Initial Gradio app
Browse files- README.md +9 -0
- app.py +20 -0
- requirements.txt +6 -0
README.md
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Fastai_pet_classifier
|
| 3 |
+
emoji: 🤢
|
| 4 |
+
colorFrom: red
|
| 5 |
+
colorTo: green
|
| 6 |
+
sdk: gradio
|
| 7 |
+
app_file: app.py
|
| 8 |
+
pinned: false
|
| 9 |
+
---
|
app.py
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from fastai.vision.all import *
|
| 3 |
+
import skimage
|
| 4 |
+
|
| 5 |
+
learn = load_learner('panda-model-1')
|
| 6 |
+
|
| 7 |
+
labels = learn.dls.vocab
|
| 8 |
+
def predict(img):
|
| 9 |
+
img = PILImage.create(img)
|
| 10 |
+
pred,pred_idx,probs = learn.predict(img)
|
| 11 |
+
return {labels[i]: float(probs[i]) for i in range(len(labels))}
|
| 12 |
+
|
| 13 |
+
title = "Prostate cANcer graDe Assessment model"
|
| 14 |
+
description = "A model to predict the ISUP grade for prostate cancer based on whole-slide images of digitized H&E-stained biopsies."
|
| 15 |
+
# article="<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' target='_blank'>Blog post</a></p>"
|
| 16 |
+
examples = ['test.jpg']
|
| 17 |
+
interpretation='default'
|
| 18 |
+
enable_queue=True
|
| 19 |
+
|
| 20 |
+
gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(224, 224)),outputs=gr.outputs.Label(num_top_classes=3),title=title,description=description,article=article,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastai
|
| 2 |
+
scikit-image
|
| 3 |
+
imageio
|
| 4 |
+
pandas
|
| 5 |
+
imagecodecs
|
| 6 |
+
tifffile
|