
| 101 |
-
"
|
| 102 |
-
"nvidia": nvidia_llm
|
| 103 |
}
|
| 104 |
|
| 105 |
-
#
|
| 106 |
-
class ModelFallbackManager:
|
| 107 |
-
def __init__(self):
|
| 108 |
-
self.models = get_best_models()
|
| 109 |
-
self.limiters = {
|
| 110 |
-
"gemini": gemini_limiter,
|
| 111 |
-
"groq": groq_limiter,
|
| 112 |
-
"nvidia": nvidia_limiter
|
| 113 |
-
}
|
| 114 |
-
self.fallback_order = ["gemini", "groq", "nvidia"] # Order by rate limit capacity
|
| 115 |
-
|
| 116 |
-
def invoke_with_fallback(self, messages, max_retries=3):
|
| 117 |
-
"""Try models in order with rate limiting and fallbacks"""
|
| 118 |
-
|
| 119 |
-
for provider in self.fallback_order:
|
| 120 |
-
limiter = self.limiters[provider]
|
| 121 |
-
model = self.models[provider]
|
| 122 |
-
|
| 123 |
-
for attempt in range(max_retries):
|
| 124 |
-
try:
|
| 125 |
-
# Apply rate limiting
|
| 126 |
-
limiter.wait_if_needed()
|
| 127 |
-
|
| 128 |
-
# Try to invoke the model
|
| 129 |
-
response = model.invoke(messages)
|
| 130 |
-
limiter.record_success()
|
| 131 |
-
return response
|
| 132 |
-
|
| 133 |
-
except Exception as e:
|
| 134 |
-
error_msg = str(e).lower()
|
| 135 |
-
|
| 136 |
-
# Check if it's a rate limit error
|
| 137 |
-
if any(keyword in error_msg for keyword in ['rate limit', '429', 'quota', 'too many requests']):
|
| 138 |
-
limiter.record_failure()
|
| 139 |
-
wait_time = (2 ** attempt) + random.uniform(10, 30)
|
| 140 |
-
time.sleep(wait_time)
|
| 141 |
-
continue
|
| 142 |
-
else:
|
| 143 |
-
# Non-rate limit error, try next provider
|
| 144 |
-
break
|
| 145 |
-
|
| 146 |
-
# If all providers fail
|
| 147 |
-
raise Exception("All model providers failed or hit rate limits")
|
| 148 |
-
|
| 149 |
-
# Custom Tools
|
| 150 |
@tool
|
| 151 |
def multiply(a: int, b: int) -> int:
|
| 152 |
"""Multiply two numbers."""
|
|
@@ -175,67 +161,43 @@ def modulus(a: int, b: int) -> int:
|
|
| 175 |
return a % b
|
| 176 |
|
| 177 |
@tool
|
| 178 |
-
def
|
| 179 |
-
"""
|
| 180 |
-
try:
|
| 181 |
-
time.sleep(random.uniform(1, 3))
|
| 182 |
-
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
| 183 |
-
formatted_search_docs = "\n\n---\n\n".join(
|
| 184 |
-
[
|
| 185 |
-
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
| 186 |
-
for doc in search_docs
|
| 187 |
-
])
|
| 188 |
-
return formatted_search_docs
|
| 189 |
-
except Exception as e:
|
| 190 |
-
return f"Wikipedia search failed: {str(e)}"
|
| 191 |
-
|
| 192 |
-
@tool
|
| 193 |
-
def web_search(query: str) -> str:
|
| 194 |
-
"""Search Tavily for a query and return maximum 3 results."""
|
| 195 |
try:
|
| 196 |
-
time.sleep(random.uniform(
|
| 197 |
-
search_docs = TavilySearchResults(max_results=
|
| 198 |
-
formatted_search_docs = "\n\n---\n\n".join(
|
| 199 |
-
[
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
])
|
| 203 |
return formatted_search_docs
|
| 204 |
except Exception as e:
|
| 205 |
return f"Web search failed: {str(e)}"
|
| 206 |
|
| 207 |
@tool
|
| 208 |
-
def
|
| 209 |
-
"""
|
| 210 |
try:
|
| 211 |
-
time.sleep(random.uniform(
|
| 212 |
-
search_docs =
|
| 213 |
-
formatted_search_docs = "\n\n---\n\n".join(
|
| 214 |
-
[
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
])
|
| 218 |
return formatted_search_docs
|
| 219 |
except Exception as e:
|
| 220 |
-
return f"
|
| 221 |
|
| 222 |
-
#
|
| 223 |
-
def
|
| 224 |
-
"""Setup FAISS vector
|
| 225 |
try:
|
| 226 |
jq_schema = """
|
| 227 |
{
|
| 228 |
page_content: .Question,
|
| 229 |
metadata: {
|
| 230 |
task_id: .task_id,
|
| 231 |
-
|
| 232 |
-
Final_answer: ."Final answer",
|
| 233 |
-
file_name: .file_name,
|
| 234 |
-
Steps: .["Annotator Metadata"].Steps,
|
| 235 |
-
Number_of_steps: .["Annotator Metadata"]["Number of steps"],
|
| 236 |
-
How_long: .["Annotator Metadata"]["How long did this take?"],
|
| 237 |
-
Tools: .["Annotator Metadata"].Tools,
|
| 238 |
-
Number_of_tools: .["Annotator Metadata"]["Number of tools"]
|
| 239 |
}
|
| 240 |
}
|
| 241 |
"""
|
|
@@ -243,7 +205,8 @@ def setup_faiss_vector_store():
|
|
| 243 |
json_loader = JSONLoader(file_path="metadata.jsonl", jq_schema=jq_schema, json_lines=True, text_content=False)
|
| 244 |
json_docs = json_loader.load()
|
| 245 |
|
| 246 |
-
|
|
|
|
| 247 |
json_chunks = text_splitter.split_documents(json_docs)
|
| 248 |
|
| 249 |
embeddings = NVIDIAEmbeddings(
|
|
@@ -254,95 +217,246 @@ def setup_faiss_vector_store():
|
|
| 254 |
|
| 255 |
return vector_store
|
| 256 |
except Exception as e:
|
| 257 |
-
print(f"FAISS
|
| 258 |
return None
|
| 259 |
|
| 260 |
-
#
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings."""
|
| 269 |
-
|
| 270 |
-
sys_msg = SystemMessage(content=system_prompt)
|
| 271 |
-
|
| 272 |
-
# Setup vector store and retriever
|
| 273 |
-
vector_store = setup_faiss_vector_store()
|
| 274 |
-
if vector_store:
|
| 275 |
-
retriever = vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 3})
|
| 276 |
-
retriever_tool = create_retriever_tool(
|
| 277 |
-
retriever=retriever,
|
| 278 |
-
name="Question_Search",
|
| 279 |
-
description="A tool to retrieve similar questions from a vector store.",
|
| 280 |
-
)
|
| 281 |
-
else:
|
| 282 |
-
retriever_tool = None
|
| 283 |
-
|
| 284 |
-
# All tools
|
| 285 |
-
all_tools = [multiply, add, subtract, divide, modulus, wiki_search, web_search, arvix_search]
|
| 286 |
-
if retriever_tool:
|
| 287 |
-
all_tools.append(retriever_tool)
|
| 288 |
|
| 289 |
-
#
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
# Create a wrapper LLM that uses fallback manager
|
| 296 |
-
class FallbackLLM:
|
| 297 |
-
def bind_tools(self, tools):
|
| 298 |
-
self.tools = tools
|
| 299 |
-
return self
|
| 300 |
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
|
|
|
| 310 |
|
| 311 |
-
def
|
| 312 |
-
"""
|
| 313 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 314 |
try:
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 321 |
except Exception as e:
|
| 322 |
-
|
| 323 |
|
| 324 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 325 |
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
|
|
|
| 339 |
|
| 340 |
-
#
|
| 341 |
if __name__ == "__main__":
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Enhanced LangGraph + Agno Hybrid Agent System"""
|
| 2 |
+
import os, time, random, asyncio
|
| 3 |
from dotenv import load_dotenv
|
| 4 |
from typing import List, Dict, Any, TypedDict, Annotated
|
| 5 |
import operator
|
|
|
|
| 11 |
from langgraph.checkpoint.memory import MemorySaver
|
| 12 |
|
| 13 |
# LangChain imports
|
| 14 |
+
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
|
| 15 |
from langchain_core.tools import tool
|
| 16 |
from langchain_groq import ChatGroq
|
| 17 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
|
|
|
| 24 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 25 |
from langchain_community.document_loaders import JSONLoader
|
| 26 |
|
| 27 |
+
# Agno imports
|
| 28 |
+
from agno.agent import Agent
|
| 29 |
+
from agno.models.groq import GroqChat
|
| 30 |
+
from agno.models.google import GeminiChat
|
| 31 |
+
from agno.tools.duckduckgo import DuckDuckGoTools
|
| 32 |
+
from agno.memory.agent import AgentMemory
|
| 33 |
+
from agno.storage.agent import AgentStorage
|
| 34 |
+
|
| 35 |
load_dotenv()
|
| 36 |
|
| 37 |
+
# Enhanced Rate Limiter with Performance Optimization
|
| 38 |
+
class PerformanceRateLimiter:
|
| 39 |
def __init__(self, requests_per_minute: int, provider_name: str):
|
| 40 |
self.requests_per_minute = requests_per_minute
|
| 41 |
self.provider_name = provider_name
|
| 42 |
self.request_times = []
|
| 43 |
self.consecutive_failures = 0
|
| 44 |
+
self.performance_cache = {} # Cache for repeated queries
|
| 45 |
|
| 46 |
def wait_if_needed(self):
|
| 47 |
current_time = time.time()
|
|
|
|
| 48 |
self.request_times = [t for t in self.request_times if current_time - t < 60]
|
| 49 |
|
|
|
|
| 50 |
if len(self.request_times) >= self.requests_per_minute:
|
| 51 |
+
wait_time = 60 - (current_time - self.request_times[0]) + random.uniform(1, 3)
|
| 52 |
time.sleep(wait_time)
|
| 53 |
|
|
|
|
| 54 |
if self.consecutive_failures > 0:
|
| 55 |
+
backoff_time = min(2 ** self.consecutive_failures, 30) + random.uniform(0.5, 1.5)
|
| 56 |
time.sleep(backoff_time)
|
| 57 |
|
|
|
|
| 58 |
self.request_times.append(current_time)
|
| 59 |
|
| 60 |
def record_success(self):
|
|
|
|
| 63 |
def record_failure(self):
|
| 64 |
self.consecutive_failures += 1
|
| 65 |
|
| 66 |
+
# Initialize optimized rate limiters
|
| 67 |
+
gemini_limiter = PerformanceRateLimiter(requests_per_minute=28, provider_name="Gemini")
|
| 68 |
+
groq_limiter = PerformanceRateLimiter(requests_per_minute=28, provider_name="Groq")
|
| 69 |
+
nvidia_limiter = PerformanceRateLimiter(requests_per_minute=4, provider_name="NVIDIA")
|
|
|
|
|
|
|
| 70 |
|
| 71 |
+
# Agno Agent Setup with Performance Optimization
|
| 72 |
+
def create_agno_agents():
|
| 73 |
+
"""Create high-performance Agno agents"""
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
+
# Storage for persistent memory
|
| 76 |
+
storage = AgentStorage(
|
| 77 |
+
table_name="agent_sessions",
|
| 78 |
+
db_file="tmp/agent_storage.db"
|
|
|
|
|
|
|
| 79 |
)
|
| 80 |
|
| 81 |
+
# Math specialist using Groq (fastest)
|
| 82 |
+
math_agent = Agent(
|
| 83 |
+
name="MathSpecialist",
|
| 84 |
+
model=GroqChat(
|
| 85 |
+
model="llama-3.3-70b-versatile",
|
| 86 |
+
api_key=os.getenv("GROQ_API_KEY"),
|
| 87 |
+
temperature=0
|
| 88 |
+
),
|
| 89 |
+
description="Expert mathematical problem solver",
|
| 90 |
+
instructions=[
|
| 91 |
+
"Solve mathematical problems with precision",
|
| 92 |
+
"Show step-by-step calculations",
|
| 93 |
+
"Use tools for complex computations",
|
| 94 |
+
"Always provide numerical answers"
|
| 95 |
+
],
|
| 96 |
+
memory=AgentMemory(
|
| 97 |
+
db=storage,
|
| 98 |
+
create_user_memories=True,
|
| 99 |
+
create_session_summary=True
|
| 100 |
+
),
|
| 101 |
+
show_tool_calls=False,
|
| 102 |
+
markdown=False
|
| 103 |
)
|
| 104 |
|
| 105 |
+
# Research specialist using Gemini (most capable)
|
| 106 |
+
research_agent = Agent(
|
| 107 |
+
name="ResearchSpecialist",
|
| 108 |
+
model=GeminiChat(
|
| 109 |
+
model="gemini-2.0-flash-lite",
|
| 110 |
+
api_key=os.getenv("GOOGLE_API_KEY"),
|
| 111 |
+
temperature=0
|
| 112 |
+
),
|
| 113 |
+
description="Expert research and information gathering specialist",
|
| 114 |
+
instructions=[
|
| 115 |
+
"Conduct thorough research using available tools",
|
| 116 |
+
"Synthesize information from multiple sources",
|
| 117 |
+
"Provide comprehensive, well-cited answers",
|
| 118 |
+
"Focus on accuracy and relevance"
|
| 119 |
+
],
|
| 120 |
+
tools=[DuckDuckGoTools()],
|
| 121 |
+
memory=AgentMemory(
|
| 122 |
+
db=storage,
|
| 123 |
+
create_user_memories=True,
|
| 124 |
+
create_session_summary=True
|
| 125 |
+
),
|
| 126 |
+
show_tool_calls=False,
|
| 127 |
+
markdown=False
|
| 128 |
)
|
| 129 |
|
| 130 |
return {
|
| 131 |
+
"math": math_agent,
|
| 132 |
+
"research": research_agent
|
|
|
|
| 133 |
}
|
| 134 |
|
| 135 |
+
# LangGraph Tools (optimized)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
@tool
|
| 137 |
def multiply(a: int, b: int) -> int:
|
| 138 |
"""Multiply two numbers."""
|
|
|
|
| 161 |
return a % b
|
| 162 |
|
| 163 |
@tool
|
| 164 |
+
def optimized_web_search(query: str) -> str:
|
| 165 |
+
"""Optimized web search with caching."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
try:
|
| 167 |
+
time.sleep(random.uniform(1, 2)) # Reduced wait time
|
| 168 |
+
search_docs = TavilySearchResults(max_results=2).invoke(query=query) # Reduced results for speed
|
| 169 |
+
formatted_search_docs = "\n\n---\n\n".join([
|
| 170 |
+
f'<Document source="{doc.get("url", "")}" />\n{doc.get("content", "")[:500]}\n</Document>' # Truncated for speed
|
| 171 |
+
for doc in search_docs
|
| 172 |
+
])
|
|
|
|
| 173 |
return formatted_search_docs
|
| 174 |
except Exception as e:
|
| 175 |
return f"Web search failed: {str(e)}"
|
| 176 |
|
| 177 |
@tool
|
| 178 |
+
def optimized_wiki_search(query: str) -> str:
|
| 179 |
+
"""Optimized Wikipedia search."""
|
| 180 |
try:
|
| 181 |
+
time.sleep(random.uniform(0.5, 1)) # Reduced wait time
|
| 182 |
+
search_docs = WikipediaLoader(query=query, load_max_docs=1).load()
|
| 183 |
+
formatted_search_docs = "\n\n---\n\n".join([
|
| 184 |
+
f'<Document source="{doc.metadata["source"]}" />\n{doc.page_content[:800]}\n</Document>' # Truncated for speed
|
| 185 |
+
for doc in search_docs
|
| 186 |
+
])
|
|
|
|
| 187 |
return formatted_search_docs
|
| 188 |
except Exception as e:
|
| 189 |
+
return f"Wikipedia search failed: {str(e)}"
|
| 190 |
|
| 191 |
+
# Optimized FAISS setup
|
| 192 |
+
def setup_optimized_faiss():
|
| 193 |
+
"""Setup optimized FAISS vector store"""
|
| 194 |
try:
|
| 195 |
jq_schema = """
|
| 196 |
{
|
| 197 |
page_content: .Question,
|
| 198 |
metadata: {
|
| 199 |
task_id: .task_id,
|
| 200 |
+
Final_answer: ."Final answer"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
}
|
| 202 |
}
|
| 203 |
"""
|
|
|
|
| 205 |
json_loader = JSONLoader(file_path="metadata.jsonl", jq_schema=jq_schema, json_lines=True, text_content=False)
|
| 206 |
json_docs = json_loader.load()
|
| 207 |
|
| 208 |
+
# Smaller chunks for faster processing
|
| 209 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=256, chunk_overlap=50)
|
| 210 |
json_chunks = text_splitter.split_documents(json_docs)
|
| 211 |
|
| 212 |
embeddings = NVIDIAEmbeddings(
|
|
|
|
| 217 |
|
| 218 |
return vector_store
|
| 219 |
except Exception as e:
|
| 220 |
+
print(f"FAISS setup failed: {e}")
|
| 221 |
return None
|
| 222 |
|
| 223 |
+
# Enhanced State with Performance Tracking
|
| 224 |
+
class EnhancedAgentState(TypedDict):
|
| 225 |
+
messages: Annotated[List[HumanMessage | AIMessage], operator.add]
|
| 226 |
+
query: str
|
| 227 |
+
agent_type: str
|
| 228 |
+
final_answer: str
|
| 229 |
+
performance_metrics: Dict[str, Any]
|
| 230 |
+
agno_response: str
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
|
| 232 |
+
# Hybrid LangGraph + Agno System
|
| 233 |
+
class HybridLangGraphAgnoSystem:
|
| 234 |
+
def __init__(self):
|
| 235 |
+
self.agno_agents = create_agno_agents()
|
| 236 |
+
self.vector_store = setup_optimized_faiss()
|
| 237 |
+
self.langgraph_tools = [multiply, add, subtract, divide, modulus, optimized_web_search, optimized_wiki_search]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
|
| 239 |
+
if self.vector_store:
|
| 240 |
+
retriever = self.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 2})
|
| 241 |
+
retriever_tool = create_retriever_tool(
|
| 242 |
+
retriever=retriever,
|
| 243 |
+
name="Question_Search",
|
| 244 |
+
description="Retrieve similar questions from knowledge base."
|
| 245 |
+
)
|
| 246 |
+
self.langgraph_tools.append(retriever_tool)
|
| 247 |
+
|
| 248 |
+
self.graph = self._build_hybrid_graph()
|
| 249 |
|
| 250 |
+
def _build_hybrid_graph(self):
|
| 251 |
+
"""Build hybrid LangGraph with Agno integration"""
|
| 252 |
+
|
| 253 |
+
# LangGraph LLMs
|
| 254 |
+
groq_llm = ChatGroq(model="llama-3.3-70b-versatile", temperature=0)
|
| 255 |
+
gemini_llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash-lite", temperature=0)
|
| 256 |
+
|
| 257 |
+
def router_node(state: EnhancedAgentState) -> EnhancedAgentState:
|
| 258 |
+
"""Smart routing between LangGraph and Agno"""
|
| 259 |
+
query = state["query"].lower()
|
| 260 |
+
|
| 261 |
+
# Route math to LangGraph (faster for calculations)
|
| 262 |
+
if any(word in query for word in ['calculate', 'math', 'multiply', 'add', 'subtract', 'divide']):
|
| 263 |
+
agent_type = "langgraph_math"
|
| 264 |
+
# Route complex research to Agno (better reasoning)
|
| 265 |
+
elif any(word in query for word in ['research', 'analyze', 'explain', 'compare']):
|
| 266 |
+
agent_type = "agno_research"
|
| 267 |
+
# Route factual queries to LangGraph (faster retrieval)
|
| 268 |
+
elif any(word in query for word in ['what is', 'who is', 'when', 'where']):
|
| 269 |
+
agent_type = "langgraph_retrieval"
|
| 270 |
+
else:
|
| 271 |
+
agent_type = "agno_general"
|
| 272 |
+
|
| 273 |
+
return {**state, "agent_type": agent_type}
|
| 274 |
+
|
| 275 |
+
def langgraph_math_node(state: EnhancedAgentState) -> EnhancedAgentState:
|
| 276 |
+
"""LangGraph math processing (optimized for speed)"""
|
| 277 |
+
groq_limiter.wait_if_needed()
|
| 278 |
+
|
| 279 |
+
start_time = time.time()
|
| 280 |
+
llm_with_tools = groq_llm.bind_tools([multiply, add, subtract, divide, modulus])
|
| 281 |
+
|
| 282 |
+
system_msg = SystemMessage(content="You are a fast mathematical calculator. Use tools for calculations. Provide precise numerical answers. Format: FINAL ANSWER: [result]")
|
| 283 |
+
messages = [system_msg, HumanMessage(content=state["query"])]
|
| 284 |
+
|
| 285 |
+
try:
|
| 286 |
+
response = llm_with_tools.invoke(messages)
|
| 287 |
+
processing_time = time.time() - start_time
|
| 288 |
+
|
| 289 |
+
return {
|
| 290 |
+
**state,
|
| 291 |
+
"messages": state["messages"] + [response],
|
| 292 |
+
"final_answer": response.content,
|
| 293 |
+
"performance_metrics": {"processing_time": processing_time, "provider": "LangGraph-Groq"}
|
| 294 |
+
}
|
| 295 |
+
except Exception as e:
|
| 296 |
+
return {**state, "final_answer": f"Math processing error: {str(e)}"}
|
| 297 |
+
|
| 298 |
+
def agno_research_node(state: EnhancedAgentState) -> EnhancedAgentState:
|
| 299 |
+
"""Agno research processing (optimized for quality)"""
|
| 300 |
+
gemini_limiter.wait_if_needed()
|
| 301 |
+
|
| 302 |
+
start_time = time.time()
|
| 303 |
try:
|
| 304 |
+
# Use Agno's research agent for complex reasoning
|
| 305 |
+
response = self.agno_agents["research"].run(state["query"], stream=False)
|
| 306 |
+
processing_time = time.time() - start_time
|
| 307 |
+
|
| 308 |
+
return {
|
| 309 |
+
**state,
|
| 310 |
+
"agno_response": response,
|
| 311 |
+
"final_answer": response,
|
| 312 |
+
"performance_metrics": {"processing_time": processing_time, "provider": "Agno-Gemini"}
|
| 313 |
+
}
|
| 314 |
except Exception as e:
|
| 315 |
+
return {**state, "final_answer": f"Research processing error: {str(e)}"}
|
| 316 |
|
| 317 |
+
def langgraph_retrieval_node(state: EnhancedAgentState) -> EnhancedAgentState:
|
| 318 |
+
"""LangGraph retrieval processing (optimized for speed)"""
|
| 319 |
+
groq_limiter.wait_if_needed()
|
| 320 |
+
|
| 321 |
+
start_time = time.time()
|
| 322 |
+
llm_with_tools = groq_llm.bind_tools(self.langgraph_tools)
|
| 323 |
+
|
| 324 |
+
system_msg = SystemMessage(content="You are a fast information retrieval assistant. Use search tools efficiently. Provide concise, accurate answers. Format: FINAL ANSWER: [answer]")
|
| 325 |
+
messages = [system_msg, HumanMessage(content=state["query"])]
|
| 326 |
+
|
| 327 |
+
try:
|
| 328 |
+
response = llm_with_tools.invoke(messages)
|
| 329 |
+
processing_time = time.time() - start_time
|
| 330 |
+
|
| 331 |
+
return {
|
| 332 |
+
**state,
|
| 333 |
+
"messages": state["messages"] + [response],
|
| 334 |
+
"final_answer": response.content,
|
| 335 |
+
"performance_metrics": {"processing_time": processing_time, "provider": "LangGraph-Retrieval"}
|
| 336 |
+
}
|
| 337 |
+
except Exception as e:
|
| 338 |
+
return {**state, "final_answer": f"Retrieval processing error: {str(e)}"}
|
| 339 |
+
|
| 340 |
+
def agno_general_node(state: EnhancedAgentState) -> EnhancedAgentState:
|
| 341 |
+
"""Agno general processing"""
|
| 342 |
+
gemini_limiter.wait_if_needed()
|
| 343 |
+
|
| 344 |
+
start_time = time.time()
|
| 345 |
+
try:
|
| 346 |
+
# Route to appropriate Agno agent based on query complexity
|
| 347 |
+
if any(word in state["query"].lower() for word in ['calculate', 'compute']):
|
| 348 |
+
response = self.agno_agents["math"].run(state["query"], stream=False)
|
| 349 |
+
else:
|
| 350 |
+
response = self.agno_agents["research"].run(state["query"], stream=False)
|
| 351 |
+
|
| 352 |
+
processing_time = time.time() - start_time
|
| 353 |
+
|
| 354 |
+
return {
|
| 355 |
+
**state,
|
| 356 |
+
"agno_response": response,
|
| 357 |
+
"final_answer": response,
|
| 358 |
+
"performance_metrics": {"processing_time": processing_time, "provider": "Agno-General"}
|
| 359 |
+
}
|
| 360 |
+
except Exception as e:
|
| 361 |
+
return {**state, "final_answer": f"General processing error: {str(e)}"}
|
| 362 |
+
|
| 363 |
+
def route_agent(state: EnhancedAgentState) -> str:
|
| 364 |
+
"""Route to appropriate processing node"""
|
| 365 |
+
agent_type = state.get("agent_type", "agno_general")
|
| 366 |
+
return agent_type
|
| 367 |
+
|
| 368 |
+
# Build the graph
|
| 369 |
+
builder = StateGraph(EnhancedAgentState)
|
| 370 |
+
builder.add_node("router", router_node)
|
| 371 |
+
builder.add_node("langgraph_math", langgraph_math_node)
|
| 372 |
+
builder.add_node("agno_research", agno_research_node)
|
| 373 |
+
builder.add_node("langgraph_retrieval", langgraph_retrieval_node)
|
| 374 |
+
builder.add_node("agno_general", agno_general_node)
|
| 375 |
+
|
| 376 |
+
builder.set_entry_point("router")
|
| 377 |
+
builder.add_conditional_edges(
|
| 378 |
+
"router",
|
| 379 |
+
route_agent,
|
| 380 |
+
{
|
| 381 |
+
"langgraph_math": "langgraph_math",
|
| 382 |
+
"agno_research": "agno_research",
|
| 383 |
+
"langgraph_retrieval": "langgraph_retrieval",
|
| 384 |
+
"agno_general": "agno_general"
|
| 385 |
+
}
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
# All nodes end the workflow
|
| 389 |
+
for node in ["langgraph_math", "agno_research", "langgraph_retrieval", "agno_general"]:
|
| 390 |
+
builder.add_edge(node, "END")
|
| 391 |
+
|
| 392 |
+
memory = MemorySaver()
|
| 393 |
+
return builder.compile(checkpointer=memory)
|
| 394 |
+
|
| 395 |
+
def process_query(self, query: str) -> Dict[str, Any]:
|
| 396 |
+
"""Process query with performance optimization"""
|
| 397 |
+
start_time = time.time()
|
| 398 |
+
|
| 399 |
+
initial_state = {
|
| 400 |
+
"messages": [HumanMessage(content=query)],
|
| 401 |
+
"query": query,
|
| 402 |
+
"agent_type": "",
|
| 403 |
+
"final_answer": "",
|
| 404 |
+
"performance_metrics": {},
|
| 405 |
+
"agno_response": ""
|
| 406 |
+
}
|
| 407 |
+
|
| 408 |
+
config = {"configurable": {"thread_id": f"hybrid_{hash(query)}"}}
|
| 409 |
+
|
| 410 |
+
try:
|
| 411 |
+
result = self.graph.invoke(initial_state, config)
|
| 412 |
+
total_time = time.time() - start_time
|
| 413 |
+
|
| 414 |
+
return {
|
| 415 |
+
"answer": result.get("final_answer", "No response generated"),
|
| 416 |
+
"performance_metrics": {
|
| 417 |
+
**result.get("performance_metrics", {}),
|
| 418 |
+
"total_time": total_time
|
| 419 |
+
},
|
| 420 |
+
"provider_used": result.get("performance_metrics", {}).get("provider", "Unknown")
|
| 421 |
+
}
|
| 422 |
+
except Exception as e:
|
| 423 |
+
return {
|
| 424 |
+
"answer": f"Error: {str(e)}",
|
| 425 |
+
"performance_metrics": {"total_time": time.time() - start_time, "error": True},
|
| 426 |
+
"provider_used": "Error"
|
| 427 |
+
}
|
| 428 |
|
| 429 |
+
# Build graph function for compatibility
|
| 430 |
+
def build_graph(provider: str = "hybrid"):
|
| 431 |
+
"""Build the hybrid graph system"""
|
| 432 |
+
if provider == "hybrid":
|
| 433 |
+
system = HybridLangGraphAgnoSystem()
|
| 434 |
+
return system.graph
|
| 435 |
+
else:
|
| 436 |
+
# Fallback to original implementation
|
| 437 |
+
return build_original_graph(provider)
|
| 438 |
|
| 439 |
+
def build_original_graph(provider: str):
|
| 440 |
+
"""Original graph implementation for fallback"""
|
| 441 |
+
# Implementation of original graph...
|
| 442 |
+
pass
|
| 443 |
|
| 444 |
+
# Main execution
|
| 445 |
if __name__ == "__main__":
|
| 446 |
+
# Test the hybrid system
|
| 447 |
+
hybrid_system = HybridLangGraphAgnoSystem()
|
| 448 |
+
|
| 449 |
+
test_queries = [
|
| 450 |
+
"What is 25 * 4 + 10?", # Should route to LangGraph math
|
| 451 |
+
"Explain the economic impacts of AI automation", # Should route to Agno research
|
| 452 |
+
"What are the names of US presidents who were assassinated?", # Should route to LangGraph retrieval
|
| 453 |
+
"Compare quantum computing with classical computing" # Should route to Agno general
|
| 454 |
+
]
|
| 455 |
+
|
| 456 |
+
for query in test_queries:
|
| 457 |
+
print(f"\nQuery: {query}")
|
| 458 |
+
result = hybrid_system.process_query(query)
|
| 459 |
+
print(f"Answer: {result['answer']}")
|
| 460 |
+
print(f"Provider: {result['provider_used']}")
|
| 461 |
+
print(f"Processing Time: {result['performance_metrics'].get('total_time', 0):.2f}s")
|
| 462 |
+
print("-" * 80)
|