Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import torch | |
| from transformers import pipeline | |
| username = "ardneebwar" ## Complete your username | |
| model_id = f"{username}/distilhubert-finetuned-gtzan" | |
| device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
| pipe = pipeline("audio-classification", model=model_id, device=device) | |
| # def predict_trunc(filepath): | |
| # preprocessed = pipe.preprocess(filepath) | |
| # truncated = pipe.feature_extractor.pad(preprocessed,truncation=True, max_length = 16_000*30) | |
| # model_outputs = pipe.forward(truncated) | |
| # outputs = pipe.postprocess(model_outputs) | |
| # return outputs | |
| def classify_audio(filepath): | |
| import time | |
| start_time = time.time() | |
| # Assuming `pipe` is your model pipeline for inference | |
| preds = pipe(filepath) | |
| outputs = {} | |
| for p in preds: | |
| outputs[p["label"]] = p["score"] | |
| end_time = time.time() | |
| prediction_time = end_time - start_time | |
| return outputs, prediction_time | |
| title = "🎵 Music Genre Classifier" | |
| description = """ | |
| Music Genre Classifier model (Fine-tuned "ntu-spml/distilhubert") Dataset: [GTZAN](https://huggingface.co/datasets/marsyas/gtzan) | |
| """ | |
| filenames = ['rock-it-21275.mp3'] | |
| filenames = [f"./{f}" for f in filenames] | |
| demo = gr.Interface( | |
| fn=classify_audio, | |
| inputs=gr.Audio(type="filepath"), | |
| outputs=[gr.Label(), gr.Number(label="Prediction time (s)")], # Using updated component names | |
| title=title, | |
| description=description, | |
| examples=[(f,) for f in filenames], | |
| ) | |
| demo.launch() | |