Spaces:
Sleeping
Sleeping
Uploading files via huggingface api
Browse files- .streamlit/config.toml +8 -0
- Dockerfile +31 -0
- README.md +4 -6
- app.py +793 -0
- requirements.txt +5 -0
.streamlit/config.toml
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[server]
|
| 2 |
+
port = 7860
|
| 3 |
+
address = "0.0.0.0"
|
| 4 |
+
enableCORS = false
|
| 5 |
+
enableXsrfProtection = false
|
| 6 |
+
|
| 7 |
+
[browser]
|
| 8 |
+
gatherUsageStats = false
|
Dockerfile
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Streamlit Frontend Dockerfile
|
| 2 |
+
FROM python:3.12-slim
|
| 3 |
+
|
| 4 |
+
# Set working directory
|
| 5 |
+
WORKDIR /app
|
| 6 |
+
|
| 7 |
+
# Copy requirements file
|
| 8 |
+
COPY requirements.txt .
|
| 9 |
+
|
| 10 |
+
# Install Python dependencies
|
| 11 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 12 |
+
|
| 13 |
+
# Copy application code
|
| 14 |
+
COPY app.py .
|
| 15 |
+
COPY .streamlit/ .streamlit/
|
| 16 |
+
|
| 17 |
+
# Expose port (Hugging Face Spaces uses 7860)
|
| 18 |
+
EXPOSE 7860
|
| 19 |
+
|
| 20 |
+
# Set default backend URL (can be overridden with environment variable)
|
| 21 |
+
ENV BACKEND_URL=http://localhost:7860
|
| 22 |
+
|
| 23 |
+
# Health check
|
| 24 |
+
HEALTHCHECK --interval=30s \
|
| 25 |
+
--timeout=10s \
|
| 26 |
+
--start-period=5s \
|
| 27 |
+
--retries=3 \
|
| 28 |
+
CMD curl -f http://localhost:7860/_stcore/health || exit 1
|
| 29 |
+
|
| 30 |
+
# Run Streamlit
|
| 31 |
+
CMD ["streamlit", "run", "app.py"]
|
README.md
CHANGED
|
@@ -1,10 +1,8 @@
|
|
| 1 |
---
|
| 2 |
title: Superkart Frontend
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: docker
|
| 7 |
pinned: false
|
| 8 |
-
---
|
| 9 |
-
|
| 10 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
title: Superkart Frontend
|
| 3 |
+
emoji: 🌍
|
| 4 |
+
colorFrom: yellow
|
| 5 |
+
colorTo: blue
|
| 6 |
sdk: docker
|
| 7 |
pinned: false
|
| 8 |
+
---
|
|
|
|
|
|
app.py
ADDED
|
@@ -0,0 +1,793 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
SuperKart Sales Prediction Frontend
|
| 3 |
+
|
| 4 |
+
A Streamlit web application for predicting product sales using the SuperKart ML model.
|
| 5 |
+
This frontend provides an intuitive interface for users to input product and store features
|
| 6 |
+
and get sales predictions from the backend API.
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import warnings
|
| 10 |
+
import streamlit as st
|
| 11 |
+
import requests
|
| 12 |
+
import pandas as pd
|
| 13 |
+
import argparse
|
| 14 |
+
import os
|
| 15 |
+
import sys
|
| 16 |
+
from typing import Dict
|
| 17 |
+
|
| 18 |
+
# Suppress SyntaxWarnings from Streamlit library
|
| 19 |
+
warnings.filterwarnings("ignore", category=SyntaxWarning)
|
| 20 |
+
|
| 21 |
+
# Page configuration
|
| 22 |
+
st.set_page_config(
|
| 23 |
+
page_title="SuperKart Sales Predictor",
|
| 24 |
+
page_icon="🛒",
|
| 25 |
+
layout="wide",
|
| 26 |
+
initial_sidebar_state="expanded",
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
# Custom CSS for better styling
|
| 30 |
+
st.markdown(
|
| 31 |
+
"""
|
| 32 |
+
<style>
|
| 33 |
+
.main-header {
|
| 34 |
+
font-size: 3rem;
|
| 35 |
+
color: #1f77b4;
|
| 36 |
+
text-align: center;
|
| 37 |
+
margin-bottom: 2rem;
|
| 38 |
+
}
|
| 39 |
+
.prediction-box {
|
| 40 |
+
background-color: #f0f8ff;
|
| 41 |
+
padding: 20px;
|
| 42 |
+
border-radius: 10px;
|
| 43 |
+
border-left: 5px solid #1f77b4;
|
| 44 |
+
margin: 20px 0;
|
| 45 |
+
}
|
| 46 |
+
.success-box {
|
| 47 |
+
background-color: #d4edda;
|
| 48 |
+
padding: 15px;
|
| 49 |
+
border-radius: 5px;
|
| 50 |
+
border-left: 5px solid #28a745;
|
| 51 |
+
margin: 10px 0;
|
| 52 |
+
}
|
| 53 |
+
.error-box {
|
| 54 |
+
background-color: #f8d7da;
|
| 55 |
+
padding: 15px;
|
| 56 |
+
border-radius: 5px;
|
| 57 |
+
border-left: 5px solid #dc3545;
|
| 58 |
+
margin: 10px 0;
|
| 59 |
+
}
|
| 60 |
+
</style>
|
| 61 |
+
""",
|
| 62 |
+
unsafe_allow_html=True,
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def get_backend_url():
|
| 67 |
+
"""Get backend URL from command line arguments, environment variables, or default."""
|
| 68 |
+
# Check if running with Streamlit (sys.argv will contain streamlit run ...)
|
| 69 |
+
if len(sys.argv) > 1 and "streamlit" in sys.argv[0]:
|
| 70 |
+
# Parse additional arguments after the script name
|
| 71 |
+
parser = argparse.ArgumentParser(description="SuperKart Frontend App")
|
| 72 |
+
parser.add_argument(
|
| 73 |
+
"--backend-url",
|
| 74 |
+
type=str,
|
| 75 |
+
default=os.getenv("BACKEND_URL", "http://localhost:7860"),
|
| 76 |
+
help="Backend API URL (default: http://localhost:7860)",
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
# Only parse known args to avoid conflicts with Streamlit args
|
| 80 |
+
try:
|
| 81 |
+
known_args, _ = parser.parse_known_args()
|
| 82 |
+
return known_args.backend_url
|
| 83 |
+
except (SystemExit, argparse.ArgumentError):
|
| 84 |
+
pass
|
| 85 |
+
|
| 86 |
+
# Fallback to environment variable or default
|
| 87 |
+
return os.getenv("BACKEND_URL", "http://localhost:7860")
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
# Configuration
|
| 91 |
+
BACKEND_URL = get_backend_url()
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def make_api_request(endpoint: str, data: Dict = None, method: str = "GET") -> Dict:
|
| 95 |
+
"""Make API request to backend service."""
|
| 96 |
+
try:
|
| 97 |
+
url = f"{BACKEND_URL}{endpoint}"
|
| 98 |
+
|
| 99 |
+
if method == "GET":
|
| 100 |
+
response = requests.get(url, timeout=30)
|
| 101 |
+
elif method == "POST":
|
| 102 |
+
response = requests.post(url, json=data, timeout=30)
|
| 103 |
+
|
| 104 |
+
response.raise_for_status()
|
| 105 |
+
return {"success": True, "data": response.json()}
|
| 106 |
+
|
| 107 |
+
except requests.exceptions.ConnectionError:
|
| 108 |
+
return {
|
| 109 |
+
"success": False,
|
| 110 |
+
"error": "Cannot connect to backend API. Please ensure the backend service is running.",
|
| 111 |
+
}
|
| 112 |
+
except requests.exceptions.Timeout:
|
| 113 |
+
return {
|
| 114 |
+
"success": False,
|
| 115 |
+
"error": "Request timeout. The backend service is taking too long to respond.",
|
| 116 |
+
}
|
| 117 |
+
except requests.exceptions.RequestException as e:
|
| 118 |
+
return {"success": False, "error": f"API request failed: {str(e)}"}
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
def get_feature_info():
|
| 122 |
+
"""Get feature information from backend API."""
|
| 123 |
+
result = make_api_request("/features")
|
| 124 |
+
if result["success"]:
|
| 125 |
+
return result["data"]
|
| 126 |
+
else:
|
| 127 |
+
st.error(f"Failed to get feature information: {result['error']}")
|
| 128 |
+
return None
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
def create_input_form():
|
| 132 |
+
"""Create the input form for prediction."""
|
| 133 |
+
st.header("🔮 Product Sales Prediction")
|
| 134 |
+
|
| 135 |
+
# Get feature information
|
| 136 |
+
feature_info = get_feature_info()
|
| 137 |
+
if not feature_info:
|
| 138 |
+
return None
|
| 139 |
+
|
| 140 |
+
# Create form
|
| 141 |
+
with st.form("prediction_form"):
|
| 142 |
+
col1, col2 = st.columns(2)
|
| 143 |
+
|
| 144 |
+
with col1:
|
| 145 |
+
st.subheader("📦 Product Features")
|
| 146 |
+
|
| 147 |
+
product_weight = st.number_input(
|
| 148 |
+
"Product Weight (kg)",
|
| 149 |
+
min_value=0.1,
|
| 150 |
+
max_value=100.0,
|
| 151 |
+
value=12.66,
|
| 152 |
+
step=0.1,
|
| 153 |
+
help="Weight of the product in kilograms",
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
product_sugar_content = st.selectbox(
|
| 157 |
+
"Sugar Content",
|
| 158 |
+
options=["Low Sugar", "Regular", "No Sugar"],
|
| 159 |
+
index=0,
|
| 160 |
+
help="Sugar content level of the product",
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
product_allocated_area = st.number_input(
|
| 164 |
+
"Allocated Display Area (Ratio)",
|
| 165 |
+
min_value=0.0,
|
| 166 |
+
max_value=1.0,
|
| 167 |
+
value=0.027,
|
| 168 |
+
step=0.001,
|
| 169 |
+
format="%.3f",
|
| 170 |
+
help="Ratio of allocated display area (0.0 to 1.0)",
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
product_type = st.selectbox(
|
| 174 |
+
"Product Type",
|
| 175 |
+
options=[
|
| 176 |
+
"Dairy",
|
| 177 |
+
"Soft Drinks",
|
| 178 |
+
"Meat",
|
| 179 |
+
"Fruits and Vegetables",
|
| 180 |
+
"Household",
|
| 181 |
+
"Baking Goods",
|
| 182 |
+
"Snack Foods",
|
| 183 |
+
"Frozen Foods",
|
| 184 |
+
"Breakfast",
|
| 185 |
+
"Health and Hygiene",
|
| 186 |
+
"Hard Drinks",
|
| 187 |
+
"Canned",
|
| 188 |
+
"Bread",
|
| 189 |
+
"Starchy Foods",
|
| 190 |
+
"Others",
|
| 191 |
+
"Seafood",
|
| 192 |
+
],
|
| 193 |
+
index=7, # Frozen Foods
|
| 194 |
+
help="Category of the product",
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
product_mrp = st.number_input(
|
| 198 |
+
"Maximum Retail Price ($)",
|
| 199 |
+
min_value=1.0,
|
| 200 |
+
max_value=1000.0,
|
| 201 |
+
value=117.08,
|
| 202 |
+
step=0.01,
|
| 203 |
+
format="%.2f",
|
| 204 |
+
help="Maximum retail price in USD",
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
with col2:
|
| 208 |
+
st.subheader("🏪 Store Features")
|
| 209 |
+
|
| 210 |
+
store_establishment_year = st.selectbox(
|
| 211 |
+
"Store Establishment Year",
|
| 212 |
+
options=[1987, 1998, 1999, 2009],
|
| 213 |
+
index=3, # 2009
|
| 214 |
+
help="Year when the store was established",
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
store_size = st.selectbox(
|
| 218 |
+
"Store Size",
|
| 219 |
+
options=["Small", "Medium", "High"],
|
| 220 |
+
index=1, # Medium
|
| 221 |
+
help="Size category of the store",
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
store_location_city_type = st.selectbox(
|
| 225 |
+
"City Type",
|
| 226 |
+
options=["Tier 1", "Tier 2", "Tier 3"],
|
| 227 |
+
index=1, # Tier 2
|
| 228 |
+
help="Type of city where the store is located",
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
store_type = st.selectbox(
|
| 232 |
+
"Store Type",
|
| 233 |
+
options=[
|
| 234 |
+
"Supermarket Type1",
|
| 235 |
+
"Supermarket Type2",
|
| 236 |
+
"Supermarket Type3",
|
| 237 |
+
"Departmental Store",
|
| 238 |
+
"Food Mart",
|
| 239 |
+
],
|
| 240 |
+
index=1, # Supermarket Type2
|
| 241 |
+
help="Type/format of the store",
|
| 242 |
+
)
|
| 243 |
+
|
| 244 |
+
# Submit button
|
| 245 |
+
submitted = st.form_submit_button("🎯 Predict Sales", type="primary")
|
| 246 |
+
|
| 247 |
+
if submitted:
|
| 248 |
+
# Prepare input data
|
| 249 |
+
input_data = {
|
| 250 |
+
"Product_Weight": product_weight,
|
| 251 |
+
"Product_Sugar_Content": product_sugar_content,
|
| 252 |
+
"Product_Allocated_Area": product_allocated_area,
|
| 253 |
+
"Product_Type": product_type,
|
| 254 |
+
"Product_MRP": product_mrp,
|
| 255 |
+
"Store_Establishment_Year": store_establishment_year,
|
| 256 |
+
"Store_Size": store_size,
|
| 257 |
+
"Store_Location_City_Type": store_location_city_type,
|
| 258 |
+
"Store_Type": store_type,
|
| 259 |
+
}
|
| 260 |
+
|
| 261 |
+
return input_data
|
| 262 |
+
|
| 263 |
+
return None
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
def display_prediction_result(prediction_data: Dict):
|
| 267 |
+
"""Display the prediction result with EDA-based insights."""
|
| 268 |
+
predicted_sales = prediction_data["predicted_sales"]
|
| 269 |
+
|
| 270 |
+
# Main prediction display
|
| 271 |
+
st.markdown('<div class="prediction-box">', unsafe_allow_html=True)
|
| 272 |
+
col1, col2, col3 = st.columns([1, 2, 1])
|
| 273 |
+
|
| 274 |
+
with col2:
|
| 275 |
+
st.markdown(
|
| 276 |
+
f"""
|
| 277 |
+
<div style="text-align: center;">
|
| 278 |
+
<h2>💰 Predicted Sales Revenue</h2>
|
| 279 |
+
<h1 style="color: #28a745; font-size: 4rem;">${predicted_sales:,.2f}</h1>
|
| 280 |
+
</div>
|
| 281 |
+
""",
|
| 282 |
+
unsafe_allow_html=True,
|
| 283 |
+
)
|
| 284 |
+
|
| 285 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
| 286 |
+
|
| 287 |
+
# EDA-based insights and business metrics
|
| 288 |
+
st.subheader("📊 Sales Analysis & Business Insights")
|
| 289 |
+
|
| 290 |
+
# Based on EDA: Sales range $33-$8,000, Mean: $3,464, Median: $3,452, Std: $1,066
|
| 291 |
+
sales_mean = 3464
|
| 292 |
+
sales_median = 3452
|
| 293 |
+
sales_std = 1066
|
| 294 |
+
sales_q1 = 2762
|
| 295 |
+
sales_q3 = 4145
|
| 296 |
+
|
| 297 |
+
col1, col2, col3, col4 = st.columns(4)
|
| 298 |
+
|
| 299 |
+
with col1:
|
| 300 |
+
# Performance vs Mean
|
| 301 |
+
vs_mean = ((predicted_sales - sales_mean) / sales_mean) * 100
|
| 302 |
+
delta_color = "normal" if abs(vs_mean) < 10 else "inverse"
|
| 303 |
+
st.metric(
|
| 304 |
+
label="📊 vs Dataset Mean",
|
| 305 |
+
value=f"${predicted_sales:,.2f}",
|
| 306 |
+
delta=f"{vs_mean:+.1f}%",
|
| 307 |
+
delta_color=delta_color,
|
| 308 |
+
)
|
| 309 |
+
|
| 310 |
+
with col2:
|
| 311 |
+
# Performance vs Median
|
| 312 |
+
vs_median = ((predicted_sales - sales_median) / sales_median) * 100
|
| 313 |
+
delta_color = "normal" if abs(vs_median) < 10 else "inverse"
|
| 314 |
+
st.metric(
|
| 315 |
+
label="📈 vs Dataset Median",
|
| 316 |
+
value=f"${sales_median:,.2f}",
|
| 317 |
+
delta=f"{vs_median:+.1f}%",
|
| 318 |
+
delta_color=delta_color,
|
| 319 |
+
)
|
| 320 |
+
|
| 321 |
+
with col3:
|
| 322 |
+
# Percentile ranking based on EDA quartiles
|
| 323 |
+
if predicted_sales <= sales_q1:
|
| 324 |
+
percentile = "Bottom 25%"
|
| 325 |
+
percentile_color = "🔴"
|
| 326 |
+
elif predicted_sales <= sales_median:
|
| 327 |
+
percentile = "25th-50th"
|
| 328 |
+
percentile_color = "🟡"
|
| 329 |
+
elif predicted_sales <= sales_q3:
|
| 330 |
+
percentile = "50th-75th"
|
| 331 |
+
percentile_color = "🟠"
|
| 332 |
+
else:
|
| 333 |
+
percentile = "Top 25%"
|
| 334 |
+
percentile_color = "🟢"
|
| 335 |
+
|
| 336 |
+
st.metric(
|
| 337 |
+
label="🎯 Performance Percentile",
|
| 338 |
+
value=f"{percentile_color} {percentile}",
|
| 339 |
+
delta=None,
|
| 340 |
+
)
|
| 341 |
+
|
| 342 |
+
with col4:
|
| 343 |
+
# Standard deviation analysis
|
| 344 |
+
z_score = (predicted_sales - sales_mean) / sales_std
|
| 345 |
+
if abs(z_score) <= 1:
|
| 346 |
+
volatility = "Normal"
|
| 347 |
+
vol_color = "🟢"
|
| 348 |
+
elif abs(z_score) <= 2:
|
| 349 |
+
volatility = "Moderate"
|
| 350 |
+
vol_color = "🟡"
|
| 351 |
+
else:
|
| 352 |
+
volatility = "High"
|
| 353 |
+
vol_color = "🔴"
|
| 354 |
+
|
| 355 |
+
st.metric(
|
| 356 |
+
label="📉 Sales Volatility",
|
| 357 |
+
value=f"{vol_color} {volatility}",
|
| 358 |
+
delta=f"σ: {z_score:+.1f}",
|
| 359 |
+
)
|
| 360 |
+
|
| 361 |
+
# Business insights section
|
| 362 |
+
st.subheader("💼 Business Recommendations & Next Steps")
|
| 363 |
+
|
| 364 |
+
# Performance Summary Box
|
| 365 |
+
if predicted_sales >= sales_q3: # Top 25%
|
| 366 |
+
performance_level = "⭐ Excellent"
|
| 367 |
+
performance_color = "#28a745"
|
| 368 |
+
summary_message = (
|
| 369 |
+
"This product is predicted to perform in the top 25% of SuperKart sales!"
|
| 370 |
+
)
|
| 371 |
+
elif predicted_sales >= sales_median: # Above median
|
| 372 |
+
performance_level = "✅ Good"
|
| 373 |
+
performance_color = "#17a2b8"
|
| 374 |
+
summary_message = (
|
| 375 |
+
"This product is predicted to perform above the historical average."
|
| 376 |
+
)
|
| 377 |
+
elif predicted_sales >= sales_q1: # Above bottom quartile
|
| 378 |
+
performance_level = "⚠️ Below Average"
|
| 379 |
+
performance_color = "#ffc107"
|
| 380 |
+
summary_message = (
|
| 381 |
+
"This product may underperform compared to typical SuperKart sales."
|
| 382 |
+
)
|
| 383 |
+
else: # Bottom 25%
|
| 384 |
+
performance_level = "🔴 Needs Attention"
|
| 385 |
+
performance_color = "#dc3545"
|
| 386 |
+
summary_message = (
|
| 387 |
+
"This product is predicted to be in the bottom 25% of sales performance."
|
| 388 |
+
)
|
| 389 |
+
|
| 390 |
+
# Performance summary box
|
| 391 |
+
st.markdown(
|
| 392 |
+
f"""
|
| 393 |
+
<div style="background-color: {performance_color}20; padding: 20px; border-radius: 10px;
|
| 394 |
+
border-left: 5px solid {performance_color}; margin: 15px 0;">
|
| 395 |
+
<h4 style="color: {performance_color}; margin: 0 0 10px 0;">
|
| 396 |
+
{performance_level} Performance Expected
|
| 397 |
+
</h4>
|
| 398 |
+
<p style="margin: 0; font-size: 16px;">{summary_message}</p>
|
| 399 |
+
</div>
|
| 400 |
+
""",
|
| 401 |
+
unsafe_allow_html=True,
|
| 402 |
+
)
|
| 403 |
+
|
| 404 |
+
# Three-column layout for insights
|
| 405 |
+
col1, col2, col3 = st.columns(3)
|
| 406 |
+
|
| 407 |
+
with col1:
|
| 408 |
+
st.markdown("#### 💰 Financial Impact")
|
| 409 |
+
|
| 410 |
+
# Revenue tier classification (moved to top for consistency)
|
| 411 |
+
if predicted_sales >= 5000:
|
| 412 |
+
tier = "🏆 Premium Tier"
|
| 413 |
+
elif predicted_sales >= 3000:
|
| 414 |
+
tier = "🥈 Standard Tier"
|
| 415 |
+
else:
|
| 416 |
+
tier = "🥉 Value Tier"
|
| 417 |
+
st.info(f"**Revenue Classification:** {tier}")
|
| 418 |
+
|
| 419 |
+
# Financial metrics with clear labels
|
| 420 |
+
profit_margin = 0.2 # 20% profit margin
|
| 421 |
+
estimated_profit = predicted_sales * profit_margin
|
| 422 |
+
st.metric("Predicted Revenue", f"${predicted_sales:,.0f}")
|
| 423 |
+
st.metric("Estimated Profit (20%)", f"${estimated_profit:,.0f}")
|
| 424 |
+
|
| 425 |
+
with col2:
|
| 426 |
+
st.markdown("#### 📊 Market Position")
|
| 427 |
+
|
| 428 |
+
# Clear market positioning
|
| 429 |
+
vs_mean_pct = ((predicted_sales - sales_mean) / sales_mean) * 100
|
| 430 |
+
if vs_mean_pct > 10:
|
| 431 |
+
position = "🚀 Above Market Average"
|
| 432 |
+
elif vs_mean_pct > -10:
|
| 433 |
+
position = "📊 Market Average"
|
| 434 |
+
else:
|
| 435 |
+
position = "📉 Below Market Average"
|
| 436 |
+
|
| 437 |
+
st.success(position)
|
| 438 |
+
st.write(f"**vs Historical Mean:** {vs_mean_pct:+.1f}%")
|
| 439 |
+
st.write("**Market Range:** \\$33 - \\$8,000")
|
| 440 |
+
st.write(f"**Your Prediction:** ${predicted_sales:,.0f}")
|
| 441 |
+
|
| 442 |
+
with col3:
|
| 443 |
+
st.markdown("#### 🎯 Action Items")
|
| 444 |
+
|
| 445 |
+
# Clear, actionable recommendations
|
| 446 |
+
if predicted_sales < sales_q1:
|
| 447 |
+
st.warning("**Low Performance Risk**")
|
| 448 |
+
st.write("**Immediate Actions:**")
|
| 449 |
+
st.write("• Launch promotional campaign")
|
| 450 |
+
st.write("• Review pricing strategy")
|
| 451 |
+
st.write("• Optimize product placement")
|
| 452 |
+
st.write("• Analyze competitor offerings")
|
| 453 |
+
elif predicted_sales > sales_q3:
|
| 454 |
+
st.success("**High Performance Opportunity**")
|
| 455 |
+
st.write("**Recommended Actions:**")
|
| 456 |
+
st.write("• Ensure adequate stock levels")
|
| 457 |
+
st.write("• Consider premium pricing")
|
| 458 |
+
st.write("• Expand to similar products")
|
| 459 |
+
st.write("• Allocate prime shelf space")
|
| 460 |
+
else:
|
| 461 |
+
st.info("**Standard Performance Expected**")
|
| 462 |
+
st.write("**Monitor & Optimize:**")
|
| 463 |
+
st.write("• Track actual vs predicted")
|
| 464 |
+
st.write("• A/B test marketing approaches")
|
| 465 |
+
st.write("• Monitor competitor activity")
|
| 466 |
+
st.write("• Adjust inventory as needed")
|
| 467 |
+
|
| 468 |
+
|
| 469 |
+
def create_input_summary(input_data: Dict):
|
| 470 |
+
"""Create a summary of input features."""
|
| 471 |
+
st.subheader("📋 Input Summary")
|
| 472 |
+
|
| 473 |
+
# Create two columns for better layout
|
| 474 |
+
col1, col2 = st.columns(2)
|
| 475 |
+
|
| 476 |
+
with col1:
|
| 477 |
+
st.markdown("**Product Information:**")
|
| 478 |
+
st.write(f"• Weight: {input_data['Product_Weight']} kg")
|
| 479 |
+
st.write(f"• Sugar Content: {input_data['Product_Sugar_Content']}")
|
| 480 |
+
st.write(f"• Display Area: {input_data['Product_Allocated_Area']:.3f}")
|
| 481 |
+
st.write(f"• Type: {input_data['Product_Type']}")
|
| 482 |
+
st.write(f"• MRP: ${input_data['Product_MRP']:.2f}")
|
| 483 |
+
|
| 484 |
+
with col2:
|
| 485 |
+
st.markdown("**Store Information:**")
|
| 486 |
+
st.write(f"• Establishment Year: {input_data['Store_Establishment_Year']}")
|
| 487 |
+
st.write(f"• Size: {input_data['Store_Size']}")
|
| 488 |
+
st.write(f"• City Type: {input_data['Store_Location_City_Type']}")
|
| 489 |
+
st.write(f"• Store Type: {input_data['Store_Type']}")
|
| 490 |
+
|
| 491 |
+
|
| 492 |
+
def create_batch_prediction():
|
| 493 |
+
"""Create batch prediction interface."""
|
| 494 |
+
st.header("📊 Batch Prediction")
|
| 495 |
+
|
| 496 |
+
st.markdown("""
|
| 497 |
+
Upload a CSV file with multiple products to get batch predictions.
|
| 498 |
+
The CSV should contain all required columns with the same names as in the single prediction form.
|
| 499 |
+
""")
|
| 500 |
+
|
| 501 |
+
# File uploader
|
| 502 |
+
uploaded_file = st.file_uploader(
|
| 503 |
+
"Choose a CSV file",
|
| 504 |
+
type="csv",
|
| 505 |
+
help="Upload a CSV file with product and store features",
|
| 506 |
+
)
|
| 507 |
+
|
| 508 |
+
if uploaded_file is not None:
|
| 509 |
+
try:
|
| 510 |
+
# Read the CSV file
|
| 511 |
+
df = pd.read_csv(uploaded_file)
|
| 512 |
+
|
| 513 |
+
# Display the uploaded data
|
| 514 |
+
st.subheader("📂 Uploaded Data")
|
| 515 |
+
st.dataframe(df.head(10))
|
| 516 |
+
|
| 517 |
+
if st.button("🚀 Run Batch Prediction", type="primary"):
|
| 518 |
+
# Convert DataFrame to list of dictionaries
|
| 519 |
+
predictions_data = df.to_dict("records")
|
| 520 |
+
|
| 521 |
+
# Make batch prediction request
|
| 522 |
+
result = make_api_request(
|
| 523 |
+
"/predict/batch", {"predictions": predictions_data}, "POST"
|
| 524 |
+
)
|
| 525 |
+
|
| 526 |
+
if result["success"]:
|
| 527 |
+
batch_results = result["data"]
|
| 528 |
+
|
| 529 |
+
# Display results
|
| 530 |
+
st.subheader("📈 Batch Prediction Results")
|
| 531 |
+
|
| 532 |
+
col1, col2, col3 = st.columns(3)
|
| 533 |
+
with col1:
|
| 534 |
+
st.metric(
|
| 535 |
+
"✅ Successful", batch_results["successful_predictions"]
|
| 536 |
+
)
|
| 537 |
+
with col2:
|
| 538 |
+
st.metric("❌ Failed", batch_results["failed_predictions"])
|
| 539 |
+
with col3:
|
| 540 |
+
st.metric("📊 Total", len(predictions_data))
|
| 541 |
+
|
| 542 |
+
# Show successful predictions
|
| 543 |
+
if batch_results["results"]:
|
| 544 |
+
st.subheader("🎯 Successful Predictions")
|
| 545 |
+
|
| 546 |
+
# Create a user-friendly results DataFrame
|
| 547 |
+
display_results = []
|
| 548 |
+
for result in batch_results["results"]:
|
| 549 |
+
# Extract readable product info
|
| 550 |
+
input_features = result["input_features"]
|
| 551 |
+
|
| 552 |
+
# Determine performance category
|
| 553 |
+
sales = result["predicted_sales"]
|
| 554 |
+
if sales >= 4145: # Top 25% (Q3)
|
| 555 |
+
category = "🟢 High"
|
| 556 |
+
elif sales >= 3452: # Above median
|
| 557 |
+
category = "🟡 Good"
|
| 558 |
+
elif sales >= 2762: # Above Q1
|
| 559 |
+
category = "🟠 Average"
|
| 560 |
+
else:
|
| 561 |
+
category = "🔴 Low"
|
| 562 |
+
|
| 563 |
+
display_row = {
|
| 564 |
+
"Row": result["index"] + 1,
|
| 565 |
+
"Product Type": input_features["Product_Type"],
|
| 566 |
+
"Weight (kg)": input_features["Product_Weight"],
|
| 567 |
+
"MRP ($)": f"${input_features['Product_MRP']:.2f}",
|
| 568 |
+
"Store Size": input_features["Store_Size"],
|
| 569 |
+
"Store Type": input_features["Store_Type"],
|
| 570 |
+
"Predicted Sales": f"${sales:,.2f}",
|
| 571 |
+
"Performance": category,
|
| 572 |
+
}
|
| 573 |
+
display_results.append(display_row)
|
| 574 |
+
|
| 575 |
+
display_df = pd.DataFrame(display_results)
|
| 576 |
+
|
| 577 |
+
# Show the clean results table
|
| 578 |
+
st.dataframe(
|
| 579 |
+
display_df, use_container_width=True, hide_index=True
|
| 580 |
+
)
|
| 581 |
+
|
| 582 |
+
# Summary statistics
|
| 583 |
+
sales_values = [
|
| 584 |
+
result["predicted_sales"]
|
| 585 |
+
for result in batch_results["results"]
|
| 586 |
+
]
|
| 587 |
+
|
| 588 |
+
col1, col2, col3, col4 = st.columns(4)
|
| 589 |
+
with col1:
|
| 590 |
+
st.metric("💰 Total Revenue", f"${sum(sales_values):,.0f}")
|
| 591 |
+
with col2:
|
| 592 |
+
st.metric(
|
| 593 |
+
"📊 Average Sale",
|
| 594 |
+
f"${sum(sales_values) / len(sales_values):,.0f}",
|
| 595 |
+
)
|
| 596 |
+
with col3:
|
| 597 |
+
high_performers = len(
|
| 598 |
+
[s for s in sales_values if s >= 4145]
|
| 599 |
+
)
|
| 600 |
+
st.metric("🟢 High Performers", f"{high_performers}")
|
| 601 |
+
with col4:
|
| 602 |
+
low_performers = len([s for s in sales_values if s < 2762])
|
| 603 |
+
st.metric("🔴 Needs Attention", f"{low_performers}")
|
| 604 |
+
|
| 605 |
+
# Download options
|
| 606 |
+
col1, col2 = st.columns(2)
|
| 607 |
+
with col1:
|
| 608 |
+
# Download user-friendly results
|
| 609 |
+
csv_display = display_df.to_csv(index=False)
|
| 610 |
+
st.download_button(
|
| 611 |
+
label="📥 Download Summary Results",
|
| 612 |
+
data=csv_display,
|
| 613 |
+
file_name="batch_predictions_summary.csv",
|
| 614 |
+
mime="text/csv",
|
| 615 |
+
)
|
| 616 |
+
|
| 617 |
+
with col2:
|
| 618 |
+
# Download detailed results for technical users
|
| 619 |
+
detailed_results = []
|
| 620 |
+
for result in batch_results["results"]:
|
| 621 |
+
detailed_row = {
|
| 622 |
+
"row_index": result["index"],
|
| 623 |
+
"predicted_sales": result["predicted_sales"],
|
| 624 |
+
**result["input_features"],
|
| 625 |
+
}
|
| 626 |
+
detailed_results.append(detailed_row)
|
| 627 |
+
|
| 628 |
+
detailed_df = pd.DataFrame(detailed_results)
|
| 629 |
+
csv_detailed = detailed_df.to_csv(index=False)
|
| 630 |
+
st.download_button(
|
| 631 |
+
label="🔧 Download Detailed Results",
|
| 632 |
+
data=csv_detailed,
|
| 633 |
+
file_name="batch_predictions_detailed.csv",
|
| 634 |
+
mime="text/csv",
|
| 635 |
+
)
|
| 636 |
+
|
| 637 |
+
# Show errors if any
|
| 638 |
+
if batch_results["errors"]:
|
| 639 |
+
st.subheader("⚠️ Prediction Errors")
|
| 640 |
+
errors_df = pd.DataFrame(batch_results["errors"])
|
| 641 |
+
st.dataframe(errors_df)
|
| 642 |
+
|
| 643 |
+
else:
|
| 644 |
+
st.error(f"Batch prediction failed: {result['error']}")
|
| 645 |
+
|
| 646 |
+
except Exception as e:
|
| 647 |
+
st.error(f"Error processing file: {str(e)}")
|
| 648 |
+
|
| 649 |
+
|
| 650 |
+
def main():
|
| 651 |
+
"""Main application function."""
|
| 652 |
+
# Title and description
|
| 653 |
+
st.markdown(
|
| 654 |
+
'<h1 class="main-header">🛒 SuperKart Sales Predictor</h1>',
|
| 655 |
+
unsafe_allow_html=True,
|
| 656 |
+
)
|
| 657 |
+
|
| 658 |
+
st.markdown(
|
| 659 |
+
"""
|
| 660 |
+
<div style="text-align: center; margin-bottom: 2rem;">
|
| 661 |
+
<p style="font-size: 1.2rem; color: #666;">
|
| 662 |
+
Predict product sales revenue using machine learning based on product and store characteristics
|
| 663 |
+
</p>
|
| 664 |
+
</div>
|
| 665 |
+
""",
|
| 666 |
+
unsafe_allow_html=True,
|
| 667 |
+
)
|
| 668 |
+
|
| 669 |
+
# Check backend health
|
| 670 |
+
health_result = make_api_request("/")
|
| 671 |
+
if not health_result["success"]:
|
| 672 |
+
st.error(
|
| 673 |
+
f"⚠️ Backend API is not available at `{BACKEND_URL}`. Please ensure the backend service is running."
|
| 674 |
+
)
|
| 675 |
+
st.info(
|
| 676 |
+
"""
|
| 677 |
+
**How to specify a different backend URL:**
|
| 678 |
+
|
| 679 |
+
1. **Command line argument:**
|
| 680 |
+
```
|
| 681 |
+
streamlit run app.py -- --backend-url http://your-backend:5050
|
| 682 |
+
```
|
| 683 |
+
|
| 684 |
+
2. **Environment variable:**
|
| 685 |
+
```
|
| 686 |
+
export BACKEND_URL=http://your-backend:5050
|
| 687 |
+
streamlit run app.py
|
| 688 |
+
```
|
| 689 |
+
"""
|
| 690 |
+
)
|
| 691 |
+
st.stop()
|
| 692 |
+
|
| 693 |
+
# Sidebar navigation
|
| 694 |
+
st.sidebar.title("🧭 Navigation")
|
| 695 |
+
|
| 696 |
+
# Display current backend URL and connection status
|
| 697 |
+
st.sidebar.markdown("---")
|
| 698 |
+
st.sidebar.markdown("**🔗 Backend Configuration**")
|
| 699 |
+
st.sidebar.code(BACKEND_URL, language=None)
|
| 700 |
+
|
| 701 |
+
# Show connection status
|
| 702 |
+
if health_result["success"]:
|
| 703 |
+
st.sidebar.success("🟢 Connected")
|
| 704 |
+
if "data" in health_result and "model_loaded" in health_result["data"]:
|
| 705 |
+
model_status = (
|
| 706 |
+
"🤖 Model Loaded"
|
| 707 |
+
if health_result["data"]["model_loaded"]
|
| 708 |
+
else "⚠️ Model Not Loaded"
|
| 709 |
+
)
|
| 710 |
+
st.sidebar.info(model_status)
|
| 711 |
+
else:
|
| 712 |
+
st.sidebar.error("🔴 Disconnected")
|
| 713 |
+
|
| 714 |
+
st.sidebar.markdown("---")
|
| 715 |
+
|
| 716 |
+
app_mode = st.sidebar.selectbox(
|
| 717 |
+
"Choose App Mode",
|
| 718 |
+
["Single Prediction", "Batch Prediction", "API Documentation"],
|
| 719 |
+
)
|
| 720 |
+
|
| 721 |
+
if app_mode == "Single Prediction":
|
| 722 |
+
# Single prediction interface
|
| 723 |
+
input_data = create_input_form()
|
| 724 |
+
|
| 725 |
+
if input_data:
|
| 726 |
+
# Make prediction
|
| 727 |
+
result = make_api_request("/predict", input_data, "POST")
|
| 728 |
+
|
| 729 |
+
if result["success"]:
|
| 730 |
+
prediction_data = result["data"]
|
| 731 |
+
|
| 732 |
+
# Display results
|
| 733 |
+
display_prediction_result(prediction_data)
|
| 734 |
+
|
| 735 |
+
# Show input summary
|
| 736 |
+
with st.expander("📋 View Input Details", expanded=False):
|
| 737 |
+
create_input_summary(input_data)
|
| 738 |
+
|
| 739 |
+
# Success message
|
| 740 |
+
st.markdown(
|
| 741 |
+
'<div class="success-box">✅ Prediction completed successfully!</div>',
|
| 742 |
+
unsafe_allow_html=True,
|
| 743 |
+
)
|
| 744 |
+
|
| 745 |
+
else:
|
| 746 |
+
st.markdown(
|
| 747 |
+
f'<div class="error-box">❌ Prediction failed: {result["error"]}</div>',
|
| 748 |
+
unsafe_allow_html=True,
|
| 749 |
+
)
|
| 750 |
+
|
| 751 |
+
elif app_mode == "Batch Prediction":
|
| 752 |
+
create_batch_prediction()
|
| 753 |
+
|
| 754 |
+
elif app_mode == "API Documentation":
|
| 755 |
+
st.header("📚 API Documentation")
|
| 756 |
+
|
| 757 |
+
# Get feature information
|
| 758 |
+
feature_info = get_feature_info()
|
| 759 |
+
|
| 760 |
+
if feature_info:
|
| 761 |
+
st.subheader("🔧 Required Features")
|
| 762 |
+
|
| 763 |
+
features_df = pd.DataFrame(
|
| 764 |
+
[
|
| 765 |
+
{"Feature": k, "Description": v}
|
| 766 |
+
for k, v in feature_info["feature_descriptions"].items()
|
| 767 |
+
]
|
| 768 |
+
)
|
| 769 |
+
st.table(features_df)
|
| 770 |
+
|
| 771 |
+
st.subheader("📝 Example Input")
|
| 772 |
+
st.json(feature_info["example_input"])
|
| 773 |
+
|
| 774 |
+
st.subheader("🌐 API Endpoints")
|
| 775 |
+
st.markdown("""
|
| 776 |
+
- **GET /**: Health check
|
| 777 |
+
- **POST /predict**: Single prediction
|
| 778 |
+
- **POST /predict/batch**: Batch prediction
|
| 779 |
+
- **GET /features**: Get feature information
|
| 780 |
+
""")
|
| 781 |
+
|
| 782 |
+
# Footer
|
| 783 |
+
st.markdown("---")
|
| 784 |
+
st.markdown(
|
| 785 |
+
"<div style='text-align: center; color: #666;'>"
|
| 786 |
+
"SuperKart Sales Prediction System | Krishnaswamy Subramanian"
|
| 787 |
+
"</div>",
|
| 788 |
+
unsafe_allow_html=True,
|
| 789 |
+
)
|
| 790 |
+
|
| 791 |
+
|
| 792 |
+
if __name__ == "__main__":
|
| 793 |
+
main()
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit==1.29.0
|
| 2 |
+
requests==2.32.3
|
| 3 |
+
pandas==2.2.2
|
| 4 |
+
plotly==5.17.0
|
| 5 |
+
watchdog==6.0.0
|