Spaces:
Sleeping
Sleeping
Update streamlit_app.py
Browse files- src/streamlit_app.py +270 -0
src/streamlit_app.py
CHANGED
|
@@ -15,6 +15,200 @@ def get_pyg_renderer(df: pd.DataFrame):
|
|
| 15 |
|
| 16 |
pipe = getPipeline()
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
def main():
|
| 19 |
"""Streamlit App"""
|
| 20 |
|
|
@@ -27,10 +221,86 @@ def main():
|
|
| 27 |
if("df" not in st.session_state) or (st.session_state.get("current_file") != file.name):
|
| 28 |
st.session_state.df = pd.read_csv(file)
|
| 29 |
st.session_state.current_file = file.name
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
pygApp = get_pyg_renderer(st.session_state.df)
|
| 32 |
pygApp.explorer(default_tab="data")
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
if __name__ == "__main__":
|
| 36 |
main()
|
|
|
|
| 15 |
|
| 16 |
pipe = getPipeline()
|
| 17 |
|
| 18 |
+
def FileSummaryHelper(df: pd.DataFrame) -> str:
|
| 19 |
+
"""Gathers basiline information about the dataset"""
|
| 20 |
+
|
| 21 |
+
colSummaries = []
|
| 22 |
+
|
| 23 |
+
for col in df:
|
| 24 |
+
colSummaries.append(f"'{col}' | Data Type: {df[col].dtype} | Missing Percentage: {df[col].isna().mean()*100:.2f}%")
|
| 25 |
+
colTypesAndNulls = "\n".join(colSummaries)
|
| 26 |
+
|
| 27 |
+
duplicateVals = df.duplicated(keep=False).sum()
|
| 28 |
+
totalVals = len(df)
|
| 29 |
+
|
| 30 |
+
return f"""
|
| 31 |
+
The columns of the data have the following datatypes and missing value percentages:
|
| 32 |
+
{colTypesAndNulls}
|
| 33 |
+
|
| 34 |
+
The dataset has {totalVals} total rows.
|
| 35 |
+
|
| 36 |
+
The dataset has {duplicateVals} duplicated rows.
|
| 37 |
+
"""
|
| 38 |
+
|
| 39 |
+
def FileDescriptionAgent(userDesc:str, df: pd.DataFrame) -> str:
|
| 40 |
+
"""Generates a description of the contents of the file based on initial analysis."""
|
| 41 |
+
|
| 42 |
+
userDesc = "" if not userDesc else "I have described the dataset as follows: " + userDesc
|
| 43 |
+
fileSummary = FileSummaryHelper(df)
|
| 44 |
+
|
| 45 |
+
prompt = f""" You are given a DataFrame `df` with columns: {', '.join(df.columns.tolist())}
|
| 46 |
+
{fileSummary}
|
| 47 |
+
{userDesc}
|
| 48 |
+
|
| 49 |
+
Qualitatively describe the dataset in 2-3 concise sentences. Your response must only include the description with no explanations before or after."""
|
| 50 |
+
|
| 51 |
+
messages = [
|
| 52 |
+
{"role": "system", "content": \
|
| 53 |
+
"detailed thinking off. You are an insightful Data Analyst."},
|
| 54 |
+
{"role": "user","content":prompt}
|
| 55 |
+
]
|
| 56 |
+
|
| 57 |
+
response = pipe(messages, temperature = 0.2, max_new_tokens = 1024, return_full_text=False)[0]['generated_text']
|
| 58 |
+
|
| 59 |
+
return response
|
| 60 |
+
|
| 61 |
+
def AnlaysisQuestionAgent(summary:str):
|
| 62 |
+
|
| 63 |
+
messages = [
|
| 64 |
+
{"role": "system", "content": \
|
| 65 |
+
"""detailed thinking off. You are an inquisitive Data Analyst.
|
| 66 |
+
Given the following summary of a dataset, create a list of 3 analytical questions, following these rules:
|
| 67 |
+
|
| 68 |
+
Rules
|
| 69 |
+
-----
|
| 70 |
+
1. The questions must be answerable through simple Pandas operations with only the given data.
|
| 71 |
+
2. Your response must only include the three questions in a numbered list. Do not include explanations or caveats before or after.
|
| 72 |
+
3. Ensure the output list is formated: 1. question1, 2. question2, 3. question3
|
| 73 |
+
"""},
|
| 74 |
+
{"role":"user","content":summary}
|
| 75 |
+
]
|
| 76 |
+
|
| 77 |
+
response = pipe(messages, temperature = 0.2, max_new_tokens = 1024, return_full_text=False)[0]['generated_text']
|
| 78 |
+
|
| 79 |
+
parts = re.split(r'\d+\.\s*', response)
|
| 80 |
+
|
| 81 |
+
result = [p.strip() for p in parts if p]
|
| 82 |
+
|
| 83 |
+
return result
|
| 84 |
+
|
| 85 |
+
def CodeGeneratorTool(cols: List[str], query: str) -> str:
|
| 86 |
+
"""Generate a prompt for the LLM to write pandas-only code for a data query (no plotting)."""
|
| 87 |
+
|
| 88 |
+
return f"""
|
| 89 |
+
Given DataFrame `df` with columns: {', '.join(cols)}
|
| 90 |
+
Write Python code (pandas **only**, no plotting) to answer:
|
| 91 |
+
"{query}"
|
| 92 |
+
|
| 93 |
+
Rules
|
| 94 |
+
-----
|
| 95 |
+
1. Use pandas operations on `df` only.
|
| 96 |
+
2. Assign the final result to `result`.
|
| 97 |
+
3. Wrap the snippet in a single ```python code fence (no extra prose).
|
| 98 |
+
"""
|
| 99 |
+
|
| 100 |
+
def CodeExecutionHelper(code: str, df: pd.DataFrame):
|
| 101 |
+
"""Executes the generated code, returning the result or error"""
|
| 102 |
+
|
| 103 |
+
env = {"pd": pd, "df": df}
|
| 104 |
+
try:
|
| 105 |
+
exec(code, {}, env)
|
| 106 |
+
return env.get("result", None)
|
| 107 |
+
except Exception as exc:
|
| 108 |
+
return f"Error executing code: {exc}"
|
| 109 |
+
|
| 110 |
+
def CodeExtractorHelper(text: str) -> str:
|
| 111 |
+
"""Extracts the first python code block from the output"""
|
| 112 |
+
|
| 113 |
+
start = text.find("```python")
|
| 114 |
+
if start == -1:
|
| 115 |
+
return ""
|
| 116 |
+
start += len("```python")
|
| 117 |
+
end = text.find("```", start)
|
| 118 |
+
if end == -1:
|
| 119 |
+
return ""
|
| 120 |
+
return text[start:end].strip()
|
| 121 |
+
|
| 122 |
+
def ToolSelectorAgent(query: str, df: pd.DataFrame):
|
| 123 |
+
"""Selects the appropriate tool for the users query"""
|
| 124 |
+
|
| 125 |
+
prompt = CodeGeneratorTool(df.columns.tolist(), query)
|
| 126 |
+
|
| 127 |
+
messages = [
|
| 128 |
+
{"role": "system", "content": \
|
| 129 |
+
"detailed thinking off. You are a Python data-analysis expert who writes clean, efficient code. \
|
| 130 |
+
Solve the given problem with optimal pandas operations. Be concise and focused. \
|
| 131 |
+
Your response must contain ONLY a properly-closed ```python code block with no explanations before or after. \
|
| 132 |
+
Ensure your solution is correct, handles edge cases, and follows best practices for data analysis."},
|
| 133 |
+
{"role": "user", "content": prompt}
|
| 134 |
+
]
|
| 135 |
+
|
| 136 |
+
response = pipe(messages, temperature = 0.2, max_new_tokens = 1024, return_full_text=False)[0]['generated_text']
|
| 137 |
+
return CodeExtractorHelper(response)
|
| 138 |
+
|
| 139 |
+
def ReasoningPromptGenerator(query: str, result: Any) -> str:
|
| 140 |
+
"""Packages the output into a response, provinding reasoning about the result."""
|
| 141 |
+
|
| 142 |
+
isError = isinstance(result, str) and result.startswith("Error executing code")
|
| 143 |
+
|
| 144 |
+
if isError:
|
| 145 |
+
desc = result
|
| 146 |
+
else:
|
| 147 |
+
desc = str(result)[:300] #why slice it
|
| 148 |
+
|
| 149 |
+
prompt = f"""
|
| 150 |
+
The user asked: "{query}".
|
| 151 |
+
The result value is: {desc}
|
| 152 |
+
Explain in 2-3 concise sentences what this tells about the data (no mention of charts)."""
|
| 153 |
+
return prompt
|
| 154 |
+
|
| 155 |
+
def ReasoningAgent(query: str, result: Any):
|
| 156 |
+
"""Executes the reasoning prompt and returns the results and explination to the user"""
|
| 157 |
+
|
| 158 |
+
prompt = ReasoningPromptGenerator(query, result)
|
| 159 |
+
isError = isinstance(result, str) and result.startswith("Error executing code")
|
| 160 |
+
|
| 161 |
+
messages = [
|
| 162 |
+
{"role": "system", "content": \
|
| 163 |
+
"detailed thinking on. You are an insightful data analyst"},
|
| 164 |
+
{"role": "user","content": prompt}
|
| 165 |
+
|
| 166 |
+
]
|
| 167 |
+
|
| 168 |
+
response = pipe(messages, temperature = 0.2, max_new_tokens = 1024, return_full_text=False)[0]['generated_text']
|
| 169 |
+
if "</think>" in response:
|
| 170 |
+
splitResponse = response.split("</think>",1)
|
| 171 |
+
response = splitResponse[1]
|
| 172 |
+
thinking = splitResponse[0]
|
| 173 |
+
return response, thinking
|
| 174 |
+
|
| 175 |
+
def ResponseBuilderTool(question:str)->str:
|
| 176 |
+
code = ToolSelectorAgent(question, st.session_state.df)
|
| 177 |
+
result = CodeExecutionHelper(code, st.session_state.df)
|
| 178 |
+
reasoning_txt, raw_thinking = ReasoningAgent(question, result)
|
| 179 |
+
reasoning_txt = reasoning_txt.replace("`", "")
|
| 180 |
+
|
| 181 |
+
# Build assistant response
|
| 182 |
+
|
| 183 |
+
if isinstance(result, (pd.DataFrame, pd.Series)):
|
| 184 |
+
header = f"Result: {len(result)} rows" if isinstance(result, pd.DataFrame) else "Result series"
|
| 185 |
+
else:
|
| 186 |
+
header = f"Result: {result}"
|
| 187 |
+
|
| 188 |
+
# Show only reasoning thinking in Model Thinking (collapsed by default)
|
| 189 |
+
thinking_html = ""
|
| 190 |
+
if raw_thinking:
|
| 191 |
+
thinking_html = (
|
| 192 |
+
'<details class="thinking">'
|
| 193 |
+
'<summary>🧠 Reasoning</summary>'
|
| 194 |
+
f'<pre>{raw_thinking}</pre>'
|
| 195 |
+
'</details>'
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
# Code accordion with proper HTML <pre><code> syntax highlighting
|
| 199 |
+
code_html = (
|
| 200 |
+
'<details class="code">'
|
| 201 |
+
'<summary>View code</summary>'
|
| 202 |
+
'<pre><code class="language-python">'
|
| 203 |
+
f'{code}'
|
| 204 |
+
'</code></pre>'
|
| 205 |
+
'</details>'
|
| 206 |
+
)
|
| 207 |
+
|
| 208 |
+
# Combine thinking, explanation, and code accordion
|
| 209 |
+
return f"{header}\n\n{thinking_html}{reasoning_txt}\n\n{code_html}"
|
| 210 |
+
|
| 211 |
+
|
| 212 |
def main():
|
| 213 |
"""Streamlit App"""
|
| 214 |
|
|
|
|
| 221 |
if("df" not in st.session_state) or (st.session_state.get("current_file") != file.name):
|
| 222 |
st.session_state.df = pd.read_csv(file)
|
| 223 |
st.session_state.current_file = file.name
|
| 224 |
+
with st.spinner("Summarizing..."):
|
| 225 |
+
st.session_state.file_summary = FileDescriptionAgent("",st.session_state.df)
|
| 226 |
+
st.markdown("### Data Summary:")
|
| 227 |
+
st.text(st.session_state.file_summary)
|
| 228 |
|
| 229 |
pygApp = get_pyg_renderer(st.session_state.df)
|
| 230 |
pygApp.explorer(default_tab="data")
|
| 231 |
|
| 232 |
+
st.markdown(
|
| 233 |
+
"""
|
| 234 |
+
<style>
|
| 235 |
+
section[data-testid="stSidebar"] {
|
| 236 |
+
width: 500px !important; # Set the width to your desired value
|
| 237 |
+
}
|
| 238 |
+
</style>
|
| 239 |
+
""",
|
| 240 |
+
unsafe_allow_html=True,
|
| 241 |
+
)
|
| 242 |
+
|
| 243 |
+
with st.sidebar:
|
| 244 |
+
st.markdown("## Analysis Discussion:")
|
| 245 |
+
|
| 246 |
+
if("first_question" not in st.session_state):
|
| 247 |
+
st.session_state.first_question = ""
|
| 248 |
+
|
| 249 |
+
if("num_question_asked" not in st.session_state):
|
| 250 |
+
st.session_state.num_question_asked = 0
|
| 251 |
+
|
| 252 |
+
if("messages" not in st.session_state):
|
| 253 |
+
st.session_state.messages = []
|
| 254 |
+
|
| 255 |
+
if st.session_state.num_question_asked == 0:
|
| 256 |
+
with st.spinner("Preparing Anlaysis..."):
|
| 257 |
+
if("analsyis_questions" not in st.session_state):
|
| 258 |
+
st.session_state.analsyis_questions = AnlaysisQuestionAgent(st.session_state.file_summary)
|
| 259 |
+
|
| 260 |
+
with st.container():
|
| 261 |
+
if q1:= st.button(st.session_state.analsyis_questions[0]):
|
| 262 |
+
st.session_state.first_question = st.session_state.analsyis_questions[0]
|
| 263 |
+
if q2:= st.button(st.session_state.analsyis_questions[1]):
|
| 264 |
+
st.session_state.first_question = st.session_state.analsyis_questions[1]
|
| 265 |
+
if q3:= st.button(st.session_state.analsyis_questions[2]):
|
| 266 |
+
st.session_state.first_question = st.session_state.analsyis_questions[2]
|
| 267 |
+
|
| 268 |
+
chat = st.chat_input("Something else...")
|
| 269 |
+
if chat:
|
| 270 |
+
st.session_state.first_question = chat
|
| 271 |
+
|
| 272 |
+
st.session_state.num_question_asked += 1 if(q1 or q2 or q3 or chat is not None) else 0
|
| 273 |
+
if st.session_state.num_question_asked == 1:
|
| 274 |
+
st.session_state.messages.append({"role": "user", "content": st.session_state.first_question})
|
| 275 |
+
st.rerun()
|
| 276 |
+
|
| 277 |
+
elif st.session_state.num_question_asked == 1:
|
| 278 |
+
with st.container():
|
| 279 |
+
for msg in st.session_state.messages:
|
| 280 |
+
with st.chat_message(msg["role"]):
|
| 281 |
+
st.markdown(msg["content"], unsafe_allow_html=True)
|
| 282 |
+
with st.spinner("Working …"):
|
| 283 |
+
st.session_state.messages.append({
|
| 284 |
+
"role": "assistant",
|
| 285 |
+
"content": ResponseBuilderTool(st.session_state.first_question)
|
| 286 |
+
})
|
| 287 |
+
st.session_state.num_question_asked += 1
|
| 288 |
+
st.rerun()
|
| 289 |
+
|
| 290 |
+
else:
|
| 291 |
+
with st.container():
|
| 292 |
+
for msg in st.session_state.messages:
|
| 293 |
+
with st.chat_message(msg["role"]):
|
| 294 |
+
st.markdown(msg["content"], unsafe_allow_html=True)
|
| 295 |
+
if user_q := st.chat_input("Ask about your data…"):
|
| 296 |
+
st.session_state.messages.append({"role": "user", "content": user_q})
|
| 297 |
+
with st.spinner("Working …"):
|
| 298 |
+
st.session_state.messages.append({
|
| 299 |
+
"role": "assistant",
|
| 300 |
+
"content": ResponseBuilderTool(user_q)
|
| 301 |
+
})
|
| 302 |
+
st.session_state.num_question_asked += 1
|
| 303 |
+
st.rerun()
|
| 304 |
|
| 305 |
if __name__ == "__main__":
|
| 306 |
main()
|