jujutechnology commited on
Commit
b86cad2
·
verified ·
1 Parent(s): fcb965b

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitignore +137 -0
  2. AUDIOBOOK_FEATURES.md +169 -0
  3. LICENSE +21 -0
  4. README.md +368 -12
  5. VOICE_LIBRARY_ENHANCEMENT_COMPLETE.md +99 -0
  6. gradio_tts_app_audiobook.py +0 -0
  7. gradio_tts_app_audiobook_with_batch.py +0 -0
  8. install-audiobook.bat +151 -0
  9. launch_audiobook.bat +52 -0
  10. pyproject.toml +38 -0
  11. simple_batch_demo.py +146 -0
  12. src/audiobook/__init__.py +8 -0
  13. src/audiobook/audio_processing.py +480 -0
  14. src/audiobook/config.py +72 -0
  15. src/audiobook/models.py +236 -0
  16. src/audiobook/processing.py +928 -0
  17. src/audiobook/project_management.py +656 -0
  18. src/audiobook/voice_management.py +332 -0
  19. src/chatterbox/__init__.py +2 -0
  20. src/chatterbox/models/s3gen/__init__.py +2 -0
  21. src/chatterbox/models/s3gen/const.py +1 -0
  22. src/chatterbox/models/s3gen/decoder.py +317 -0
  23. src/chatterbox/models/s3gen/f0_predictor.py +55 -0
  24. src/chatterbox/models/s3gen/flow.py +242 -0
  25. src/chatterbox/models/s3gen/flow_matching.py +228 -0
  26. src/chatterbox/models/s3gen/hifigan.py +474 -0
  27. src/chatterbox/models/s3gen/matcha/decoder.py +443 -0
  28. src/chatterbox/models/s3gen/matcha/flow_matching.py +129 -0
  29. src/chatterbox/models/s3gen/matcha/text_encoder.py +413 -0
  30. src/chatterbox/models/s3gen/matcha/transformer.py +316 -0
  31. src/chatterbox/models/s3gen/s3gen.py +305 -0
  32. src/chatterbox/models/s3gen/transformer/__init__.py +0 -0
  33. src/chatterbox/models/s3gen/transformer/activation.py +84 -0
  34. src/chatterbox/models/s3gen/transformer/attention.py +330 -0
  35. src/chatterbox/models/s3gen/transformer/convolution.py +145 -0
  36. src/chatterbox/models/s3gen/transformer/embedding.py +294 -0
  37. src/chatterbox/models/s3gen/transformer/encoder_layer.py +236 -0
  38. src/chatterbox/models/s3gen/transformer/positionwise_feed_forward.py +115 -0
  39. src/chatterbox/models/s3gen/transformer/subsampling.py +383 -0
  40. src/chatterbox/models/s3gen/transformer/upsample_encoder.py +318 -0
  41. src/chatterbox/models/s3gen/utils/class_utils.py +71 -0
  42. src/chatterbox/models/s3gen/utils/mask.py +193 -0
  43. src/chatterbox/models/s3gen/utils/mel.py +81 -0
  44. src/chatterbox/models/s3gen/xvector.py +428 -0
  45. src/chatterbox/models/s3tokenizer/__init__.py +30 -0
  46. src/chatterbox/models/s3tokenizer/s3tokenizer.py +168 -0
  47. src/chatterbox/models/t3/__init__.py +1 -0
  48. src/chatterbox/models/t3/inference/alignment_stream_analyzer.py +154 -0
  49. src/chatterbox/models/t3/inference/t3_hf_backend.py +116 -0
  50. src/chatterbox/models/t3/llama_configs.py +37 -0
.gitignore ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .vscode
2
+
3
+ # Pylance
4
+ pyrightconfig.json
5
+
6
+ # Byte-compiled / optimized / DLL files
7
+ __pycache__/
8
+ *.py[cod]
9
+ *$py.class
10
+ src/**/__pycache__/
11
+ src/**/*.pyc
12
+
13
+ # C extensions
14
+ *.so
15
+
16
+ # Distribution / packaging
17
+ .Python
18
+ build/
19
+ develop-eggs/
20
+ dist/
21
+ downloads/
22
+ eggs/
23
+ .eggs/
24
+ lib/
25
+ lib64/
26
+ parts/
27
+ sdist/
28
+ var/
29
+ wheels/
30
+ pip-wheel-metadata/
31
+ share/python-wheels/
32
+ *.egg-info/
33
+ .installed.cfg
34
+ *.egg
35
+ MANIFEST
36
+
37
+ # PyInstaller
38
+ # Usually these files are written by a python script from a template
39
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
40
+ *.manifest
41
+ *.spec
42
+
43
+ # Installer logs
44
+ pip-log.txt
45
+ pip-delete-this-directory.txt
46
+
47
+ # Unit test / coverage reports
48
+ htmlcov/
49
+ .tox/
50
+ .nox/
51
+ .coverage
52
+ .coverage.*
53
+ .cache
54
+ nosetests.xml
55
+ coverage.xml
56
+ *.cover
57
+ .hypothesis/
58
+ .pytest_cache/
59
+
60
+ # Translations
61
+ *.mo
62
+ *.pot
63
+
64
+ # Django stuff:
65
+ *.log
66
+ local_settings.py
67
+ db.sqlite3
68
+
69
+ # Flask stuff:
70
+ instance/
71
+ .webassets-cache
72
+
73
+ # Scrapy stuff:
74
+ .scrapy
75
+
76
+ # Sphinx documentation
77
+ docs/_build/
78
+
79
+ # PyBuilder
80
+ target/
81
+
82
+ # Jupyter Notebook
83
+ .ipynb_checkpoints
84
+
85
+ # Environments
86
+ .env
87
+ .venv
88
+ env/
89
+ venv/
90
+ ENV/
91
+ env.bak/
92
+ venv.bak/
93
+
94
+ # Spyder project settings
95
+ .spyderproject
96
+ .spyderworkspace
97
+
98
+ # Rope project settings
99
+ .ropeproject
100
+
101
+ # mkdocs documentation
102
+ /site
103
+
104
+ # mypy
105
+ .mypy_cache/
106
+ .dmypy.json
107
+ dmypy.json
108
+
109
+ # Pyre type checker
110
+ .pyre/
111
+
112
+ syn_out/
113
+ checkpoints/
114
+ .gradio
115
+
116
+ # Ignore generated sample .wav files
117
+ **/*.wav
118
+
119
+ # User data directories - keep repository clean
120
+ venv/
121
+ audiobook_projects/
122
+ speakers/
123
+ source/
124
+ audiobook_config.json
125
+
126
+ # Development and archive directories
127
+ archive/
128
+ development/
129
+
130
+ # OS generated files
131
+ .DS_Store
132
+ .DS_Store?
133
+ ._*
134
+ .Spotlight-V100
135
+ .Trashes
136
+ ehthumbs.db
137
+ Thumbs.db
AUDIOBOOK_FEATURES.md ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 🎧 Chatterbox TTS - Audiobook Edition Features
2
+
3
+ ## 🚀 New Voice Management System
4
+
5
+ The Audiobook Edition adds powerful voice management capabilities perfect for creating consistent character voices across your audiobook projects.
6
+
7
+ ## ✨ Key Features
8
+
9
+ ### 📚 Voice Library Tab
10
+ - **Organized Voice Storage**: Keep all your character voices in one place
11
+ - **Custom Voice Profiles**: Save voice settings with names, descriptions, and reference audio
12
+ - **Easy Voice Selection**: Quick dropdown to switch between saved voices
13
+ - **Voice Testing**: Test voices before saving or using them
14
+
15
+ ### 🎭 Character Voice Management
16
+ - **Voice Profiles**: Each voice includes:
17
+ - Voice name (for file organization)
18
+ - Display name (human-readable)
19
+ - Description (character notes)
20
+ - Reference audio file
21
+ - Optimized settings (exaggeration, CFG/pace, temperature)
22
+
23
+ ### 🎙️ Voice Testing & Configuration
24
+ - **Live Testing**: Test voice settings with custom text
25
+ - **Parameter Tuning**: Fine-tune exaggeration, CFG/pace, and temperature
26
+ - **Instant Feedback**: Hear changes immediately
27
+ - **Save Optimized Settings**: Store perfect settings for each character
28
+
29
+ ## 🛠️ How to Use
30
+
31
+ ### 1. Launch the Audiobook Edition
32
+ ```bash
33
+ # Use the audiobook launcher
34
+ launch_audiobook.bat
35
+ ```
36
+
37
+ ### 2. Set Up Your Voice Library
38
+ 1. Go to the **"📚 Voice Library"** tab
39
+ 2. Set your voice library folder path (default: `voice_library`)
40
+ 3. Click **"📁 Update Library Path"**
41
+
42
+ ### 3. Create a Voice Profile
43
+ 1. **Upload Reference Audio**: Upload 10-30 seconds of clear speech
44
+ 2. **Configure Settings**:
45
+ - **Exaggeration**: 0.3-0.7 for most voices
46
+ - **CFG/Pace**: Lower = slower, more deliberate
47
+ - **Temperature**: Higher = more variation
48
+ 3. **Test the Voice**: Use the test text to hear how it sounds
49
+ 4. **Save Profile**: Give it a name and description, then save
50
+
51
+ ### 4. Use Saved Voices
52
+ 1. **Select Voice**: Choose from dropdown in Voice Library
53
+ 2. **Load Voice**: Click "📥 Load Voice" to load settings
54
+ 3. **Generate Speech**: Switch to TTS tab and generate with loaded voice
55
+
56
+ ## 📁 Voice Library Structure
57
+
58
+ ```
59
+ voice_library/
60
+ ├── narrator_male_deep/
61
+ │ ├── config.json # Voice settings
62
+ │ └── reference.wav # Reference audio
63
+ ├── character_female_young/
64
+ │ ├── config.json
65
+ │ └── reference.mp3
66
+ └── villain_gravelly/
67
+ ├── config.json
68
+ └── reference.wav
69
+ ```
70
+
71
+ ## 🎯 Audiobook Workflow
72
+
73
+ ### Step 1: Character Planning
74
+ - List all characters in your audiobook
75
+ - Gather reference audio for each (record or find samples)
76
+ - Plan voice characteristics (age, personality, accent)
77
+
78
+ ### Step 2: Voice Creation
79
+ - Create a voice profile for each character
80
+ - Test and refine settings for consistency
81
+ - Save with descriptive names (e.g., "Harry_confident", "Hermione_intelligent")
82
+
83
+ ### Step 3: Production
84
+ - Load character voice before generating their dialogue
85
+ - Use consistent settings throughout the book
86
+ - Test voice regularly to maintain quality
87
+
88
+ ### Step 4: Quality Control
89
+ - Use the same test phrase for all characters
90
+ - Ensure voices are distinguishable
91
+ - Adjust settings if characters sound too similar
92
+
93
+ ## 💡 Pro Tips
94
+
95
+ ### Voice Creation
96
+ - **Reference Audio**: Use clean, noise-free recordings
97
+ - **Length**: 10-30 seconds is optimal
98
+ - **Content**: Natural speech, not overly dramatic
99
+ - **Quality**: Higher quality audio = better cloning
100
+
101
+ ### Settings Optimization
102
+ - **Exaggeration**:
103
+ - 0.3-0.5: Subtle, natural voices
104
+ - 0.5-0.7: Standard character voices
105
+ - 0.7-1.0: Dramatic or distinctive voices
106
+
107
+ - **CFG/Pace**:
108
+ - 0.3-0.4: Slow, deliberate (elderly, wise characters)
109
+ - 0.5: Standard pace
110
+ - 0.6-0.8: Faster pace (young, energetic characters)
111
+
112
+ - **Temperature**:
113
+ - 0.5-0.8: Consistent delivery
114
+ - 0.8-1.2: More natural variation
115
+ - 1.2+: Creative but less predictable
116
+
117
+ ### Organization
118
+ - **Naming Convention**: Use descriptive names (character_trait_type)
119
+ - **Descriptions**: Include character details and usage notes
120
+ - **Backup**: Keep your voice_library folder backed up
121
+ - **Version Control**: Save multiple versions for different emotions
122
+
123
+ ## 🔧 Advanced Features
124
+
125
+ ### Voice Library Management
126
+ - **Import/Export**: Copy voice_library folder between projects
127
+ - **Sharing**: Share voice profiles with other audiobook creators
128
+ - **Backup**: Regular backups of your voice library
129
+ - **Organization**: Folder structure for different projects
130
+
131
+ ### Batch Processing (Future)
132
+ - Process entire chapters with character voice switching
133
+ - Automatic voice detection based on speaker tags
134
+ - Export management for audiobook production
135
+
136
+ ## 🎵 Example Character Voices
137
+
138
+ ### Narrator
139
+ - **Settings**: Exaggeration 0.4, CFG 0.5, Temp 0.7
140
+ - **Description**: Clear, neutral, professional tone
141
+ - **Use**: Chapter narration, scene descriptions
142
+
143
+ ### Hero Character
144
+ - **Settings**: Exaggeration 0.6, CFG 0.6, Temp 0.8
145
+ - **Description**: Confident, determined, slightly higher energy
146
+ - **Use**: Main character dialogue
147
+
148
+ ### Wise Mentor
149
+ - **Settings**: Exaggeration 0.3, CFG 0.3, Temp 0.6
150
+ - **Description**: Slow, deliberate, thoughtful delivery
151
+ - **Use**: Advisor character, important wisdom
152
+
153
+ ### Comic Relief
154
+ - **Settings**: Exaggeration 0.8, CFG 0.7, Temp 1.0
155
+ - **Description**: Energetic, expressive, variable delivery
156
+ - **Use**: Funny sidekick, lighthearted moments
157
+
158
+ ## 🛡️ Best Practices
159
+
160
+ 1. **Consistency**: Always use the same voice profile for each character
161
+ 2. **Testing**: Test voices regularly during production
162
+ 3. **Backup**: Keep voice profiles backed up
163
+ 4. **Documentation**: Maintain character voice notes
164
+ 5. **Quality**: Use high-quality reference audio
165
+ 6. **Organization**: Use clear naming conventions
166
+
167
+ ---
168
+
169
+ **Ready to create amazing audiobooks with consistent character voices? Launch the Audiobook Edition and start building your voice library! 🎧✨**
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2025 Resemble AI
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
README.md CHANGED
@@ -1,12 +1,368 @@
1
- ---
2
- title: Https Huggingface Co Spaces Jujutechnology Ebook2audiobook
3
- emoji: 📉
4
- colorFrom: pink
5
- colorTo: blue
6
- sdk: gradio
7
- sdk_version: 5.34.0
8
- app_file: app.py
9
- pinned: false
10
- ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 🎧 Chatterbox Audiobook Generator
2
+
3
+ **This is a work in progress. You can consider this a pre-launch repo at the moment, but if you find bugs, please put them in the issues area. Thank you.**
4
+ **Transform your text into high-quality audiobooks with advanced TTS models, voice cloning, and professional volume normalization.**
5
+
6
+ ## 🚀 Quick Start
7
+
8
+ ### 1. Install Dependencies
9
+ ```bash
10
+ ./install-audiobook.bat
11
+ ```
12
+
13
+ ### 2. Launch the Application
14
+ ```bash
15
+ ./launch_audiobook.bat
16
+ ```
17
+
18
+ ### 3. CUDA Issue Fix (If Needed)
19
+ If you encounter CUDA assertion errors during generation, install the patched version:
20
+ ```bash
21
+ # Activate your virtual environment first
22
+ venv\Scripts\activate.bat
23
+
24
+ # Install the CUDA-fixed version
25
+ pip install --force-reinstall --no-cache-dir "chatterbox-tts @ git+https://github.com/fakerybakery/better-chatterbox@fix-cuda-issue"
26
+ ```
27
+
28
+ The web interface will open automatically in your browser at `http://localhost:7860`
29
+
30
+ ---
31
+
32
+ ## ✨ Features
33
+
34
+ ### 📚 **Audiobook Creation**
35
+ - **Single Voice**: Generate entire audiobooks with one consistent voice
36
+ - **Multi-Voice**: Create dynamic audiobooks with multiple characters
37
+ - **Custom Voices**: Clone voices from audio samples for personalized narration
38
+ - **Professional Volume Normalization**: Ensure consistent audio levels across all voices
39
+ - **📋 Text Queuing System** ⭐ *NEW*: Upload books in any size chapters and generate continuously
40
+ - **🔄 Chunk-Based Processing** ⭐ *NEW*: Improved reliability for longer text generations
41
+
42
+ ### 🎵 **Audio Processing**
43
+ - **Smart Cleanup**: Remove unwanted silence and audio artifacts
44
+ - **Volume Normalization**: Professional-grade volume balancing for all voices
45
+ - **Real-time Audio Analysis**: Live volume level monitoring and feedback
46
+ - **Preview System**: Test settings before applying to entire projects
47
+ - **Batch Processing**: Process multiple projects efficiently
48
+ - **Quality Control**: Advanced audio optimization tools
49
+ - **🎯 Enhanced Audio Quality** ⭐ *NEW*: Improved P-top and minimum P parameters for better voice generation
50
+
51
+ ### 🎭 **Voice Management**
52
+ - **Voice Library**: Organize and manage your voice collection
53
+ - **Voice Cloning**: Create custom voices from audio samples
54
+ - **Volume Settings**: Configure target volume levels for each voice
55
+ - **Professional Presets**: Industry-standard volume levels (audiobook, podcast, broadcast)
56
+ - **Character Assignment**: Map specific voices to story characters
57
+
58
+ ### 📊 **Volume Normalization System** ⭐ *NEW*
59
+ - **Professional Standards**: Audiobook (-18 dB), Podcast (-16 dB), Broadcast (-23 dB) presets
60
+ - **Consistent Character Voices**: All characters maintain the same volume level
61
+ - **Real-time Analysis**: Color-coded volume status with RMS and peak level display
62
+ - **Retroactive Normalization**: Apply volume settings to existing voice projects
63
+ - **Multi-Voice Support**: Batch normalize all voices in multi-character audiobooks
64
+ - **Soft Limiting**: Intelligent audio limiting to prevent distortion
65
+
66
+ ### 📖 **Text Processing**
67
+ - **Chapter Support**: Automatic chapter detection and organization
68
+ - **Multi-Voice Parsing**: Parse character dialogue automatically
69
+ - **Text Validation**: Ensure proper formatting before generation
70
+ - **📋 Queue Management** ⭐ *NEW*: Batch process multiple text files sequentially
71
+ - **🔇 Return Pause System** ⭐ *NEW*: Automatic pause insertion based on line breaks for natural speech flow
72
+
73
+ ---
74
+
75
+ ## 🎭 Custom Audiobook Processing Pipeline ⭐ *NEW*
76
+
77
+ Our advanced text processing pipeline transforms your written content into natural-sounding audiobooks with intelligent pause placement and character flow management.
78
+
79
+ ### 🔇 **Return Pause System**
80
+
81
+ **Automatic pause insertion based on your text formatting** - Every line break (`\n`) in your text automatically adds a 0.1-second pause to the generated audio, creating natural speech rhythms without manual intervention.
82
+
83
+ #### **How It Works**
84
+ - **Line Break Detection**: System automatically counts all line breaks in your text
85
+ - **Pause Calculation**: Each return adds exactly 0.1 seconds of silence
86
+ - **Accumulative Pauses**: Multiple consecutive line breaks create longer pauses
87
+ - **Universal Support**: Works with single-voice, multi-voice, and batch processing
88
+
89
+ #### **Example Text Formatting**
90
+ ```
91
+ [Narrator] The sun was setting over the hills.
92
+
93
+ [Character1] "We need to find shelter soon."
94
+
95
+ [Character2] "I see a cave up ahead.
96
+ Let's hurry before it gets dark."
97
+
98
+
99
+ [Narrator] They rushed toward the cave, hearts pounding.
100
+ ```
101
+ **Result**: Natural pauses between dialogue, emphasis pauses for dramatic effect, and smooth character transitions.
102
+
103
+ ### 📝 **Text Formatting Best Practices**
104
+
105
+ #### **🎭 Multi-Voice Dialogue Structure**
106
+ ```
107
+ [Character Name] Dialogue content here.
108
+
109
+ [Another Character] Response content here.
110
+ Multiple lines can be used for the same character.
111
+
112
+ [Narrator] Descriptive text and scene setting.
113
+ ```
114
+
115
+ #### **🎪 Natural Flow Techniques**
116
+ - **Paragraph Breaks**: Use double line breaks for scene transitions
117
+ - **Emphasis Pauses**: Add extra returns before important revelations
118
+ - **Character Separation**: Single returns between different speakers
119
+ - **Breathing Room**: Natural pauses for complex concepts or emotional moments
120
+
121
+ #### **📖 Single Voice Formatting**
122
+ ```
123
+ Chapter content flows naturally here.
124
+
125
+ New paragraphs create natural pauses.
126
+
127
+
128
+ Extended pauses can emphasize dramatic moments.
129
+
130
+ Regular text continues with normal pacing.
131
+ ```
132
+
133
+ ### 🔄 **Processing Pipeline Features**
134
+
135
+ #### **🧠 Intelligent Text Analysis**
136
+ - **Line Break Preservation**: Maintains your formatting intentions throughout processing
137
+ - **Character Assignment**: Automatically maps voice tags to selected voice profiles
138
+ - **Chunk Optimization**: Breaks long texts into optimal segments while preserving pause timing
139
+ - **Error Recovery**: Validates text and provides helpful formatting suggestions
140
+
141
+ #### **⚡ Real-Time Processing**
142
+ - **Live Feedback**: Console output shows exactly how many pauses are being added
143
+ - **Debug Information**: Detailed logging of pause detection and application
144
+ - **Progress Tracking**: Monitor pause processing alongside audio generation
145
+ - **Quality Assurance**: Automatic validation of pause placement
146
+
147
+ #### **🎚️ Professional Output**
148
+ - **Seamless Integration**: Pauses blend naturally with generated speech
149
+ - **Volume Consistency**: Silence segments match the audio output specifications
150
+ - **Format Compatibility**: Works with all supported audio formats and quality settings
151
+ - **Project Preservation**: Pause information saved in project metadata for regeneration
152
+
153
+ ### 💡 **Pro Tips for Better Audiobooks**
154
+
155
+ #### **🎯 Dialogue Formatting**
156
+ - **Character Consistency**: Always use the same character name format `[Name]`
157
+ - **Natural Breaks**: Place returns where a human reader would naturally pause
158
+ - **Scene Transitions**: Use multiple returns (2-3) for major scene changes
159
+ - **Emotional Beats**: Add single returns before/after emotional dialogue
160
+
161
+ #### **📚 Chapter Structure**
162
+ ```
163
+ Chapter 1: The Beginning
164
+
165
+ Opening paragraph with scene setting.
166
+
167
+ "Character dialogue with natural flow."
168
+
169
+ Descriptive narrative continues.
170
+
171
+
172
+ Major scene transition with extended pause.
173
+
174
+ New section begins here.
175
+ ```
176
+
177
+ #### **🎪 Advanced Techniques**
178
+ - **Cliffhangers**: Use extended pauses before revealing crucial information
179
+ - **Action Sequences**: Shorter, punchy sentences with minimal pauses for intensity
180
+ - **Contemplative Moments**: Longer pauses for reflection and character development
181
+ - **Comedic Timing**: Strategic pauses before punchlines or comedic reveals
182
+
183
+ ### 🔍 **Debug Output Examples**
184
+
185
+ When generating your audiobook, watch for these helpful console messages:
186
+ ```
187
+ 🔇 Detected 15 line breaks → 1.5s total pause time
188
+ 🔇 Line breaks detected in [Character1]: +0.3s pause (from 3 returns)
189
+ 🔇 Chunk 2 (Narrator): Added 0.2s pause after speech
190
+ ```
191
+
192
+ This real-time feedback helps you understand exactly how your formatting translates to audio timing.
193
+
194
+ ---
195
+
196
+ ## 🆕 Recent Improvements
197
+
198
+ ### 🎯 **Audio Quality Enhancements**
199
+ We've significantly improved audio generation quality by optimizing the underlying TTS parameters:
200
+
201
+ - **Enhanced P-top and Minimum P Settings**: Fine-tuned probability parameters for more natural speech patterns
202
+ - **Reduced Audio Artifacts**: Better handling of pronunciation and intonation
203
+ - **Improved Voice Consistency**: More stable voice characteristics across long generations
204
+ - **Better Pronunciation**: Enhanced handling of complex words and names
205
+
206
+ **📝 Note for Existing Users**:
207
+ - Older voice profiles will continue to work as before
208
+ - To take advantage of the new audio quality improvements, consider re-creating voice profiles
209
+ - Existing projects remain fully compatible
210
+
211
+ ### 📋 **Text Queuing System**
212
+ Perfect for processing large books or multiple chapters:
213
+
214
+ - **Batch Upload**: Upload multiple text files of any size
215
+ - **Sequential Processing**: Automatically processes files one after another
216
+ - **Progress Tracking**: Monitor generation progress across all queued items
217
+ - **Flexible Chapter Sizes**: No restrictions on individual file length
218
+ - **Unattended Generation**: Set up large projects and let them run automatically
219
+
220
+ ### 🔄 **Chunk-Based TTS System**
221
+ Enhanced the core text-to-speech engine for better reliability:
222
+
223
+ - **Background Chunking**: Automatically splits long texts into optimal chunks
224
+ - **Memory Management**: Better handling of large text inputs
225
+ - **Error Recovery**: Improved resilience during long generation sessions
226
+ - **Consistent Quality**: Maintains voice quality across chunk boundaries
227
+ - **Progress Feedback**: Real-time updates on generation progress
228
+
229
+ ---
230
+
231
+ ## 🎚️ Volume Normalization Guide
232
+
233
+ ### **Individual Voice Setup**
234
+ 1. Go to **Voice Library** tab
235
+ 2. Upload your voice sample and configure settings
236
+ 3. Set target volume level (default: -18 dB for audiobooks)
237
+ 4. Choose from professional presets or use custom levels
238
+ 5. Save voice profile with volume settings
239
+
240
+ ### **Multi-Voice Projects**
241
+ 1. Navigate to **Multi-Voice Audiobook Creation** tab
242
+ 2. Enable volume normalization for all voices
243
+ 3. Set target level for consistent character voices
244
+ 4. All characters will be automatically normalized during generation
245
+
246
+ ### **Text Queuing Workflow** ⭐ *NEW*
247
+ 1. Go to **Production Studio** tab
248
+ 2. Select "Batch Processing" mode
249
+ 3. Upload multiple text files (chapters, sections, etc.)
250
+ 4. Choose your voice and settings
251
+ 5. Start batch processing - files will generate sequentially
252
+ 6. Monitor progress and download completed audiobooks
253
+
254
+ ### **Professional Standards**
255
+ - **📖 Audiobook Standard**: -18 dB RMS (recommended for most audiobooks)
256
+ - **🎙️ Podcast Standard**: -16 dB RMS (for podcast-style content)
257
+ - **🔇 Quiet/Comfortable**: -20 dB RMS (for quiet listening environments)
258
+ - **🔊 Loud/Energetic**: -14 dB RMS (for dynamic, energetic content)
259
+ - **📺 Broadcast Standard**: -23 dB RMS (for broadcast television standards)
260
+
261
+ ---
262
+
263
+ ## 📁 Project Structure
264
+
265
+ ```
266
+ 📦 Your Audiobook Projects
267
+ ├── 🎤 speakers/ # Voice library and samples
268
+ ├── 📚 audiobook_projects/ # Generated audiobooks
269
+ ├── 🔧 src/audiobook/ # Core processing modules
270
+ └── 📄 Generated files... # Audio chunks and final outputs
271
+ ```
272
+
273
+ ---
274
+
275
+ ## 🎯 Workflow
276
+
277
+ 1. **📝 Prepare Text**: Format your story with proper chapter breaks and strategic line breaks for natural pauses
278
+ 2. **🎤 Select Voices**: Choose or clone voices for your characters
279
+ 3. **🎚️ Configure Volume**: Set professional volume levels and normalization
280
+ 4. **⚙️ Configure Settings**: Adjust quality, speed, and processing options
281
+ 5. **🎧 Generate Audio**: Create your audiobook with advanced TTS and automatic pause insertion
282
+ 6. **🧹 Clean & Optimize**: Use smart cleanup tools for perfect audio
283
+ 7. **📦 Export**: Get your finished audiobook ready for distribution
284
+
285
+ ### 🎭 **Enhanced Multi-Voice Workflow**
286
+ 1. **📝 Format Dialogue**: Use `[Character]` tags and strategic line breaks for natural flow
287
+ 2. **🔇 Add Return Pauses**: Place line breaks where you want natural speech pauses (0.1s each)
288
+ 3. **🎤 Assign Voices**: Map each character to their voice profile
289
+ 4. **⚡ Process with Intelligence**: Watch console output for pause detection feedback
290
+ 5. **🎧 Review & Adjust**: Listen to generated audio and refine formatting if needed
291
+
292
+ ### 📋 **Batch Processing Workflow** ⭐ *NEW*
293
+ 1. **📚 Organize Chapters**: Split your book into individual text files
294
+ 2. **📋 Queue Setup**: Upload all files to the batch processing system
295
+ 3. **🎤 Voice Selection**: Choose voice and configure settings once
296
+ 4. **🔄 Automated Generation**: Let the system process all files sequentially
297
+ 5. **📊 Monitor Progress**: Track completion status in real-time
298
+ 6. **📦 Collect Results**: Download all generated audiobook chapters
299
+
300
+ ---
301
+
302
+ ## 🛠️ Technical Requirements
303
+
304
+ - **Python 3.8+**
305
+ - **CUDA GPU** (recommended for faster processing)
306
+ - **8GB+ RAM** (16GB recommended for large projects)
307
+ - **Modern web browser** for the interface
308
+
309
+ ### 🔧 **CUDA Support**
310
+ - CUDA compatibility issues have been resolved with updated dependencies
311
+ - GPU acceleration is now stable for extended generation sessions
312
+ - Fallback to CPU processing available if CUDA issues occur
313
+ - **If you encounter CUDA assertion errors**: Use the patched version from the installation instructions above
314
+ - The fix addresses PyTorch indexing issues that could cause crashes during audio generation
315
+
316
+ ---
317
+
318
+ ## ⚠️ Known Issues & Compatibility
319
+
320
+ ### **Multi-Voice Generation**
321
+ - Short sentences or sections may occasionally cause issues during multi-voice generation
322
+ - This is a limitation of the underlying TTS models rather than the implementation
323
+ - **Workaround**: Use longer, more detailed sentences for better stability
324
+ - Single-voice generation is not affected by this issue
325
+
326
+ ### **Voice Profile Compatibility**
327
+ - **Existing Voices**: All older voice profiles remain fully functional
328
+ - **New Features**: To benefit from improved audio quality, consider re-creating voice profiles
329
+ - **Project Compatibility**: Existing audiobook projects work without modification
330
+ - **Regeneration**: Individual chunks can be regenerated with improved quality settings
331
+
332
+ ### **Batch Processing Considerations**
333
+ - Large batch jobs may take significant time depending on text length and hardware
334
+ - Monitor system resources during extended batch processing sessions
335
+ - Consider processing very large books in smaller batches for better control
336
+
337
+ ---
338
+
339
+ ## 📋 Supported Formats
340
+
341
+ ### Input
342
+ - **Text**: `.txt`, `.md`, formatted stories and scripts
343
+ - **Audio Samples**: `.wav`, `.mp3`, `.flac` for voice cloning
344
+ - **Batch Files**: Multiple text files for queue processing
345
+
346
+ ### Output
347
+ - **Audio**: High-quality `.wav` files with professional volume levels
348
+ - **Projects**: Organized folder structure with chapters
349
+ - **Exports**: Ready-to-use audiobook files
350
+ - **Batch Results**: Multiple completed audiobooks from queue processing
351
+
352
+ ---
353
+
354
+ ## 🆘 Support
355
+
356
+ - **Features Guide**: See `AUDIOBOOK_FEATURES.md` for detailed capabilities
357
+ - **Development Notes**: Check `development/` folder for technical details
358
+ - **Issues**: Report problems via GitHub issues
359
+
360
+ ---
361
+
362
+ ## 📄 License
363
+
364
+ This project is licensed under the terms specified in `LICENSE`.
365
+
366
+ ---
367
+
368
+ **🎉 Ready to create amazing audiobooks with professional volume levels and enhanced audio quality? Run `./launch_audiobook.bat` and start generating!**
VOICE_LIBRARY_ENHANCEMENT_COMPLETE.md ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ✅ Voice Library Enhancement Complete
2
+
3
+ ## 🎯 **Problem Solved**
4
+ The Voice Library UI was missing **advanced TTS parameters** (Min-P, Top-P, Repetition Penalty) that were available in the backend but not exposed to users.
5
+
6
+ ## 🛠️ **Changes Made**
7
+
8
+ ### 1. **Enhanced Voice Profile Storage** ⚙️
9
+ - Updated `save_voice_profile()` function to accept and store:
10
+ - **Min-P** (default: 0.05) - Minimum probability threshold
11
+ - **Top-P** (default: 1.0) - Nucleus sampling threshold
12
+ - **Repetition Penalty** (default: 1.2) - Token repetition control
13
+ - Incremented version to **v2.1** for backward compatibility
14
+ - Enhanced status messages to show advanced settings
15
+
16
+ ### 2. **Enhanced Voice Profile Loading** 📥
17
+ - Updated `load_voice_profile()` function to return new parameters
18
+ - Added backward compatibility - old voice profiles get sensible defaults
19
+ - Enhanced status messages to show profile version
20
+
21
+ ### 3. **New Voice Library UI Controls** 🎛️
22
+ Added **"Advanced Voice Parameters"** section in Voice Library tab:
23
+ ```
24
+ 🎛️ Advanced Voice Parameters
25
+ ├── Min-P (0.01-0.5) - "Minimum probability threshold for token selection (lower = more diverse)"
26
+ ├── Top-P (0.1-1.0) - "Nucleus sampling threshold (lower = more focused)"
27
+ └── Repetition Penalty (1.0-2.0) - "Penalty for repeating tokens (higher = less repetition)"
28
+ ```
29
+
30
+ ### 4. **Enhanced TTS Generation** 🎵
31
+ - Updated core `generate()` function to accept new parameters
32
+ - Updated `generate_with_cpu_fallback()` function for fallback mode
33
+ - Updated `generate_with_retry()` function for robust generation
34
+ - All TTS calls now use voice-specific advanced parameters
35
+
36
+ ### 5. **Enhanced Voice Configuration** 📋
37
+ - Updated `get_voice_config()` function to include new parameters
38
+ - All audiobook generation now uses saved voice settings
39
+ - Backward compatibility maintained for existing voices
40
+
41
+ ### 6. **UI Integration** 🔗
42
+ - **Save Button**: Now includes all 3 new parameters in voice profiles
43
+ - **Load Button**: Populates all UI sliders with saved values
44
+ - **Test Button**: Uses advanced parameters for voice testing
45
+
46
+ ## 🎮 **User Experience**
47
+
48
+ ### **Before** ❌
49
+ - Only basic parameters: Exaggeration, CFG/Pace, Temperature
50
+ - Advanced TTS controls were hidden and inaccessible
51
+ - All voices used default Min-P/Top-P/Rep-Penalty values
52
+
53
+ ### **After** ✅
54
+ - **Full control** over TTS generation parameters
55
+ - **Professional voice tuning** with industry-standard controls
56
+ - **Per-voice customization** - each voice can have unique settings
57
+ - **Backward compatibility** - existing voices continue working
58
+ - **Enhanced voice testing** with all parameters
59
+
60
+ ## 📊 **Technical Benefits**
61
+
62
+ ### **Voice Quality Control** 🎭
63
+ - **Min-P**: Fine-tune creativity vs consistency
64
+ - **Top-P**: Control focus vs diversity in voice generation
65
+ - **Repetition Penalty**: Eliminate unwanted voice repetitions
66
+
67
+ ### **Professional Workflow** 🎯
68
+ - Voice artists can now fine-tune voices like professional TTS systems
69
+ - Each character voice can have unique personality parameters
70
+ - Better control over audiobook consistency and quality
71
+
72
+ ### **Future-Proof Architecture** 🚀
73
+ - Versioned voice profiles (v2.1) support new features
74
+ - Clean parameter passing through all generation functions
75
+ - Ready for additional TTS parameters in future updates
76
+
77
+ ## 🧪 **Testing Recommendations**
78
+
79
+ 1. **Create New Voice**: Test all advanced parameters
80
+ 2. **Load Old Voice**: Verify backward compatibility
81
+ 3. **Generate Audio**: Confirm parameters affect output quality
82
+ 4. **Multi-Voice**: Test advanced parameters in character dialogue
83
+ 5. **Volume + Advanced**: Test combined normalization + advanced settings
84
+
85
+ ## ✨ **What Users See Now**
86
+
87
+ When saving a voice, users get confirmation like:
88
+ ```
89
+ ✅ Voice profile 'Deep Male Narrator' saved successfully!
90
+ 📊 Audio normalized from -12.3 dB to -18.0 dB
91
+ 🎛️ Advanced settings: Min-P=0.03, Top-P=0.9, Rep. Penalty=1.3
92
+ ```
93
+
94
+ When loading a voice profile, version info is shown:
95
+ ```
96
+ ✅ Loaded voice profile: Deep Male Narrator (v2.1)
97
+ ```
98
+
99
+ **The Voice Library now provides complete professional-grade TTS control!** 🎉
gradio_tts_app_audiobook.py ADDED
The diff for this file is too large to render. See raw diff
 
gradio_tts_app_audiobook_with_batch.py ADDED
The diff for this file is too large to render. See raw diff
 
install-audiobook.bat ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ d@echo off
2
+ echo ========================================
3
+ echo Chatterbox TTS - Installation Setup
4
+ echo ========================================
5
+ echo.
6
+ echo This will install Chatterbox TTS in a virtual environment
7
+ echo to keep it isolated from other Python projects.
8
+ echo.
9
+ echo Requirements:
10
+ echo - Python 3.10 or higher
11
+ echo - NVIDIA GPU with CUDA support (recommended)
12
+ echo - Git (if you want to pull updates)
13
+ echo.
14
+ echo Current directory: %CD%
15
+ echo.
16
+ pause
17
+
18
+ echo.
19
+ echo [1/9] Checking Python installation...
20
+ python --version
21
+ if %errorlevel% neq 0 (
22
+ echo ERROR: Python is not installed or not in PATH
23
+ echo Please install Python 3.10+ from https://python.org
24
+ pause
25
+ exit /b 1
26
+ )
27
+
28
+ echo.
29
+ echo [2/9] Checking if we're in the correct directory...
30
+ if not exist "pyproject.toml" (
31
+ echo ERROR: pyproject.toml not found!
32
+ echo Please make sure you're running this from the chatterbox repository root.
33
+ echo Expected files: pyproject.toml, gradio_tts_app.py, src/chatterbox/
34
+ pause
35
+ exit /b 1
36
+ )
37
+
38
+ if not exist "src\chatterbox" (
39
+ echo ERROR: src\chatterbox directory not found!
40
+ echo Please make sure you're in the correct chatterbox repository.
41
+ pause
42
+ exit /b 1
43
+ )
44
+
45
+ echo Repository structure verified ✓
46
+
47
+ echo.
48
+ echo [3/9] Creating virtual environment...
49
+ if exist "venv" (
50
+ echo Virtual environment already exists. Removing old one...
51
+ rmdir /s /q venv
52
+ )
53
+ python -m venv venv
54
+
55
+ echo.
56
+ echo [4/9] Activating virtual environment...
57
+ call venv\Scripts\activate.bat
58
+
59
+ echo.
60
+ echo [5/9] Upgrading pip...
61
+ python -m pip install --upgrade pip
62
+
63
+ echo.
64
+ echo [6/9] Installing compatible PyTorch with CUDA support...
65
+ echo This may take a while (downloading ~2.5GB)...
66
+ echo Installing PyTorch 2.4.1 + torchvision 0.19.1 (compatible versions)...
67
+ pip install torch==2.4.1+cu121 torchvision==0.19.1+cu121 torchaudio==2.4.1+cu121 --index-url https://download.pytorch.org/whl/cu121
68
+
69
+ echo.
70
+ echo [7/9] Installing Chatterbox TTS and dependencies...
71
+ pip install -e .
72
+ pip install gradio
73
+
74
+ echo.
75
+ echo [8/9] Installing and configuring pydantic (tested version)...
76
+ echo Uninstalling any existing pydantic versions...
77
+ pip uninstall pydantic -y
78
+ echo Installing pydantic version 2.10.6 (tested and verified)...
79
+ pip install pydantic==2.10.6
80
+ echo Verifying pydantic installation...
81
+ pip show pydantic | findstr /C:"Version: 2.10.6"
82
+ if %errorlevel% neq 0 (
83
+ echo WARNING: Pydantic 2.10.6 installation may have issues.
84
+ echo Attempting alternative installation...
85
+ pip install pydantic==2.10.6 --force-reinstall
86
+ )
87
+
88
+ echo Installing numpy (compatible version)...
89
+ pip install numpy==1.26.0 --force-reinstall
90
+
91
+ echo.
92
+ echo [9/9] Testing installation...
93
+ echo Testing PyTorch and CUDA...
94
+ python -c "import torch; print('PyTorch version:', torch.__version__); print('CUDA available:', torch.cuda.is_available())"
95
+
96
+ if %errorlevel% neq 0 (
97
+ echo WARNING: PyTorch test failed. Trying to fix torchvision compatibility...
98
+ pip uninstall torchvision -y
99
+ pip install torchvision==0.19.1+cu121 --index-url https://download.pytorch.org/whl/cu121 --force-reinstall
100
+ echo Retesting...
101
+ python -c "import torch; print('PyTorch version:', torch.__version__); print('CUDA available:', torch.cuda.is_available())"
102
+ )
103
+
104
+ echo.
105
+ echo Testing Chatterbox import...
106
+ python -c "from chatterbox.tts import ChatterboxTTS; print('Chatterbox TTS imported successfully!')"
107
+
108
+ if %errorlevel% neq 0 (
109
+ echo WARNING: Chatterbox import failed. This might be a dependency issue.
110
+ echo The installation will continue, but you may need to troubleshoot.
111
+ echo Common fixes:
112
+ echo 1. Run install.bat again
113
+ echo 2. Check NVIDIA drivers are up to date
114
+ echo 3. Restart your computer
115
+ )
116
+
117
+ echo.
118
+ echo Testing pydantic compatibility...
119
+ python -c "import pydantic; print('Pydantic version:', pydantic.__version__)"
120
+
121
+ echo.
122
+ echo ========================================
123
+ echo Installation Complete!
124
+ echo ========================================
125
+ echo.
126
+ echo Virtual environment created at: %CD%\venv
127
+ echo.
128
+
129
+ echo Final system check...
130
+ python -c "import torch; print('GPU:', torch.cuda.get_device_name(0) if torch.cuda.is_available() else 'None')"
131
+
132
+ echo.
133
+ echo ========================================
134
+ echo Ready for Audiobooks!
135
+ echo ========================================
136
+ echo.
137
+ echo To start Chatterbox TTS:
138
+ echo 1. Run launch_audiobook.bat (recommended)
139
+ echo 2. Or manually: venv\Scripts\activate.bat then python gradio_tts_app_audiobook.py
140
+ echo.
141
+ echo Perfect for:
142
+ echo - Voice cloning for audiobook narration
143
+ echo - Multiple character voices
144
+ echo - Consistent voice quality across chapters
145
+ echo - Professional audiobook production
146
+ echo.
147
+ echo Note: If you encounter pydantic compatibility issues later,
148
+ echo you can run update.bat to specifically update pydantic.
149
+ echo.
150
+ echo Installation finished successfully!
151
+ pause
launch_audiobook.bat ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ @echo off
2
+ setlocal
3
+
4
+ rem Performance and Debugging Section
5
+ rem =================================
6
+ rem Enable CUDA_LAUNCH_BLOCKING for detailed error reports, but it hurts performance.
7
+ rem set "CUDA_LAUNCH_BLOCKING=1"
8
+ rem set "TORCH_USE_CUDA_DSA=1"
9
+
10
+ echo Checking for virtual environment...
11
+ if not exist "venv\Scripts\activate.bat" (
12
+ echo ERROR: Virtual environment not found!
13
+ echo Please run install.bat first to set up the environment.
14
+ echo.
15
+ echo Make sure you're in the chatterbox repository directory.
16
+ pause
17
+ exit /b 1
18
+ )
19
+
20
+ echo Checking repository structure...
21
+ if not exist "gradio_tts_app_audiobook.py" (
22
+ echo ERROR: gradio_tts_app_audiobook.py not found!
23
+ echo Please make sure you're in the chatterbox repository root.
24
+ pause
25
+ exit /b 1
26
+ )
27
+
28
+ echo Activating virtual environment...
29
+ call venv\Scripts\activate.bat
30
+
31
+ echo.
32
+ echo Starting Chatterbox TTS Audiobook Edition...
33
+ echo Features: Voice Library, Character Management, Audiobook Tools
34
+ echo Audio Cleaning Available in "Clean Samples" Tab
35
+ echo This may take a moment to load the models...
36
+ echo.
37
+ echo Current directory: %CD%
38
+ echo Python environment: %VIRTUAL_ENV%
39
+ echo Voice library will be created at: %CD%\voice_library
40
+ echo.
41
+
42
+ python gradio_tts_app_audiobook.py
43
+
44
+ echo.
45
+ echo Chatterbox TTS Audiobook Edition has stopped.
46
+ echo Deactivating virtual environment...
47
+ deactivate
48
+ echo.
49
+ echo Thanks for using Chatterbox TTS Audiobook Edition! 🎧✨
50
+ echo Your voice profiles are saved in the voice_library folder.
51
+ echo Audio cleaning features are in the "Clean Samples" tab!
52
+ pause
pyproject.toml ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [project]
2
+ name = "chatterbox-tts"
3
+ version = "0.1.1"
4
+ description = "Chatterbox: Open Source TTS and Voice Conversion by Resemble AI"
5
+ readme = "README.md"
6
+ requires-python = ">=3.8"
7
+ license = {file = "LICENSE"}
8
+ authors = [
9
+ {name = "resemble-ai", email = "engineering@resemble.ai"}
10
+ ]
11
+ dependencies = [
12
+ "numpy==1.26.0",
13
+ "resampy==0.4.3",
14
+ "librosa==0.10.0",
15
+ "s3tokenizer",
16
+ "torch==2.4.1",
17
+ "torchaudio==2.4.1",
18
+ "transformers==4.46.3",
19
+ "diffusers==0.29.0",
20
+ "resemble-perth==1.0.1",
21
+ "omegaconf==2.3.0",
22
+ "conformer==0.3.2",
23
+ "spacy>=3.4.0",
24
+ ]
25
+
26
+ [project.optional-dependencies]
27
+ advanced-nlp = ["spacy[en_core_web_sm]>=3.4.0"]
28
+
29
+ [project.urls]
30
+ Homepage = "https://github.com/resemble-ai/chatterbox"
31
+ Repository = "https://github.com/resemble-ai/chatterbox"
32
+
33
+ [build-system]
34
+ requires = ["setuptools>=61.0"]
35
+ build-backend = "setuptools.build_meta"
36
+
37
+ [tool.setuptools.packages.find]
38
+ where = ["src"]
simple_batch_demo.py ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Simple Batch Processing UI Demo for ChatterBox Audiobook
3
+
4
+ This file shows exactly what needs to be added to the main interface
5
+ to enable the batch processing functionality.
6
+ """
7
+
8
+ import gradio as gr
9
+
10
+ # Simulated functions (these already exist in your main file)
11
+ def load_text_files_batch(file_paths):
12
+ if not file_paths:
13
+ return [], "No files uploaded"
14
+ return [{"filename": f"file_{i}.txt", "content": "sample", "words": 100} for i in range(len(file_paths))], f"Loaded {len(file_paths)} files"
15
+
16
+ def validate_batch_audiobook_input(file_list, voice, project_name):
17
+ if not file_list:
18
+ return gr.Button(interactive=False), "❌ No files loaded", None
19
+ if not voice:
20
+ return gr.Button(interactive=False), "❌ Select a voice", None
21
+ if not project_name:
22
+ return gr.Button(interactive=False), "❌ Enter project name", None
23
+ return gr.Button(interactive=True), f"✅ Ready to process {len(file_list)} files", None
24
+
25
+ def create_batch_audiobook(model, file_list, voice_lib, voice, project_name, norm, level):
26
+ return None, f"✅ Batch processing complete! Created {len(file_list)} audiobooks with names {project_name}-1, {project_name}-2, etc."
27
+
28
+ def demo_interface():
29
+ with gr.Blocks(title="Batch Processing Demo") as demo:
30
+ gr.HTML("""
31
+ <h1>🎵 Batch Processing Demo</h1>
32
+ <p>This shows the UI components that need to be added to your main interface.</p>
33
+ """)
34
+
35
+ with gr.Row():
36
+ with gr.Column():
37
+ # Upload Mode Selection
38
+ upload_mode = gr.Radio(
39
+ choices=[("Single File", "single"), ("Batch Processing", "batch")],
40
+ value="single",
41
+ label="📋 Upload Mode",
42
+ info="Switch between single file and batch processing"
43
+ )
44
+
45
+ # Single file upload (visible by default)
46
+ with gr.Group(visible=True) as single_group:
47
+ single_file = gr.File(
48
+ label="📄 Upload Single Text File",
49
+ file_types=[".txt"],
50
+ type="filepath"
51
+ )
52
+ single_status = gr.HTML("📄 Single file mode")
53
+
54
+ # Batch file upload (hidden by default)
55
+ with gr.Group(visible=False) as batch_group:
56
+ batch_files = gr.File(
57
+ label="📚 Upload Multiple Text Files",
58
+ file_types=[".txt"],
59
+ file_count="multiple",
60
+ type="filepath"
61
+ )
62
+ load_batch_btn = gr.Button("📂 Load Batch Files")
63
+ batch_status = gr.HTML("📚 Batch processing mode")
64
+
65
+ # Voice and project settings
66
+ voice_dropdown = gr.Dropdown(
67
+ choices=["Voice 1", "Voice 2", "Voice 3"],
68
+ label="Select Voice",
69
+ value=None
70
+ )
71
+
72
+ project_name = gr.Textbox(
73
+ label="Project Name",
74
+ placeholder="my_audiobook"
75
+ )
76
+
77
+ # Batch file list state
78
+ batch_file_list = gr.State([])
79
+
80
+ with gr.Column():
81
+ # Processing buttons
82
+ validate_batch_btn = gr.Button("🔍 Validate Batch", variant="secondary")
83
+ process_batch_btn = gr.Button("🎵 Create Batch Audiobooks", variant="primary", interactive=False)
84
+
85
+ # Status and output
86
+ processing_status = gr.HTML("Ready for batch processing")
87
+ output_audio = gr.Audio(label="Preview (last created audiobook)", visible=False)
88
+
89
+ # Event handlers
90
+ def toggle_upload_mode(mode):
91
+ if mode == "single":
92
+ return gr.Group(visible=True), gr.Group(visible=False)
93
+ else:
94
+ return gr.Group(visible=False), gr.Group(visible=True)
95
+
96
+ upload_mode.change(
97
+ fn=toggle_upload_mode,
98
+ inputs=[upload_mode],
99
+ outputs=[single_group, batch_group]
100
+ )
101
+
102
+ load_batch_btn.click(
103
+ fn=load_text_files_batch,
104
+ inputs=[batch_files],
105
+ outputs=[batch_file_list, batch_status]
106
+ )
107
+
108
+ validate_batch_btn.click(
109
+ fn=validate_batch_audiobook_input,
110
+ inputs=[batch_file_list, voice_dropdown, project_name],
111
+ outputs=[process_batch_btn, processing_status, gr.State()]
112
+ )
113
+
114
+ process_batch_btn.click(
115
+ fn=create_batch_audiobook,
116
+ inputs=[gr.State(None), batch_file_list, gr.State(""), voice_dropdown, project_name, gr.State(True), gr.State(-18)],
117
+ outputs=[output_audio, processing_status]
118
+ )
119
+
120
+ gr.HTML("""
121
+ <div style="margin-top: 20px; padding: 15px; border: 1px solid #ddd; border-radius: 5px;">
122
+ <h3>📋 To Add This to Your Main Interface:</h3>
123
+ <ol>
124
+ <li>Replace the simple file upload section with the Upload Mode selection</li>
125
+ <li>Add the single and batch upload groups</li>
126
+ <li>Add the batch processing buttons</li>
127
+ <li>Wire up the event handlers</li>
128
+ <li>Add the batch_file_list State component</li>
129
+ </ol>
130
+ <p><strong>Key Components Needed:</strong></p>
131
+ <ul>
132
+ <li>upload_mode (Radio)</li>
133
+ <li>single_upload_group and batch_upload_group (Group)</li>
134
+ <li>batch_files (File with file_count="multiple")</li>
135
+ <li>load_batch_btn (Button)</li>
136
+ <li>validate_batch_btn and process_batch_btn (Buttons)</li>
137
+ <li>batch_file_list (State)</li>
138
+ </ul>
139
+ </div>
140
+ """)
141
+
142
+ return demo
143
+
144
+ if __name__ == "__main__":
145
+ demo = demo_interface()
146
+ demo.launch()
src/audiobook/__init__.py ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ """
2
+ ChatterBox Audiobook Generator
3
+
4
+ A modular audiobook creation system using TTS technology.
5
+ """
6
+
7
+ __version__ = "1.0.0"
8
+ __author__ = "ChatterBox Team"
src/audiobook/audio_processing.py ADDED
@@ -0,0 +1,480 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Audio processing utilities for audiobook generation.
3
+
4
+ Handles audio saving, combining, trimming, and file operations.
5
+ """
6
+
7
+ import os
8
+ import wave
9
+ import numpy as np
10
+ from pathlib import Path
11
+ from typing import List, Tuple, Optional, Any
12
+ import tempfile
13
+ import shutil
14
+
15
+ # Optional audio processing imports
16
+ try:
17
+ import librosa
18
+ import soundfile as sf
19
+ AUDIO_PROCESSING_AVAILABLE = True
20
+ except ImportError:
21
+ AUDIO_PROCESSING_AVAILABLE = False
22
+
23
+
24
+ def save_audio_chunks(
25
+ audio_chunks: List[np.ndarray],
26
+ sample_rate: int,
27
+ project_name: str,
28
+ output_dir: str = "audiobook_projects"
29
+ ) -> List[str]:
30
+ """Save audio chunks as numbered WAV files.
31
+
32
+ Args:
33
+ audio_chunks: List of audio arrays
34
+ sample_rate: Audio sample rate
35
+ project_name: Name of the project
36
+ output_dir: Output directory for projects
37
+
38
+ Returns:
39
+ List of saved file paths
40
+ """
41
+ if not project_name.strip():
42
+ project_name = "untitled_audiobook"
43
+
44
+ # Sanitize project name
45
+ safe_project_name = "".join(c for c in project_name if c.isalnum() or c in (' ', '-', '_')).rstrip()
46
+ safe_project_name = safe_project_name.replace(' ', '_')
47
+
48
+ # Create output directory
49
+ project_dir = os.path.join(output_dir, safe_project_name)
50
+ os.makedirs(project_dir, exist_ok=True)
51
+
52
+ saved_files = []
53
+
54
+ for i, audio_chunk in enumerate(audio_chunks, 1):
55
+ filename = f"{safe_project_name}_{i:03d}.wav"
56
+ filepath = os.path.join(project_dir, filename)
57
+
58
+ # Save as WAV file
59
+ with wave.open(filepath, 'wb') as wav_file:
60
+ wav_file.setnchannels(1) # Mono
61
+ wav_file.setsampwidth(2) # 16-bit
62
+ wav_file.setframerate(sample_rate)
63
+
64
+ # Convert float32 to int16
65
+ audio_int16 = (audio_chunk * 32767).astype(np.int16)
66
+ wav_file.writeframes(audio_int16.tobytes())
67
+
68
+ saved_files.append(filepath)
69
+
70
+ return saved_files
71
+
72
+
73
+ def combine_audio_files(file_paths: List[str], output_path: str, output_format: str = "wav") -> str:
74
+ """Combine multiple audio files into a single file.
75
+
76
+ Args:
77
+ file_paths: List of audio file paths to combine
78
+ output_path: Output file path
79
+ output_format: Output format (wav or mp3)
80
+
81
+ Returns:
82
+ Success message or error
83
+ """
84
+ if not file_paths:
85
+ return "❌ No audio files to combine"
86
+
87
+ try:
88
+ # Read all audio files and combine
89
+ combined_audio = []
90
+ sample_rate = None
91
+
92
+ for file_path in file_paths:
93
+ if not os.path.exists(file_path):
94
+ continue
95
+
96
+ with wave.open(file_path, 'rb') as wav_file:
97
+ if sample_rate is None:
98
+ sample_rate = wav_file.getframerate()
99
+
100
+ frames = wav_file.readframes(wav_file.getnframes())
101
+ audio_data = np.frombuffer(frames, dtype=np.int16)
102
+ combined_audio.append(audio_data)
103
+
104
+ if not combined_audio:
105
+ return "❌ No valid audio files found"
106
+
107
+ # Concatenate all audio
108
+ final_audio = np.concatenate(combined_audio)
109
+
110
+ # Save combined audio
111
+ if output_format.lower() == "wav":
112
+ with wave.open(output_path, 'wb') as wav_file:
113
+ wav_file.setnchannels(1)
114
+ wav_file.setsampwidth(2)
115
+ wav_file.setframerate(sample_rate)
116
+ wav_file.writeframes(final_audio.tobytes())
117
+ else:
118
+ # For MP3, we'd need additional dependencies like pydub
119
+ return "❌ MP3 export not implemented yet"
120
+
121
+ return f"✅ Combined {len(file_paths)} files into {output_path}"
122
+
123
+ except Exception as e:
124
+ return f"❌ Error combining audio files: {str(e)}"
125
+
126
+
127
+ def save_trimmed_audio(audio_data: Any, original_file_path: str, chunk_num: int) -> Tuple[str, str]:
128
+ """Save trimmed audio data to a new file.
129
+
130
+ Args:
131
+ audio_data: Audio data from Gradio component
132
+ original_file_path: Original audio file path
133
+ chunk_num: Chunk number
134
+
135
+ Returns:
136
+ tuple: (success_message, file_path)
137
+ """
138
+ if audio_data is None:
139
+ return "❌ No audio data provided", ""
140
+
141
+ try:
142
+ # Extract sample rate and audio array from gradio format
143
+ if isinstance(audio_data, tuple) and len(audio_data) == 2:
144
+ sample_rate, audio_array = audio_data
145
+ else:
146
+ return "❌ Invalid audio data format", ""
147
+
148
+ # Create temporary file path
149
+ base_dir = os.path.dirname(original_file_path)
150
+ base_name = os.path.splitext(os.path.basename(original_file_path))[0]
151
+ trimmed_path = os.path.join(base_dir, f"{base_name}_trimmed.wav")
152
+
153
+ # Save trimmed audio
154
+ with wave.open(trimmed_path, 'wb') as wav_file:
155
+ wav_file.setnchannels(1)
156
+ wav_file.setsampwidth(2)
157
+ wav_file.setframerate(sample_rate)
158
+
159
+ # Convert to int16 if needed
160
+ if audio_array.dtype != np.int16:
161
+ if audio_array.dtype == np.float32 or audio_array.dtype == np.float64:
162
+ audio_array = (audio_array * 32767).astype(np.int16)
163
+ else:
164
+ audio_array = audio_array.astype(np.int16)
165
+
166
+ wav_file.writeframes(audio_array.tobytes())
167
+
168
+ return f"✅ Trimmed audio saved for chunk {chunk_num}", trimmed_path
169
+
170
+ except Exception as e:
171
+ return f"❌ Error saving trimmed audio: {str(e)}", ""
172
+
173
+
174
+ def extract_audio_segment(
175
+ audio_data: Any,
176
+ start_time: Optional[float] = None,
177
+ end_time: Optional[float] = None
178
+ ) -> Tuple[str, Any]:
179
+ """Extract a segment from audio data based on time stamps.
180
+
181
+ Args:
182
+ audio_data: Audio data tuple (sample_rate, audio_array)
183
+ start_time: Start time in seconds
184
+ end_time: End time in seconds
185
+
186
+ Returns:
187
+ tuple: (status_message, extracted_audio_data)
188
+ """
189
+ if audio_data is None:
190
+ return "❌ No audio data provided", None
191
+
192
+ try:
193
+ if isinstance(audio_data, tuple) and len(audio_data) == 2:
194
+ sample_rate, audio_array = audio_data
195
+ else:
196
+ return "❌ Invalid audio data format", None
197
+
198
+ if start_time is None and end_time is None:
199
+ return "❌ Please specify start time or end time", None
200
+
201
+ # Convert time to sample indices
202
+ start_sample = int(start_time * sample_rate) if start_time is not None else 0
203
+ end_sample = int(end_time * sample_rate) if end_time is not None else len(audio_array)
204
+
205
+ # Validate bounds
206
+ start_sample = max(0, start_sample)
207
+ end_sample = min(len(audio_array), end_sample)
208
+
209
+ if start_sample >= end_sample:
210
+ return "❌ Invalid time range", None
211
+
212
+ # Extract segment
213
+ extracted_audio = audio_array[start_sample:end_sample]
214
+
215
+ return "✅ Audio segment extracted", (sample_rate, extracted_audio)
216
+
217
+ except Exception as e:
218
+ return f"❌ Error extracting audio segment: {str(e)}", None
219
+
220
+
221
+ def handle_audio_trimming(audio_data: Any) -> Tuple[str, Any]:
222
+ """Handle audio trimming from Gradio component.
223
+
224
+ Args:
225
+ audio_data: Audio data from Gradio component
226
+
227
+ Returns:
228
+ tuple: (status_message, processed_audio_data)
229
+ """
230
+ if audio_data is None:
231
+ return "No audio data", None
232
+
233
+ try:
234
+ # Process audio data from Gradio
235
+ if isinstance(audio_data, tuple) and len(audio_data) == 2:
236
+ sample_rate, audio_array = audio_data
237
+
238
+ # Validate audio array
239
+ if audio_array is None or len(audio_array) == 0:
240
+ return "Empty audio data", None
241
+
242
+ return "Audio ready for processing", audio_data
243
+ else:
244
+ return "Invalid audio format", None
245
+
246
+ except Exception as e:
247
+ return f"Error processing audio: {str(e)}", None
248
+
249
+
250
+ def cleanup_temp_files(file_paths: List[str]) -> None:
251
+ """Clean up temporary files.
252
+
253
+ Args:
254
+ file_paths: List of file paths to delete
255
+ """
256
+ for file_path in file_paths:
257
+ try:
258
+ if os.path.exists(file_path):
259
+ os.remove(file_path)
260
+ except Exception as e:
261
+ print(f"Warning: Could not delete {file_path}: {e}")
262
+
263
+
264
+ def analyze_audio_quality(file_path: str) -> dict:
265
+ """Analyze audio file quality metrics.
266
+
267
+ Args:
268
+ file_path: Path to audio file
269
+
270
+ Returns:
271
+ Dictionary with quality metrics
272
+ """
273
+ try:
274
+ if AUDIO_PROCESSING_AVAILABLE:
275
+ # Use librosa for more detailed analysis
276
+ y, sr = librosa.load(file_path, sr=None)
277
+
278
+ # Calculate advanced metrics
279
+ rms = np.sqrt(np.mean(y**2))
280
+ peak = np.max(np.abs(y))
281
+ duration = len(y) / sr
282
+
283
+ # Calculate spectral centroid (brightness)
284
+ spectral_centroids = librosa.feature.spectral_centroid(y=y, sr=sr)[0]
285
+ spectral_centroid_mean = np.mean(spectral_centroids)
286
+
287
+ # Calculate zero crossing rate (useful for speech analysis)
288
+ zcr = librosa.feature.zero_crossing_rate(y)[0]
289
+ zcr_mean = np.mean(zcr)
290
+
291
+ return {
292
+ 'duration': duration,
293
+ 'sample_rate': sr,
294
+ 'rms_level': float(rms),
295
+ 'peak_level': float(peak),
296
+ 'dynamic_range': float(peak / (rms + 1e-6)),
297
+ 'spectral_centroid': float(spectral_centroid_mean),
298
+ 'zero_crossing_rate': float(zcr_mean),
299
+ 'has_advanced_analysis': True
300
+ }
301
+ else:
302
+ # Fallback to basic wave analysis
303
+ with wave.open(file_path, 'rb') as wav_file:
304
+ sample_rate = wav_file.getframerate()
305
+ n_frames = wav_file.getnframes()
306
+ duration = n_frames / sample_rate
307
+
308
+ frames = wav_file.readframes(n_frames)
309
+ audio_data = np.frombuffer(frames, dtype=np.int16)
310
+
311
+ # Normalize to float
312
+ audio_data = audio_data.astype(np.float32) / 32768.0
313
+
314
+ # Calculate basic metrics
315
+ rms = np.sqrt(np.mean(audio_data**2))
316
+ peak = np.max(np.abs(audio_data))
317
+
318
+ return {
319
+ 'duration': duration,
320
+ 'sample_rate': sample_rate,
321
+ 'rms_level': float(rms),
322
+ 'peak_level': float(peak),
323
+ 'dynamic_range': float(peak / (rms + 1e-6)),
324
+ 'has_advanced_analysis': False
325
+ }
326
+
327
+ except Exception as e:
328
+ return {'error': str(e)}
329
+
330
+
331
+ def auto_remove_silence(
332
+ file_path: str,
333
+ silence_threshold: float = -50.0,
334
+ min_silence_duration: float = 0.5
335
+ ) -> Tuple[str, str]:
336
+ """Automatically remove silence from audio file using advanced audio processing.
337
+
338
+ Args:
339
+ file_path: Path to audio file
340
+ silence_threshold: Silence threshold in dB
341
+ min_silence_duration: Minimum silence duration to remove in seconds
342
+
343
+ Returns:
344
+ tuple: (status_message, output_file_path)
345
+ """
346
+ if not AUDIO_PROCESSING_AVAILABLE:
347
+ # Fallback behavior - just copy the file with a warning
348
+ try:
349
+ output_path = file_path.replace('.wav', '_cleaned.wav')
350
+ shutil.copy2(file_path, output_path)
351
+ return "⚠️ Audio processing libraries not available. File copied without cleaning. Install librosa and soundfile for real audio processing.", output_path
352
+ except Exception as e:
353
+ return f"❌ Error copying file: {str(e)}", ""
354
+
355
+ try:
356
+ # Load audio with librosa
357
+ y, sr = librosa.load(file_path, sr=None)
358
+
359
+ if len(y) == 0:
360
+ return "❌ Audio file is empty", ""
361
+
362
+ # Convert threshold from dB to amplitude
363
+ # silence_threshold is in dB (e.g., -50 dB)
364
+ threshold_amplitude = 10 ** (silence_threshold / 20)
365
+
366
+ # Calculate frame length based on minimum silence duration
367
+ frame_length = int(min_silence_duration * sr)
368
+ hop_length = frame_length // 4 # 75% overlap
369
+
370
+ # Calculate RMS energy for each frame
371
+ rms = librosa.feature.rms(y=y, frame_length=frame_length, hop_length=hop_length)[0]
372
+
373
+ # Create time array for frames
374
+ times = librosa.frames_to_time(np.arange(len(rms)), sr=sr, hop_length=hop_length)
375
+
376
+ # Find frames above threshold (non-silent)
377
+ non_silent_frames = rms > threshold_amplitude
378
+
379
+ if not np.any(non_silent_frames):
380
+ return "❌ Entire audio file is below silence threshold", ""
381
+
382
+ # Find continuous segments of non-silent audio
383
+ # Add padding to avoid cutting speech too close
384
+ padding_frames = max(1, int(0.1 * sr / hop_length)) # 100ms padding
385
+
386
+ # Expand non-silent regions
387
+ expanded_mask = np.copy(non_silent_frames)
388
+ for i in range(len(non_silent_frames)):
389
+ if non_silent_frames[i]:
390
+ start_pad = max(0, i - padding_frames)
391
+ end_pad = min(len(expanded_mask), i + padding_frames + 1)
392
+ expanded_mask[start_pad:end_pad] = True
393
+
394
+ # Convert frame indices back to sample indices
395
+ non_silent_samples = np.zeros(len(y), dtype=bool)
396
+ for i, is_voice in enumerate(expanded_mask):
397
+ if is_voice:
398
+ start_sample = int(times[i] * sr) if i < len(times) else len(y)
399
+ end_sample = int(times[i + 1] * sr) if i + 1 < len(times) else len(y)
400
+ start_sample = max(0, min(start_sample, len(y)))
401
+ end_sample = max(0, min(end_sample, len(y)))
402
+ non_silent_samples[start_sample:end_sample] = True
403
+
404
+ # Extract non-silent audio
405
+ cleaned_audio = y[non_silent_samples]
406
+
407
+ if len(cleaned_audio) == 0:
408
+ return "❌ No audio remaining after silence removal", ""
409
+
410
+ # Save cleaned audio
411
+ output_path = file_path.replace('.wav', '_cleaned.wav')
412
+ sf.write(output_path, cleaned_audio, sr)
413
+
414
+ # Calculate statistics
415
+ original_duration = len(y) / sr
416
+ cleaned_duration = len(cleaned_audio) / sr
417
+ removed_duration = original_duration - cleaned_duration
418
+ percentage_removed = (removed_duration / original_duration) * 100
419
+
420
+ return (
421
+ f"✅ Silence removal completed! "
422
+ f"Removed {removed_duration:.2f}s ({percentage_removed:.1f}%) of silence. "
423
+ f"Final duration: {cleaned_duration:.2f}s",
424
+ output_path
425
+ )
426
+
427
+ except Exception as e:
428
+ return f"❌ Error removing silence: {str(e)}", ""
429
+
430
+
431
+ def normalize_audio_levels(
432
+ file_path: str,
433
+ target_lufs: float = -23.0,
434
+ peak_limit: float = -1.0
435
+ ) -> Tuple[str, str]:
436
+ """Normalize audio levels to broadcast standards.
437
+
438
+ Args:
439
+ file_path: Path to audio file
440
+ target_lufs: Target loudness in LUFS (default: -23 for broadcast)
441
+ peak_limit: Peak limit in dB (default: -1.0)
442
+
443
+ Returns:
444
+ tuple: (status_message, output_file_path)
445
+ """
446
+ if not AUDIO_PROCESSING_AVAILABLE:
447
+ return "❌ Audio processing libraries not available. Install librosa and soundfile.", ""
448
+
449
+ try:
450
+ # Load audio
451
+ y, sr = librosa.load(file_path, sr=None)
452
+
453
+ if len(y) == 0:
454
+ return "❌ Audio file is empty", ""
455
+
456
+ # Simple peak normalization (more advanced LUFS would require pyloudnorm)
457
+ current_peak = np.max(np.abs(y))
458
+ target_peak = 10 ** (peak_limit / 20) # Convert dB to linear
459
+
460
+ if current_peak > 0:
461
+ # Normalize to target peak
462
+ normalized_audio = y * (target_peak / current_peak)
463
+ else:
464
+ normalized_audio = y
465
+
466
+ # Save normalized audio
467
+ output_path = file_path.replace('.wav', '_normalized.wav')
468
+ sf.write(output_path, normalized_audio, sr)
469
+
470
+ # Calculate gain applied
471
+ gain_db = 20 * np.log10(target_peak / current_peak) if current_peak > 0 else 0
472
+
473
+ return (
474
+ f"✅ Audio normalized! Applied {gain_db:+.2f} dB gain. "
475
+ f"Peak level now at {peak_limit:.1f} dB.",
476
+ output_path
477
+ )
478
+
479
+ except Exception as e:
480
+ return f"❌ Error normalizing audio: {str(e)}", ""
src/audiobook/config.py ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Configuration management for the audiobook generator.
3
+
4
+ Handles loading and saving of application configuration including voice library paths.
5
+ """
6
+
7
+ import json
8
+ import os
9
+ from pathlib import Path
10
+
11
+
12
+ # Default configuration values
13
+ DEFAULT_VOICE_LIBRARY = "voice_library"
14
+ CONFIG_FILE = "audiobook_config.json"
15
+
16
+
17
+ def load_config() -> str:
18
+ """Load configuration including voice library path.
19
+
20
+ Returns:
21
+ str: Path to the voice library directory
22
+ """
23
+ if os.path.exists(CONFIG_FILE):
24
+ try:
25
+ with open(CONFIG_FILE, 'r') as f:
26
+ config = json.load(f)
27
+ return config.get('voice_library_path', DEFAULT_VOICE_LIBRARY)
28
+ except Exception:
29
+ return DEFAULT_VOICE_LIBRARY
30
+ return DEFAULT_VOICE_LIBRARY
31
+
32
+
33
+ def save_config(voice_library_path: str) -> str:
34
+ """Save configuration including voice library path.
35
+
36
+ Args:
37
+ voice_library_path: Path to the voice library directory
38
+
39
+ Returns:
40
+ str: Success or error message
41
+ """
42
+ config = {
43
+ 'voice_library_path': voice_library_path,
44
+ 'last_updated': str(Path().resolve()) # timestamp
45
+ }
46
+ try:
47
+ with open(CONFIG_FILE, 'w') as f:
48
+ json.dump(config, f, indent=2)
49
+ return f"✅ Configuration saved - Voice library path: {voice_library_path}"
50
+ except Exception as e:
51
+ return f"❌ Error saving configuration: {str(e)}"
52
+
53
+
54
+ def update_voice_library_path(new_path: str) -> tuple[str, str]:
55
+ """Update the voice library path in configuration.
56
+
57
+ Args:
58
+ new_path: New path to the voice library
59
+
60
+ Returns:
61
+ tuple: (status_message, updated_path)
62
+ """
63
+ if not new_path.strip():
64
+ return "❌ Voice library path cannot be empty", ""
65
+
66
+ # Create directory if it doesn't exist
67
+ try:
68
+ os.makedirs(new_path, exist_ok=True)
69
+ save_result = save_config(new_path)
70
+ return save_result, new_path
71
+ except Exception as e:
72
+ return f"❌ Error updating voice library path: {str(e)}", ""
src/audiobook/models.py ADDED
@@ -0,0 +1,236 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Model management and TTS operations for the audiobook generation system."""
2
+
3
+ import torch
4
+ import random
5
+ import numpy as np
6
+ from chatterbox.tts import ChatterboxTTS
7
+ from typing import Any, Tuple, Optional
8
+
9
+
10
+ # Global device setting - will be imported from main file
11
+ DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
12
+ MULTI_VOICE_DEVICE = "cpu" # Force CPU for multi-voice processing
13
+
14
+
15
+ def set_seed(seed: int) -> None:
16
+ """Set random seeds for reproducible generation.
17
+
18
+ Args:
19
+ seed: Random seed value
20
+ """
21
+ torch.manual_seed(seed)
22
+ torch.cuda.manual_seed(seed)
23
+ torch.cuda.manual_seed_all(seed)
24
+ random.seed(seed)
25
+ np.random.seed(seed)
26
+
27
+
28
+ def load_model() -> ChatterboxTTS:
29
+ """Load TTS model for the default device.
30
+
31
+ Returns:
32
+ ChatterboxTTS: Loaded TTS model
33
+ """
34
+ model = ChatterboxTTS.from_pretrained(DEVICE)
35
+ return model
36
+
37
+
38
+ def load_model_cpu() -> ChatterboxTTS:
39
+ """Load model specifically for CPU processing.
40
+
41
+ Returns:
42
+ ChatterboxTTS: CPU-loaded TTS model
43
+ """
44
+ model = ChatterboxTTS.from_pretrained("cpu")
45
+ return model
46
+
47
+
48
+ def clear_gpu_memory() -> None:
49
+ """Clear GPU memory cache to prevent CUDA errors."""
50
+ if torch.cuda.is_available():
51
+ torch.cuda.empty_cache()
52
+ torch.cuda.synchronize()
53
+
54
+
55
+ def check_gpu_memory() -> str:
56
+ """Check current GPU memory usage.
57
+
58
+ Returns:
59
+ str: GPU memory status information
60
+ """
61
+ if torch.cuda.is_available():
62
+ allocated = torch.cuda.memory_allocated()
63
+ cached = torch.cuda.memory_reserved()
64
+ return f"GPU Memory - Allocated: {allocated//1024//1024}MB, Cached: {cached//1024//1024}MB"
65
+ return "CUDA not available"
66
+
67
+
68
+ def generate(
69
+ model: ChatterboxTTS,
70
+ text: str,
71
+ audio_prompt_path: str,
72
+ exaggeration: float,
73
+ temperature: float,
74
+ seed_num: int,
75
+ cfgw: float
76
+ ) -> Tuple[int, np.ndarray]:
77
+ """Generate audio from text using the TTS model.
78
+
79
+ Args:
80
+ model: TTS model instance
81
+ text: Text to convert to speech
82
+ audio_prompt_path: Path to audio prompt file
83
+ exaggeration: Exaggeration parameter for generation
84
+ temperature: Temperature for generation randomness
85
+ seed_num: Random seed (0 for random)
86
+ cfgw: CFG weight parameter
87
+
88
+ Returns:
89
+ tuple: (sample_rate, audio_array)
90
+ """
91
+ if model is None:
92
+ model = ChatterboxTTS.from_pretrained(DEVICE)
93
+
94
+ if seed_num != 0:
95
+ set_seed(int(seed_num))
96
+
97
+ wav = model.generate(
98
+ text,
99
+ audio_prompt_path=audio_prompt_path,
100
+ exaggeration=exaggeration,
101
+ temperature=temperature,
102
+ cfg_weight=cfgw,
103
+ )
104
+ return (model.sr, wav.squeeze(0).numpy())
105
+
106
+
107
+ def generate_with_cpu_fallback(
108
+ model: ChatterboxTTS,
109
+ text: str,
110
+ audio_prompt_path: str,
111
+ exaggeration: float,
112
+ temperature: float,
113
+ cfg_weight: float
114
+ ) -> Tuple[Any, str]:
115
+ """Generate audio with automatic CPU fallback for problematic CUDA errors.
116
+
117
+ Args:
118
+ model: TTS model instance
119
+ text: Text to convert to speech
120
+ audio_prompt_path: Path to audio prompt file
121
+ exaggeration: Exaggeration parameter
122
+ temperature: Temperature parameter
123
+ cfg_weight: CFG weight parameter
124
+
125
+ Returns:
126
+ tuple: (audio_wav, device_used)
127
+ """
128
+ # First try GPU if available
129
+ if DEVICE == "cuda":
130
+ try:
131
+ clear_gpu_memory()
132
+ wav = model.generate(
133
+ text,
134
+ audio_prompt_path=audio_prompt_path,
135
+ exaggeration=exaggeration,
136
+ temperature=temperature,
137
+ cfg_weight=cfg_weight,
138
+ )
139
+ return wav, "GPU"
140
+ except RuntimeError as e:
141
+ if ("srcIndex < srcSelectDimSize" in str(e) or
142
+ "CUDA" in str(e) or
143
+ "out of memory" in str(e).lower()):
144
+
145
+ print(f"⚠️ CUDA error detected, falling back to CPU: {str(e)[:100]}...")
146
+ # Fall through to CPU mode
147
+ else:
148
+ raise e
149
+
150
+ # CPU fallback or primary CPU mode
151
+ try:
152
+ # Load CPU model if needed
153
+ cpu_model = ChatterboxTTS.from_pretrained("cpu")
154
+ wav = cpu_model.generate(
155
+ text,
156
+ audio_prompt_path=audio_prompt_path,
157
+ exaggeration=exaggeration,
158
+ temperature=temperature,
159
+ cfg_weight=cfg_weight,
160
+ )
161
+ return wav, "CPU"
162
+ except Exception as e:
163
+ raise RuntimeError(f"Both GPU and CPU generation failed: {str(e)}")
164
+
165
+
166
+ def generate_with_retry(
167
+ model: ChatterboxTTS,
168
+ text: str,
169
+ audio_prompt_path: str,
170
+ exaggeration: float,
171
+ temperature: float,
172
+ cfg_weight: float,
173
+ max_retries: int = 3
174
+ ) -> Tuple[Any, str]:
175
+ """Generate audio with retry mechanism for robustness.
176
+
177
+ Args:
178
+ model: TTS model instance
179
+ text: Text to convert to speech
180
+ audio_prompt_path: Path to audio prompt file
181
+ exaggeration: Exaggeration parameter
182
+ temperature: Temperature parameter
183
+ cfg_weight: CFG weight parameter
184
+ max_retries: Maximum number of retry attempts
185
+
186
+ Returns:
187
+ tuple: (audio_wav, device_used)
188
+ """
189
+ last_error = None
190
+
191
+ for attempt in range(max_retries):
192
+ try:
193
+ return generate_with_cpu_fallback(
194
+ model, text, audio_prompt_path, exaggeration, temperature, cfg_weight
195
+ )
196
+ except Exception as e:
197
+ last_error = e
198
+ print(f"Attempt {attempt + 1}/{max_retries} failed: {str(e)}")
199
+ if attempt < max_retries - 1:
200
+ clear_gpu_memory()
201
+
202
+ raise RuntimeError(f"All {max_retries} attempts failed. Last error: {last_error}")
203
+
204
+
205
+ def force_cpu_processing() -> bool:
206
+ """Check if we should force CPU processing for stability.
207
+
208
+ Returns:
209
+ bool: True if CPU processing should be forced
210
+ """
211
+ # For multi-voice, always use CPU to avoid CUDA indexing issues
212
+ return True
213
+
214
+
215
+ def get_model_device_str(model_obj: Optional[ChatterboxTTS]) -> str:
216
+ """Get the device string for a model object.
217
+
218
+ Args:
219
+ model_obj: TTS model instance
220
+
221
+ Returns:
222
+ str: Device information string
223
+ """
224
+ if model_obj is None:
225
+ return "No model loaded"
226
+
227
+ try:
228
+ # Try to access model device info
229
+ if hasattr(model_obj, 'device'):
230
+ return f"Model device: {model_obj.device}"
231
+ elif hasattr(model_obj, 'model') and hasattr(model_obj.model, 'device'):
232
+ return f"Model device: {model_obj.model.device}"
233
+ else:
234
+ return "Device info unavailable"
235
+ except Exception as e:
236
+ return f"Error getting device info: {str(e)}"
src/audiobook/processing.py ADDED
@@ -0,0 +1,928 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Text processing utilities for audiobook generation.
3
+
4
+ Handles text chunking, validation, multi-voice parsing, and text cleanup.
5
+ """
6
+
7
+ import re
8
+ import os
9
+ import wave
10
+ import numpy as np
11
+ from pathlib import Path
12
+ from typing import List, Dict, Tuple, Any
13
+
14
+
15
+ def chunk_text_by_sentences(text: str, max_words: int = 50) -> List[str]:
16
+ """Split text into chunks, breaking at sentence boundaries after reaching max_words.
17
+
18
+ Args:
19
+ text: Input text to chunk
20
+ max_words: Maximum words per chunk
21
+
22
+ Returns:
23
+ List of text chunks
24
+ """
25
+ # Split text into sentences using regex to handle multiple punctuation marks
26
+ sentences = re.split(r'([.!?]+\s*)', text)
27
+
28
+ chunks = []
29
+ current_chunk = ""
30
+ current_word_count = 0
31
+
32
+ i = 0
33
+ while i < len(sentences):
34
+ sentence = sentences[i].strip()
35
+ if not sentence:
36
+ i += 1
37
+ continue
38
+
39
+ # Add punctuation if it exists
40
+ if i + 1 < len(sentences) and re.match(r'[.!?]+\s*', sentences[i + 1]):
41
+ sentence += sentences[i + 1]
42
+ i += 2
43
+ else:
44
+ i += 1
45
+
46
+ sentence_words = len(sentence.split())
47
+
48
+ # If adding this sentence would exceed max_words, start new chunk
49
+ if current_word_count > 0 and current_word_count + sentence_words > max_words:
50
+ if current_chunk.strip():
51
+ chunks.append(current_chunk.strip())
52
+ current_chunk = sentence
53
+ current_word_count = sentence_words
54
+ else:
55
+ current_chunk += " " + sentence if current_chunk else sentence
56
+ current_word_count += sentence_words
57
+
58
+ # Add the last chunk if it exists
59
+ if current_chunk.strip():
60
+ chunks.append(current_chunk.strip())
61
+
62
+ return chunks
63
+
64
+
65
+ def adaptive_chunk_text(text: str, max_words: int = 50, reduce_on_error: bool = True) -> List[str]:
66
+ """Adaptively chunk text with error handling.
67
+
68
+ Args:
69
+ text: Input text to chunk
70
+ max_words: Maximum words per chunk
71
+ reduce_on_error: Whether to reduce chunk size on errors
72
+
73
+ Returns:
74
+ List of text chunks
75
+ """
76
+ return chunk_text_by_sentences(text, max_words)
77
+
78
+
79
+ def load_text_file(file_path: str) -> Tuple[str, str]:
80
+ """Load text content from a file with encoding detection.
81
+
82
+ Args:
83
+ file_path: Path to the text file
84
+
85
+ Returns:
86
+ tuple: (text_content, status_message)
87
+ """
88
+ if not file_path:
89
+ return "", "No file selected"
90
+
91
+ try:
92
+ # Try UTF-8 first
93
+ try:
94
+ with open(file_path, 'r', encoding='utf-8') as f:
95
+ content = f.read()
96
+ except UnicodeDecodeError:
97
+ # Fallback to latin-1 for older files
98
+ with open(file_path, 'r', encoding='latin-1') as f:
99
+ content = f.read()
100
+
101
+ if not content.strip():
102
+ return "", "File is empty"
103
+
104
+ return content.strip(), f"✅ Loaded {len(content.split())} words from file"
105
+
106
+ except FileNotFoundError:
107
+ return "", "❌ File not found"
108
+ except Exception as e:
109
+ return "", f"❌ Error reading file: {str(e)}"
110
+
111
+
112
+ def validate_audiobook_input(text_content: str, selected_voice: str, project_name: str) -> Tuple[bool, str]:
113
+ """Validate input for single-voice audiobook creation.
114
+
115
+ Args:
116
+ text_content: Text to validate
117
+ selected_voice: Selected voice name
118
+ project_name: Project name
119
+
120
+ Returns:
121
+ tuple: (is_valid, error_message)
122
+ """
123
+ if not text_content or not text_content.strip():
124
+ return False, "❌ Please provide text content or upload a text file"
125
+
126
+ if not selected_voice:
127
+ return False, "❌ Please select a voice"
128
+
129
+ if not project_name or not project_name.strip():
130
+ return False, "❌ Please provide a project name"
131
+
132
+ word_count = len(text_content.split())
133
+ if word_count < 10:
134
+ return False, "❌ Text content too short (minimum 10 words)"
135
+
136
+ if word_count > 50000:
137
+ return False, "❌ Text content too long (maximum 50,000 words for performance)"
138
+
139
+ return True, ""
140
+
141
+
142
+ def parse_multi_voice_text(text: str) -> List[Dict[str, str]]:
143
+ """Parse text with multi-voice format markers.
144
+
145
+ Expected format:
146
+ [CHARACTER_NAME] dialogue text (no colon needed, tag and dialogue can be on the same line)
147
+
148
+ Args:
149
+ text: Input text with character markers
150
+
151
+ Returns:
152
+ List of segments with character and text, e.g.,
153
+ [{'character': 'Character1', 'text': 'Dialogue for character 1.'}, ...]
154
+ """
155
+ segments = []
156
+
157
+ # Regex to find [CharacterName] tags
158
+ # It captures the character name and the text that follows until the next tag or end of string
159
+ # Using re.split to capture text between tags and the tags themselves
160
+ parts = re.split(r'(\[[^\]]+\])', text)
161
+
162
+ current_character = None
163
+ buffer = ""
164
+
165
+ for part in parts:
166
+ if not part:
167
+ continue # Skip empty parts that can result from re.split
168
+
169
+ part_stripped = part.strip()
170
+ if re.match(r'^\[[^\]]+\]$', part_stripped): # It's a character tag
171
+ if current_character and buffer.strip():
172
+ segments.append({
173
+ 'character': current_character,
174
+ 'text': buffer.strip()
175
+ })
176
+ current_character = part_stripped[1:-1] # Remove brackets
177
+ buffer = ""
178
+ else: # It's text content
179
+ if current_character is None and part_stripped: # Text before any character tag
180
+ # Assign to a default "Narrator" if no character tag precedes it.
181
+ # This can be adjusted based on desired behavior for untagged leading text.
182
+ segments.append({
183
+ 'character': "Narrator", # Or None, if untagged leading text should be handled differently
184
+ 'text': part_stripped
185
+ })
186
+ buffer = "" # Clear buffer as this part is processed
187
+ elif current_character:
188
+ buffer += part # Append to current character's text buffer
189
+ # If no current_character and it's not leading text, this part might be ignored
190
+ # or could be appended to a default narrator if strict tagging isn't enforced.
191
+ # Current logic: only appends if current_character is set.
192
+
193
+ # Add any remaining text in the buffer for the last character
194
+ if current_character and buffer.strip():
195
+ segments.append({
196
+ 'character': current_character,
197
+ 'text': buffer.strip()
198
+ })
199
+ elif not current_character and buffer.strip() and not segments: # Only if it's the *only* content
200
+ # If the entire text has no tags, assign it all to Narrator
201
+ segments.append({
202
+ 'character': "Narrator",
203
+ 'text': buffer.strip()
204
+ })
205
+
206
+ # Filter out any segments where the text is empty after stripping
207
+ final_segments = [seg for seg in segments if seg['text']]
208
+
209
+ # Debug: Print parsed segments by the module
210
+ # print("Parsed Segments by text_processing.py module:", final_segments)
211
+ return final_segments
212
+
213
+
214
+ def clean_character_name_from_text(text: str, voice_name: str) -> str:
215
+ """Clean character name markers from text.
216
+ The new parse_multi_voice_text in this module should handle name/dialogue separation.
217
+ This function primarily acts as a pass-through or for minor cleanup.
218
+
219
+ Args:
220
+ text: Text that may contain character markers
221
+ voice_name: Voice name (largely ignored by this simplified version)
222
+
223
+ Returns:
224
+ Cleaned text
225
+ """
226
+ # The parsing logic should have already separated the character name.
227
+ # This function just ensures the text is stripped.
228
+ return text.strip()
229
+
230
+
231
+ def chunk_multi_voice_segments(segments: List[Dict[str, str]], max_words: int = 50) -> List[Dict[str, str]]:
232
+ """Chunk multi-voice segments while preserving character assignments.
233
+
234
+ Args:
235
+ segments: List of character segments
236
+ max_words: Maximum words per chunk
237
+
238
+ Returns:
239
+ List of chunked segments with character assignments
240
+ """
241
+ chunked_segments = []
242
+
243
+ for segment in segments:
244
+ character = segment['character']
245
+ text = segment['text']
246
+
247
+ # Chunk the text for this character
248
+ text_chunks = chunk_text_by_sentences(text, max_words)
249
+
250
+ # Create segment for each chunk
251
+ for chunk in text_chunks:
252
+ chunked_segments.append({
253
+ 'character': character,
254
+ 'text': chunk
255
+ })
256
+
257
+ return chunked_segments
258
+
259
+
260
+ def validate_multi_voice_text(text_content: str, voice_library_path: str) -> Tuple[bool, str, List[str]]:
261
+ """Validate multi-voice text format and extract characters.
262
+
263
+ Args:
264
+ text_content: Text to validate
265
+ voice_library_path: Path to voice library
266
+
267
+ Returns:
268
+ tuple: (is_valid, error_message, character_list)
269
+ """
270
+ if not text_content or not text_content.strip():
271
+ return False, "❌ Please provide text content", []
272
+
273
+ # Parse segments to extract characters
274
+ segments = parse_multi_voice_text(text_content)
275
+
276
+ if not segments:
277
+ return False, "❌ No valid character segments found. Use format: [CHARACTER_NAME]: dialogue", []
278
+
279
+ # Extract unique characters
280
+ characters = list(set(segment['character'] for segment in segments))
281
+
282
+ if len(characters) < 2:
283
+ return False, "❌ Multi-voice requires at least 2 different characters", characters
284
+
285
+ if len(characters) > 6:
286
+ return False, "❌ Too many characters (maximum 6 for performance)", characters
287
+
288
+ # Check if we have enough text
289
+ total_words = sum(len(segment['text'].split()) for segment in segments)
290
+ if total_words < 20:
291
+ return False, "❌ Not enough text content (minimum 20 words)", characters
292
+
293
+ return True, "", characters
294
+
295
+
296
+ def validate_multi_audiobook_input(text_content: str, voice_library_path: str, project_name: str) -> Tuple[bool, str]:
297
+ """Validate input for multi-voice audiobook creation.
298
+
299
+ Args:
300
+ text_content: Text to validate
301
+ voice_library_path: Path to voice library
302
+ project_name: Project name
303
+
304
+ Returns:
305
+ tuple: (is_valid, error_message)
306
+ """
307
+ if not project_name or not project_name.strip():
308
+ return False, "❌ Please provide a project name"
309
+
310
+ is_valid, error_msg, _ = validate_multi_voice_text(text_content, voice_library_path)
311
+ return is_valid, error_msg
312
+
313
+
314
+ def analyze_multi_voice_text(text_content: str, voice_library_path: str) -> Tuple[bool, str, Dict[str, int]]:
315
+ """Analyze multi-voice text and return character statistics.
316
+
317
+ Args:
318
+ text_content: Text to analyze
319
+ voice_library_path: Path to voice library
320
+
321
+ Returns:
322
+ tuple: (is_valid, message, character_counts)
323
+ """
324
+ is_valid, error_msg, characters = validate_multi_voice_text(text_content, voice_library_path)
325
+
326
+ if not is_valid:
327
+ return False, error_msg, {}
328
+
329
+ # Parse segments and count words per character
330
+ segments = parse_multi_voice_text(text_content)
331
+ character_counts = {}
332
+
333
+ for segment in segments:
334
+ character = segment['character']
335
+ word_count = len(segment['text'].split())
336
+ character_counts[character] = character_counts.get(character, 0) + word_count
337
+
338
+ total_words = sum(character_counts.values())
339
+ message = f"✅ Found {len(characters)} characters with {total_words} total words"
340
+
341
+ return True, message, character_counts
342
+
343
+
344
+ def _filter_problematic_short_chunks(chunks: List[str], voice_assignments: Dict[str, str]) -> List[str]:
345
+ """Filter out problematic short chunks that might cause TTS issues.
346
+
347
+ Args:
348
+ chunks: List of text chunks
349
+ voice_assignments: Character to voice mappings
350
+
351
+ Returns:
352
+ Filtered list of chunks
353
+ """
354
+ filtered_chunks = []
355
+ min_length = 10 # Minimum character length
356
+
357
+ for chunk in chunks:
358
+ # Skip very short chunks
359
+ if len(chunk.strip()) < min_length:
360
+ continue
361
+
362
+ # Skip chunks that are just punctuation or whitespace
363
+ if not re.search(r'[a-zA-Z]', chunk):
364
+ continue
365
+
366
+ filtered_chunks.append(chunk)
367
+
368
+ return filtered_chunks
369
+
370
+
371
+ # PHASE 4 REFACTOR: Adding audio processing functions to this module
372
+ # Originally from gradio_tts_app_audiobook.py save_audio_chunks() function
373
+
374
+ def save_audio_chunks(audio_chunks: List[np.ndarray], sample_rate: int, project_name: str, output_dir: str = "audiobook_projects") -> Tuple[List[str], str]:
375
+ """
376
+ Save audio chunks as numbered WAV files
377
+
378
+ Args:
379
+ audio_chunks: List of audio numpy arrays
380
+ sample_rate: Sample rate for audio files
381
+ project_name: Name of the project
382
+ output_dir: Directory to save project files
383
+
384
+ Returns:
385
+ tuple: (list of saved file paths, project directory path)
386
+ """
387
+ if not project_name.strip():
388
+ project_name = "untitled_audiobook"
389
+
390
+ # Sanitize project name
391
+ safe_project_name = "".join(c for c in project_name if c.isalnum() or c in (' ', '-', '_')).rstrip()
392
+ safe_project_name = safe_project_name.replace(' ', '_')
393
+
394
+ # Create output directory
395
+ project_dir = os.path.join(output_dir, safe_project_name)
396
+ os.makedirs(project_dir, exist_ok=True)
397
+
398
+ saved_files = []
399
+
400
+ for i, audio_chunk in enumerate(audio_chunks, 1):
401
+ filename = f"{safe_project_name}_{i:03d}.wav"
402
+ filepath = os.path.join(project_dir, filename)
403
+
404
+ # Save as WAV file
405
+ with wave.open(filepath, 'wb') as wav_file:
406
+ wav_file.setnchannels(1) # Mono
407
+ wav_file.setsampwidth(2) # 16-bit
408
+ wav_file.setframerate(sample_rate)
409
+
410
+ # Convert float32 to int16
411
+ audio_int16 = (audio_chunk * 32767).astype(np.int16)
412
+ wav_file.writeframes(audio_int16.tobytes())
413
+
414
+ saved_files.append(filepath)
415
+
416
+ return saved_files, project_dir
417
+
418
+
419
+ # PHASE 4 REFACTOR: Adding extract_audio_segment function from gradio_tts_app_audiobook.py
420
+ def extract_audio_segment(audio_data, start_time: float = None, end_time: float = None) -> tuple:
421
+ """Extract a segment from audio data.
422
+
423
+ Args:
424
+ audio_data: Numpy array of audio data
425
+ start_time: Start time in seconds (None for beginning)
426
+ end_time: End time in seconds (None for end)
427
+
428
+ Returns:
429
+ tuple: (status_message, extracted_audio_data)
430
+ """
431
+ try:
432
+ sample_rate = 24000 # Default sample rate
433
+
434
+ if audio_data is None or len(audio_data) == 0:
435
+ return "❌ No audio data to extract from", None
436
+
437
+ total_duration = len(audio_data) / sample_rate
438
+
439
+ start_sample = int(start_time * sample_rate) if start_time else 0
440
+ end_sample = int(end_time * sample_rate) if end_time else len(audio_data)
441
+
442
+ # Validate bounds
443
+ start_sample = max(0, min(start_sample, len(audio_data)))
444
+ end_sample = max(start_sample, min(end_sample, len(audio_data)))
445
+
446
+ extracted_audio = audio_data[start_sample:end_sample]
447
+
448
+ if len(extracted_audio) == 0:
449
+ return "❌ Invalid time range - no audio extracted", None
450
+
451
+ extracted_duration = len(extracted_audio) / sample_rate
452
+ return f"✅ Extracted {extracted_duration:.2f}s of audio", extracted_audio
453
+
454
+ except Exception as e:
455
+ return f"❌ Error extracting audio segment: {str(e)}", None
456
+
457
+
458
+ def process_text_for_pauses(text: str, pause_duration: float = 0.1) -> tuple:
459
+ """Process text to count returns and calculate total pause time.
460
+
461
+ Args:
462
+ text: Input text to process
463
+ pause_duration: Duration in seconds per line break (default 0.1)
464
+
465
+ Returns:
466
+ tuple: (processed_text, return_count, total_pause_duration)
467
+ """
468
+ # Count line breaks (both \n and \r\n)
469
+ return_count = text.count('\n') + text.count('\r')
470
+ total_pause_duration = return_count * pause_duration
471
+
472
+ # Clean up text for TTS (normalize line breaks but keep content)
473
+ processed_text = text.replace('\r\n', '\n').replace('\r', '\n')
474
+ # Replace multiple consecutive newlines with single space to avoid empty chunks
475
+ processed_text = re.sub(r'\n+', ' ', processed_text).strip()
476
+
477
+ print(f"🔇 Detected {return_count} line breaks → {total_pause_duration:.1f}s total pause time")
478
+
479
+ return processed_text, return_count, total_pause_duration
480
+
481
+
482
+ def create_silence_audio(duration: float, sample_rate: int = 24000) -> np.ndarray:
483
+ """Create silence audio of specified duration.
484
+
485
+ Args:
486
+ duration: Duration in seconds
487
+ sample_rate: Sample rate for the audio
488
+
489
+ Returns:
490
+ numpy array of silence audio
491
+ """
492
+ num_samples = int(duration * sample_rate)
493
+ return np.zeros(num_samples, dtype=np.float32)
494
+
495
+
496
+ def insert_pauses_between_chunks(audio_chunks: List[np.ndarray],
497
+ return_count: int,
498
+ sample_rate: int = 24000,
499
+ pause_duration: float = 0.1) -> np.ndarray:
500
+ """Insert pauses between audio chunks based on return count.
501
+
502
+ Args:
503
+ audio_chunks: List of audio chunk arrays
504
+ return_count: Number of returns detected in original text
505
+ sample_rate: Sample rate for audio
506
+ pause_duration: Duration per return in seconds
507
+
508
+ Returns:
509
+ Combined audio with pauses inserted
510
+ """
511
+ if not audio_chunks:
512
+ return np.array([], dtype=np.float32)
513
+
514
+ if return_count == 0:
515
+ # No pauses needed, just concatenate
516
+ return np.concatenate(audio_chunks)
517
+
518
+ # Calculate how to distribute pauses
519
+ # For simplicity, we'll add all pause time at the end
520
+ # In a more sophisticated approach, we could distribute pauses throughout
521
+ total_pause_time = return_count * pause_duration
522
+ pause_audio = create_silence_audio(total_pause_time, sample_rate)
523
+
524
+ print(f"🔇 Adding {total_pause_time:.1f}s pause ({return_count} returns × {pause_duration}s each)")
525
+
526
+ # Concatenate audio chunks with pause at the end
527
+ combined_audio = np.concatenate(audio_chunks)
528
+ final_audio = np.concatenate([combined_audio, pause_audio])
529
+
530
+ return final_audio
531
+
532
+
533
+ def process_text_with_distributed_pauses(text: str, max_words: int = 50,
534
+ pause_duration: float = 0.1) -> tuple:
535
+ """Process text and distribute pauses throughout chunks based on line breaks.
536
+
537
+ Args:
538
+ text: Input text to process
539
+ max_words: Maximum words per chunk
540
+ pause_duration: Duration per line break in seconds
541
+
542
+ Returns:
543
+ tuple: (chunks_with_pauses, total_return_count, total_pause_duration)
544
+ """
545
+ # First, process text to understand pause requirements
546
+ processed_text, return_count, total_pause_duration = process_text_for_pauses(text, pause_duration)
547
+
548
+ # Split into lines to track where pauses should be
549
+ lines = text.split('\n')
550
+ chunks_with_pauses = []
551
+
552
+ current_chunk = ""
553
+ current_word_count = 0
554
+ pauses_for_chunk = 0
555
+
556
+ for i, line in enumerate(lines):
557
+ line = line.strip()
558
+ if not line:
559
+ pauses_for_chunk += 1 # Empty line counts as a pause
560
+ continue
561
+
562
+ line_words = len(line.split())
563
+
564
+ # If adding this line would exceed max_words, finalize current chunk
565
+ if current_word_count > 0 and current_word_count + line_words > max_words:
566
+ if current_chunk.strip():
567
+ chunks_with_pauses.append({
568
+ 'text': current_chunk.strip(),
569
+ 'pauses': pauses_for_chunk
570
+ })
571
+ current_chunk = line
572
+ current_word_count = line_words
573
+ pauses_for_chunk = 0
574
+ else:
575
+ current_chunk += " " + line if current_chunk else line
576
+ current_word_count += line_words
577
+
578
+ # Add pause if not the last line
579
+ if i < len(lines) - 1:
580
+ pauses_for_chunk += 1
581
+
582
+ # Add the last chunk if it exists
583
+ if current_chunk.strip():
584
+ chunks_with_pauses.append({
585
+ 'text': current_chunk.strip(),
586
+ 'pauses': pauses_for_chunk
587
+ })
588
+
589
+ return chunks_with_pauses, return_count, total_pause_duration
590
+
591
+
592
+ def map_line_breaks_to_chunks(original_text: str, chunks: List[str], pause_duration: float = 0.1) -> tuple:
593
+ """Map line breaks from original text to corresponding chunks.
594
+
595
+ Args:
596
+ original_text: Original text with line breaks
597
+ chunks: List of text chunks created by sentence chunking
598
+ pause_duration: Duration per line break in seconds
599
+
600
+ Returns:
601
+ tuple: (chunk_pause_map, total_pause_duration)
602
+ chunk_pause_map: Dict mapping chunk index to pause duration
603
+ total_pause_duration: Total pause time across all chunks
604
+ """
605
+ import re
606
+
607
+ chunk_pause_map = {}
608
+ total_pause_duration = 0.0
609
+
610
+ # Create a version of original text for matching (remove extra whitespace but keep structure)
611
+ normalized_original = re.sub(r'\s+', ' ', original_text.replace('\n', ' ')).strip()
612
+
613
+ # Track position in original text
614
+ original_position = 0
615
+
616
+ for chunk_idx, chunk in enumerate(chunks):
617
+ chunk_normalized = chunk.strip()
618
+ if not chunk_normalized:
619
+ continue
620
+
621
+ # Find this chunk in the original text
622
+ chunk_start = normalized_original.find(chunk_normalized, original_position)
623
+ if chunk_start == -1:
624
+ # Fallback: try to find it without position constraint
625
+ chunk_start = normalized_original.find(chunk_normalized)
626
+
627
+ if chunk_start == -1:
628
+ # Can't find chunk, no pauses for this one
629
+ continue
630
+
631
+ chunk_end = chunk_start + len(chunk_normalized)
632
+
633
+ # Count line breaks in the corresponding section of original text
634
+ # Map back to original text position
635
+ orig_text_section_start = 0
636
+ orig_text_section_end = len(original_text)
637
+
638
+ # Find the corresponding section in original text
639
+ words_before = len(normalized_original[:chunk_start].split())
640
+ words_in_chunk = len(chunk_normalized.split())
641
+
642
+ # Find the section in original text that corresponds to this chunk
643
+ original_words = original_text.split()
644
+ if words_before < len(original_words):
645
+ # Find the start position in original text
646
+ words_section = ' '.join(original_words[words_before:words_before + words_in_chunk])
647
+ section_start = original_text.find(words_section)
648
+ if section_start != -1:
649
+ section_end = section_start + len(words_section)
650
+ # Count line breaks in this section and the gap after it (until next chunk)
651
+ next_chunk_start = section_end
652
+ if chunk_idx < len(chunks) - 1:
653
+ next_chunk_text = chunks[chunk_idx + 1].strip()
654
+ next_chunk_pos = original_text.find(next_chunk_text, section_end)
655
+ if next_chunk_pos != -1:
656
+ next_chunk_start = next_chunk_pos
657
+
658
+ # Count line breaks from end of current chunk to start of next chunk
659
+ gap_text = original_text[section_end:next_chunk_start]
660
+ line_breaks = gap_text.count('\n')
661
+
662
+ if line_breaks > 0:
663
+ pause_time = line_breaks * pause_duration
664
+ chunk_pause_map[chunk_idx] = pause_time
665
+ total_pause_duration += pause_time
666
+
667
+ original_position = chunk_end
668
+
669
+ return chunk_pause_map, total_pause_duration
670
+
671
+
672
+ def chunk_text_by_sentences_local(text, max_words=50):
673
+ """Local copy of sentence chunking to avoid circular imports."""
674
+ import re
675
+
676
+ # Split into sentences using common sentence endings
677
+ sentences = re.split(r'(?<=[.!?])\s+', text.strip())
678
+
679
+ chunks = []
680
+ current_chunk = ""
681
+ current_word_count = 0
682
+
683
+ for sentence in sentences:
684
+ if not sentence.strip():
685
+ continue
686
+
687
+ sentence_words = len(sentence.split())
688
+
689
+ # If adding this sentence would exceed max_words and we have content, start a new chunk
690
+ if current_word_count > 0 and current_word_count + sentence_words > max_words:
691
+ if current_chunk.strip():
692
+ chunks.append(current_chunk.strip())
693
+ current_chunk = sentence
694
+ current_word_count = sentence_words
695
+ else:
696
+ current_chunk += " " + sentence if current_chunk else sentence
697
+ current_word_count += sentence_words
698
+
699
+ # Add the last chunk if it exists
700
+ if current_chunk.strip():
701
+ chunks.append(current_chunk.strip())
702
+
703
+ return chunks
704
+
705
+ def chunk_text_with_line_break_priority(text: str, max_words: int = 50, pause_duration: float = 0.1) -> tuple:
706
+ """Chunk text with line breaks taking priority over sentence breaks.
707
+
708
+ This function first splits on line breaks, then applies sentence chunking
709
+ within each line break segment if needed.
710
+
711
+ Args:
712
+ text: Input text with line breaks
713
+ max_words: Maximum words per chunk
714
+ pause_duration: Duration per line break in seconds
715
+
716
+ Returns:
717
+ tuple: (chunks_with_pauses, total_pause_duration)
718
+ chunks_with_pauses: List of dicts with 'text' and 'pause_duration' keys
719
+ total_pause_duration: Total pause time across all chunks
720
+ """
721
+ import re
722
+
723
+ chunks_with_pauses = []
724
+ total_pause_duration = 0.0
725
+
726
+ # Split text by line breaks, keeping track of consecutive breaks
727
+ line_segments = re.split(r'(\n+)', text)
728
+
729
+ for i, segment in enumerate(line_segments):
730
+ if not segment:
731
+ continue
732
+
733
+ # Check if this segment is line breaks
734
+ if re.match(r'\n+', segment):
735
+ # Count the number of line breaks for pause calculation
736
+ line_break_count = segment.count('\n')
737
+ pause_time = line_break_count * pause_duration
738
+
739
+ # Add pause to the previous chunk if it exists
740
+ if chunks_with_pauses:
741
+ chunks_with_pauses[-1]['pause_duration'] += pause_time
742
+ total_pause_duration += pause_time
743
+ print(f"🔇 Line breaks detected: +{pause_time:.1f}s pause (from {line_break_count} returns)")
744
+ continue
745
+
746
+ # This is actual text content - chunk it by sentences if needed
747
+ text_content = segment.strip()
748
+ if not text_content:
749
+ continue
750
+
751
+ # Apply sentence chunking to this segment
752
+ text_chunks = chunk_text_by_sentences_local(text_content, max_words)
753
+
754
+ # Add these chunks with initial pause duration of 0
755
+ for chunk in text_chunks:
756
+ if chunk.strip():
757
+ chunks_with_pauses.append({
758
+ 'text': chunk.strip(),
759
+ 'pause_duration': 0.0
760
+ })
761
+
762
+ return chunks_with_pauses, total_pause_duration
763
+
764
+
765
+ def parse_multi_voice_text_local(text):
766
+ """Local copy of multi-voice text parsing to avoid circular imports."""
767
+ import re
768
+
769
+ # Pattern to match [CharacterName] at the beginning of lines
770
+ pattern = r'^\[([^\]]+)\]\s*(.*?)(?=^\[|\Z)'
771
+ matches = re.findall(pattern, text, re.MULTILINE | re.DOTALL)
772
+
773
+ if not matches:
774
+ # If no voice tags found, treat as single narrator
775
+ return [("Narrator", text.strip())]
776
+
777
+ segments = []
778
+ for character_name, content in matches:
779
+ # DON'T strip content to preserve line breaks for pause processing
780
+ # Only strip leading/trailing spaces, but preserve newlines
781
+ content = content.rstrip(' \t').lstrip(' \t')
782
+ if content:
783
+ segments.append((character_name.strip(), content))
784
+
785
+ return segments
786
+
787
+ def chunk_multi_voice_text_with_line_break_priority(text: str, max_words: int = 30, pause_duration: float = 0.1) -> tuple:
788
+ """Chunk multi-voice text with line breaks taking priority over sentence breaks.
789
+
790
+ Args:
791
+ text: Input text with voice tags and line breaks
792
+ max_words: Maximum words per chunk
793
+ pause_duration: Duration per line break in seconds
794
+
795
+ Returns:
796
+ tuple: (segments_with_pauses, total_pause_duration)
797
+ segments_with_pauses: List of dicts with 'voice', 'text', and 'pause_duration' keys
798
+ total_pause_duration: Total pause time across all segments
799
+ """
800
+ import re
801
+
802
+ # Add debugging output for the input text
803
+ print(f"🔍 DEBUG: chunk_multi_voice_text_with_line_break_priority input:")
804
+ print(f"🔍 DEBUG: Input text length: {len(text)} characters")
805
+ print(f"🔍 DEBUG: Line breaks in input: {text.count(chr(10))} \\n chars, {text.count(chr(13))} \\r chars")
806
+ print(f"🔍 DEBUG: First 200 chars: {repr(text[:200])}")
807
+
808
+ # NEW APPROACH: Process line breaks in the full text before voice parsing
809
+ # Split the entire text by voice segments while preserving line breaks
810
+ segments_with_pauses = []
811
+ total_pause_duration = 0.0
812
+
813
+ # Find all voice segments with their positions, preserving everything in between
814
+ voice_pattern = r'(\[([^\]]+)\]\s*)'
815
+ split_parts = re.split(voice_pattern, text)
816
+
817
+ print(f"🔍 DEBUG: Split text into {len(split_parts)} parts")
818
+ for i, part in enumerate(split_parts):
819
+ print(f"🔍 DEBUG: Part {i}: {repr(part[:50])}")
820
+
821
+ current_voice = None
822
+
823
+ i = 0
824
+ while i < len(split_parts):
825
+ part = split_parts[i]
826
+
827
+ # Check if this part is a voice tag match
828
+ if i + 2 < len(split_parts) and re.match(r'\[([^\]]+)\]\s*', part):
829
+ # This is a voice tag, extract the voice name
830
+ current_voice = split_parts[i + 1] # The captured voice name
831
+ print(f"🔍 DEBUG: Found voice tag: '{current_voice}'")
832
+
833
+ # The content is in the next part after the voice tag and whitespace
834
+ content_part = split_parts[i + 2] if i + 2 < len(split_parts) else ""
835
+
836
+ # Process the content with line break awareness
837
+ if content_part:
838
+ processed_segments = process_voice_content_with_line_breaks(
839
+ current_voice, content_part, max_words, pause_duration
840
+ )
841
+
842
+ for segment in processed_segments:
843
+ segments_with_pauses.append(segment)
844
+ total_pause_duration += segment['pause_duration']
845
+
846
+ i += 3 # Skip voice tag, voice name, and content
847
+ else:
848
+ # This is content between voice tags or before first voice tag
849
+ if current_voice and part.strip():
850
+ # Content continuation for current voice
851
+ processed_segments = process_voice_content_with_line_breaks(
852
+ current_voice, part, max_words, pause_duration
853
+ )
854
+
855
+ for segment in processed_segments:
856
+ segments_with_pauses.append(segment)
857
+ total_pause_duration += segment['pause_duration']
858
+ elif not current_voice and part.strip():
859
+ # Content before any voice tag - treat as narrator
860
+ processed_segments = process_voice_content_with_line_breaks(
861
+ "Narrator", part, max_words, pause_duration
862
+ )
863
+
864
+ for segment in processed_segments:
865
+ segments_with_pauses.append(segment)
866
+ total_pause_duration += segment['pause_duration']
867
+
868
+ i += 1
869
+
870
+ print(f"🔍 DEBUG: Final result: {len(segments_with_pauses)} segments, {total_pause_duration:.1f}s total pause time")
871
+
872
+ return segments_with_pauses, total_pause_duration
873
+
874
+
875
+ def process_voice_content_with_line_breaks(voice_name: str, content: str, max_words: int, pause_duration: float) -> list:
876
+ """Process voice content while preserving line breaks for pauses."""
877
+ import re
878
+
879
+ segments = []
880
+
881
+ # Split content by line breaks, keeping the line breaks
882
+ line_segments = re.split(r'(\n+)', content)
883
+
884
+ print(f"🔍 DEBUG: Processing voice '{voice_name}' content split into {len(line_segments)} line segments")
885
+
886
+ for i, line_segment in enumerate(line_segments):
887
+ if not line_segment:
888
+ continue
889
+
890
+ # Check if this segment is line breaks
891
+ if re.match(r'\n+', line_segment):
892
+ # Count the number of line breaks for pause calculation
893
+ line_break_count = line_segment.count('\n')
894
+ pause_time = line_break_count * pause_duration
895
+
896
+ print(f"🔍 DEBUG: Found {line_break_count} line breaks, calculating {pause_time:.1f}s pause")
897
+
898
+ # Add pause to the previous segment if it exists and has the same voice
899
+ if segments and segments[-1]['voice'] == voice_name:
900
+ segments[-1]['pause_duration'] += pause_time
901
+ print(f"🔇 Line breaks detected in [{voice_name}]: +{pause_time:.1f}s pause (from {line_break_count} returns)")
902
+ else:
903
+ print(f"🔍 DEBUG: No previous segment to add pause to, or voice mismatch")
904
+ continue
905
+
906
+ # This is actual text content - chunk it by sentences if needed
907
+ text_content = line_segment.strip()
908
+ if not text_content:
909
+ continue
910
+
911
+ print(f"🔍 DEBUG: Processing text content: '{text_content[:50]}...'")
912
+
913
+ # Apply sentence chunking to this segment
914
+ text_chunks = chunk_text_by_sentences_local(text_content, max_words)
915
+
916
+ print(f"🔍 DEBUG: chunk_text_by_sentences_local produced {len(text_chunks)} chunks")
917
+
918
+ # Add these chunks with voice assignment and initial pause duration of 0
919
+ for chunk in text_chunks:
920
+ if chunk.strip():
921
+ segments.append({
922
+ 'voice': voice_name,
923
+ 'text': chunk.strip(),
924
+ 'pause_duration': 0.0
925
+ })
926
+ print(f"🔍 DEBUG: Added segment: voice='{voice_name}', text='{chunk.strip()[:30]}...', pause=0.0")
927
+
928
+ return segments
src/audiobook/project_management.py ADDED
@@ -0,0 +1,656 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Project management utilities for audiobook generation.
3
+
4
+ Handles project creation, loading, metadata, file organization, and project lifecycle.
5
+ """
6
+
7
+ import os
8
+ import json
9
+ import shutil
10
+ import time
11
+ from pathlib import Path
12
+ from typing import List, Dict, Tuple, Optional, Any
13
+ from datetime import datetime
14
+
15
+ from .text_processing import chunk_text_by_sentences, parse_multi_voice_text, chunk_multi_voice_segments
16
+ from .audio_processing import save_audio_chunks, auto_remove_silence, normalize_audio_levels, analyze_audio_quality
17
+ from .voice_management import load_voice_for_tts, get_voice_config
18
+ from .models import generate_with_retry, load_model_cpu
19
+
20
+
21
+ # Constants
22
+ MAX_CHUNKS_FOR_INTERFACE = 100
23
+ MAX_CHUNKS_FOR_AUTO_SAVE = 100
24
+
25
+
26
+ def save_project_metadata(
27
+ project_dir: str,
28
+ project_name: str,
29
+ text_content: str,
30
+ voice_info: dict,
31
+ chunks: list,
32
+ project_type: str = "single_voice"
33
+ ) -> None:
34
+ """Save project metadata to JSON file.
35
+
36
+ Args:
37
+ project_dir: Project directory path
38
+ project_name: Name of the project
39
+ text_content: Original text content
40
+ voice_info: Voice configuration information
41
+ chunks: List of text chunks
42
+ project_type: Type of project (single_voice or multi_voice)
43
+ """
44
+ metadata = {
45
+ 'project_name': project_name,
46
+ 'project_type': project_type,
47
+ 'created_at': datetime.now().isoformat(),
48
+ 'text_content': text_content,
49
+ 'voice_info': voice_info,
50
+ 'chunks': chunks,
51
+ 'total_chunks': len(chunks),
52
+ 'status': 'in_progress'
53
+ }
54
+
55
+ metadata_path = os.path.join(project_dir, 'metadata.json')
56
+ with open(metadata_path, 'w', encoding='utf-8') as f:
57
+ json.dump(metadata, f, indent=2)
58
+
59
+
60
+ def load_project_metadata(project_dir: str) -> dict:
61
+ """Load project metadata from JSON file.
62
+
63
+ Args:
64
+ project_dir: Project directory path
65
+
66
+ Returns:
67
+ Project metadata dictionary
68
+ """
69
+ metadata_path = os.path.join(project_dir, 'metadata.json')
70
+ if os.path.exists(metadata_path):
71
+ try:
72
+ with open(metadata_path, 'r', encoding='utf-8') as f:
73
+ return json.load(f)
74
+ except Exception as e:
75
+ print(f"Warning: Could not load metadata for {project_dir}: {e}")
76
+ return {}
77
+
78
+
79
+ def get_existing_projects(output_dir: str = "audiobook_projects") -> List[Dict[str, Any]]:
80
+ """Get list of existing audiobook projects.
81
+
82
+ Args:
83
+ output_dir: Directory containing projects
84
+
85
+ Returns:
86
+ List of project information dictionaries
87
+ """
88
+ projects = []
89
+
90
+ if not os.path.exists(output_dir):
91
+ return projects
92
+
93
+ try:
94
+ for item in os.listdir(output_dir):
95
+ project_dir = os.path.join(output_dir, item)
96
+ if os.path.isdir(project_dir):
97
+ metadata = load_project_metadata(project_dir)
98
+
99
+ if metadata:
100
+ # Use metadata information
101
+ project_info = {
102
+ 'name': metadata.get('project_name', item),
103
+ 'path': project_dir,
104
+ 'type': metadata.get('project_type', 'unknown'),
105
+ 'created_at': metadata.get('created_at', ''),
106
+ 'total_chunks': metadata.get('total_chunks', 0),
107
+ 'status': metadata.get('status', 'unknown')
108
+ }
109
+ else:
110
+ # Fallback to directory scanning
111
+ audio_files = [f for f in os.listdir(project_dir) if f.endswith('.wav')]
112
+ project_info = {
113
+ 'name': item,
114
+ 'path': project_dir,
115
+ 'type': 'legacy',
116
+ 'created_at': '',
117
+ 'total_chunks': len(audio_files),
118
+ 'status': 'completed' if audio_files else 'empty'
119
+ }
120
+
121
+ projects.append(project_info)
122
+
123
+ except Exception as e:
124
+ print(f"Warning: Error scanning projects directory: {e}")
125
+
126
+ # Sort by creation date (newest first)
127
+ def get_sort_key(project):
128
+ created_at = project.get('created_at', '')
129
+ if created_at:
130
+ try:
131
+ return datetime.fromisoformat(created_at)
132
+ except:
133
+ pass
134
+ return datetime.min
135
+
136
+ projects.sort(key=get_sort_key, reverse=True)
137
+ return projects
138
+
139
+
140
+ def get_project_choices() -> List[str]:
141
+ """Get project names for UI dropdowns.
142
+
143
+ Returns:
144
+ List of project names
145
+ """
146
+ projects = get_existing_projects()
147
+ if not projects:
148
+ return ["No projects found"]
149
+
150
+ # Format: "project_name (type - chunks)"
151
+ choices = []
152
+ for project in projects:
153
+ name = project['name']
154
+ project_type = project['type']
155
+ chunk_count = project['total_chunks']
156
+ formatted = f"{name} ({project_type} - {chunk_count} chunks)"
157
+ choices.append(formatted)
158
+
159
+ return choices
160
+
161
+
162
+ def load_project_for_regeneration(project_name: str) -> Tuple[str, str, str, str]:
163
+ """Load project data for regeneration interface.
164
+
165
+ Args:
166
+ project_name: Name of the project to load
167
+
168
+ Returns:
169
+ tuple: (text_content, voice_name, project_type, status_message)
170
+ """
171
+ if not project_name or project_name == "No projects found":
172
+ return "", "", "", "No project selected"
173
+
174
+ # Extract actual project name from formatted string
175
+ actual_name = project_name.split(' (')[0] if ' (' in project_name else project_name
176
+
177
+ projects = get_existing_projects()
178
+ project_info = None
179
+
180
+ for project in projects:
181
+ if project['name'] == actual_name:
182
+ project_info = project
183
+ break
184
+
185
+ if not project_info:
186
+ return "", "", "", f"❌ Project '{actual_name}' not found"
187
+
188
+ # Load project metadata
189
+ metadata = load_project_metadata(project_info['path'])
190
+
191
+ if not metadata:
192
+ return "", "", "", f"❌ Could not load project metadata for '{actual_name}'"
193
+
194
+ text_content = metadata.get('text_content', '')
195
+ voice_info = metadata.get('voice_info', {})
196
+ project_type = metadata.get('project_type', 'single_voice')
197
+
198
+ # Extract voice name based on project type
199
+ if project_type == 'single_voice':
200
+ voice_name = voice_info.get('voice_name', '')
201
+ else:
202
+ voice_name = 'Multi-voice project'
203
+
204
+ return text_content, voice_name, project_type, f"✅ Loaded project '{actual_name}'"
205
+
206
+
207
+ def create_audiobook(
208
+ model: Any,
209
+ text_content: str,
210
+ voice_library_path: str,
211
+ selected_voice: str,
212
+ project_name: str,
213
+ resume: bool = False,
214
+ autosave_interval: int = 10
215
+ ) -> Tuple[str, List[str], str]:
216
+ """Create a single-voice audiobook project.
217
+
218
+ Args:
219
+ model: TTS model instance
220
+ text_content: Text to convert to audio
221
+ voice_library_path: Path to voice library
222
+ selected_voice: Name of selected voice
223
+ project_name: Name for the project
224
+ resume: Whether to resume existing project
225
+ autosave_interval: Chunks between auto-saves
226
+
227
+ Returns:
228
+ tuple: (status_message, audio_file_paths, project_path)
229
+ """
230
+ if not model:
231
+ model = load_model_cpu()
232
+
233
+ # Load voice configuration
234
+ audio_prompt_path, voice_config = load_voice_for_tts(voice_library_path, selected_voice)
235
+
236
+ if not audio_prompt_path:
237
+ return f"❌ Could not load voice '{selected_voice}'", [], ""
238
+
239
+ # Get voice parameters
240
+ exaggeration = voice_config.get('exaggeration', 1.0)
241
+ temperature = voice_config.get('temperature', 0.7)
242
+ cfg_weight = voice_config.get('cfg_weight', 1.0)
243
+
244
+ # Chunk the text
245
+ chunks = chunk_text_by_sentences(text_content, max_words=50)
246
+
247
+ # Create project directory
248
+ safe_project_name = "".join(c for c in project_name if c.isalnum() or c in (' ', '-', '_')).strip()
249
+ safe_project_name = safe_project_name.replace(' ', '_')
250
+ project_dir = os.path.join("audiobook_projects", safe_project_name)
251
+ os.makedirs(project_dir, exist_ok=True)
252
+
253
+ # Save project metadata
254
+ voice_info = {
255
+ 'voice_name': selected_voice,
256
+ 'audio_prompt_path': audio_prompt_path,
257
+ 'exaggeration': exaggeration,
258
+ 'temperature': temperature,
259
+ 'cfg_weight': cfg_weight
260
+ }
261
+
262
+ save_project_metadata(project_dir, project_name, text_content, voice_info, chunks, "single_voice")
263
+
264
+ # Generate audio for chunks
265
+ audio_chunks = []
266
+ generated_files = []
267
+
268
+ try:
269
+ for i, chunk in enumerate(chunks):
270
+ print(f"Generating chunk {i+1}/{len(chunks)}")
271
+
272
+ # Generate audio
273
+ wav, device_used = generate_with_retry(
274
+ model, chunk, audio_prompt_path, exaggeration, temperature, cfg_weight
275
+ )
276
+
277
+ # Convert to numpy array if needed
278
+ if hasattr(wav, 'squeeze'):
279
+ audio_array = wav.squeeze(0).numpy()
280
+ else:
281
+ audio_array = wav
282
+
283
+ audio_chunks.append(audio_array)
284
+
285
+ # Auto-save periodically
286
+ if (i + 1) % autosave_interval == 0 or i == len(chunks) - 1:
287
+ # Save current batch
288
+ batch_files = save_audio_chunks(
289
+ audio_chunks, model.sr, safe_project_name, "audiobook_projects"
290
+ )
291
+ generated_files.extend(batch_files)
292
+ audio_chunks = [] # Reset for next batch
293
+
294
+ # Update metadata to completed
295
+ metadata = load_project_metadata(project_dir)
296
+ metadata['status'] = 'completed'
297
+ metadata['completed_at'] = datetime.now().isoformat()
298
+
299
+ metadata_path = os.path.join(project_dir, 'metadata.json')
300
+ with open(metadata_path, 'w', encoding='utf-8') as f:
301
+ json.dump(metadata, f, indent=2)
302
+
303
+ return f"✅ Audiobook '{project_name}' created successfully! Generated {len(chunks)} audio chunks.", generated_files, project_dir
304
+
305
+ except Exception as e:
306
+ return f"❌ Error creating audiobook: {str(e)}", generated_files, project_dir
307
+
308
+
309
+ def create_multi_voice_audiobook_with_assignments(
310
+ model: Any,
311
+ text_content: str,
312
+ voice_library_path: str,
313
+ project_name: str,
314
+ voice_assignments: Dict[str, str],
315
+ resume: bool = False,
316
+ autosave_interval: int = 10
317
+ ) -> Tuple[str, List[str], str]:
318
+ """Create a multi-voice audiobook project with character voice assignments.
319
+
320
+ Args:
321
+ model: TTS model instance
322
+ text_content: Text with character markers
323
+ voice_library_path: Path to voice library
324
+ project_name: Name for the project
325
+ voice_assignments: Character to voice mappings
326
+ resume: Whether to resume existing project
327
+ autosave_interval: Chunks between auto-saves
328
+
329
+ Returns:
330
+ tuple: (status_message, audio_file_paths, project_path)
331
+ """
332
+ if not model:
333
+ model = load_model_cpu()
334
+
335
+ # Parse multi-voice text
336
+ segments = parse_multi_voice_text(text_content)
337
+ chunked_segments = chunk_multi_voice_segments(segments, max_words=50)
338
+
339
+ # Create project directory
340
+ safe_project_name = "".join(c for c in project_name if c.isalnum() or c in (' ', '-', '_')).strip()
341
+ safe_project_name = safe_project_name.replace(' ', '_')
342
+ project_dir = os.path.join("audiobook_projects", safe_project_name)
343
+ os.makedirs(project_dir, exist_ok=True)
344
+
345
+ # Save project metadata
346
+ voice_info = {
347
+ 'voice_assignments': voice_assignments,
348
+ 'characters': list(voice_assignments.keys())
349
+ }
350
+
351
+ save_project_metadata(project_dir, project_name, text_content, voice_info, chunked_segments, "multi_voice")
352
+
353
+ # Generate audio for segments
354
+ audio_chunks = []
355
+ generated_files = []
356
+
357
+ try:
358
+ for i, segment in enumerate(chunked_segments):
359
+ character = segment['character']
360
+ text = segment['text']
361
+
362
+ # Get assigned voice for character
363
+ assigned_voice = voice_assignments.get(character)
364
+ if not assigned_voice:
365
+ print(f"Warning: No voice assigned for character '{character}', skipping segment")
366
+ continue
367
+
368
+ # Load voice configuration
369
+ audio_prompt_path, voice_config = load_voice_for_tts(voice_library_path, assigned_voice)
370
+
371
+ if not audio_prompt_path:
372
+ print(f"Warning: Could not load voice '{assigned_voice}' for character '{character}'")
373
+ continue
374
+
375
+ print(f"Generating segment {i+1}/{len(chunked_segments)} - {character}: {text[:50]}...")
376
+
377
+ # Generate audio
378
+ wav, device_used = generate_with_retry(
379
+ model, text, audio_prompt_path,
380
+ voice_config.get('exaggeration', 1.0),
381
+ voice_config.get('temperature', 0.7),
382
+ voice_config.get('cfg_weight', 1.0)
383
+ )
384
+
385
+ # Convert to numpy array if needed
386
+ if hasattr(wav, 'squeeze'):
387
+ audio_array = wav.squeeze(0).numpy()
388
+ else:
389
+ audio_array = wav
390
+
391
+ audio_chunks.append(audio_array)
392
+
393
+ # Auto-save periodically
394
+ if (i + 1) % autosave_interval == 0 or i == len(chunked_segments) - 1:
395
+ # Save current batch
396
+ batch_files = save_audio_chunks(
397
+ audio_chunks, model.sr, safe_project_name, "audiobook_projects"
398
+ )
399
+ generated_files.extend(batch_files)
400
+ audio_chunks = [] # Reset for next batch
401
+
402
+ # Update metadata to completed
403
+ metadata = load_project_metadata(project_dir)
404
+ metadata['status'] = 'completed'
405
+ metadata['completed_at'] = datetime.now().isoformat()
406
+
407
+ metadata_path = os.path.join(project_dir, 'metadata.json')
408
+ with open(metadata_path, 'w', encoding='utf-8') as f:
409
+ json.dump(metadata, f, indent=2)
410
+
411
+ return f"✅ Multi-voice audiobook '{project_name}' created successfully! Generated {len(chunked_segments)} audio segments.", generated_files, project_dir
412
+
413
+ except Exception as e:
414
+ return f"❌ Error creating multi-voice audiobook: {str(e)}", generated_files, project_dir
415
+
416
+
417
+ def cleanup_project_temp_files(project_name: str) -> str:
418
+ """Clean up temporary files for a project.
419
+
420
+ Args:
421
+ project_name: Name of the project
422
+
423
+ Returns:
424
+ Status message
425
+ """
426
+ if not project_name:
427
+ return "❌ No project specified"
428
+
429
+ # Extract actual project name
430
+ actual_name = project_name.split(' (')[0] if ' (' in project_name else project_name
431
+ safe_name = "".join(c for c in actual_name if c.isalnum() or c in (' ', '-', '_')).strip()
432
+ safe_name = safe_name.replace(' ', '_')
433
+
434
+ project_dir = os.path.join("audiobook_projects", safe_name)
435
+
436
+ if not os.path.exists(project_dir):
437
+ return f"❌ Project directory not found: {safe_name}"
438
+
439
+ try:
440
+ temp_files = []
441
+ for file in os.listdir(project_dir):
442
+ if 'temp' in file.lower() or 'trimmed' in file.lower():
443
+ temp_files.append(os.path.join(project_dir, file))
444
+
445
+ for temp_file in temp_files:
446
+ if os.path.exists(temp_file):
447
+ os.remove(temp_file)
448
+
449
+ return f"✅ Cleaned up {len(temp_files)} temporary files for project '{actual_name}'"
450
+
451
+ except Exception as e:
452
+ return f"❌ Error cleaning up project files: {str(e)}"
453
+
454
+
455
+ def auto_clean_project_audio(
456
+ project_name: str,
457
+ silence_threshold: float = -50.0,
458
+ min_silence_duration: float = 0.5
459
+ ) -> str:
460
+ """Automatically clean audio for all chunks in a project.
461
+
462
+ Args:
463
+ project_name: Name of the project
464
+ silence_threshold: Silence threshold in dB
465
+ min_silence_duration: Minimum silence duration to remove
466
+
467
+ Returns:
468
+ Status message
469
+ """
470
+ if not project_name:
471
+ return "❌ No project specified"
472
+
473
+ # Extract actual project name
474
+ actual_name = project_name.split(' (')[0] if ' (' in project_name else project_name
475
+ safe_name = "".join(c for c in actual_name if c.isalnum() or c in (' ', '-', '_')).strip()
476
+ safe_name = safe_name.replace(' ', '_')
477
+
478
+ project_dir = os.path.join("audiobook_projects", safe_name)
479
+
480
+ if not os.path.exists(project_dir):
481
+ return f"❌ Project directory not found: {safe_name}"
482
+
483
+ try:
484
+ # Get all WAV files in the project
485
+ audio_files = [f for f in os.listdir(project_dir)
486
+ if f.endswith('.wav') and not 'cleaned' in f.lower() and not 'temp' in f.lower()]
487
+
488
+ if not audio_files:
489
+ return f"❌ No audio files found in project '{actual_name}'"
490
+
491
+ cleaned_count = 0
492
+ failed_count = 0
493
+ total_time_saved = 0.0
494
+
495
+ for audio_file in audio_files:
496
+ file_path = os.path.join(project_dir, audio_file)
497
+
498
+ # Clean the audio
499
+ status_msg, cleaned_path = auto_remove_silence(
500
+ file_path, silence_threshold, min_silence_duration
501
+ )
502
+
503
+ if "✅" in status_msg:
504
+ cleaned_count += 1
505
+ # Extract time saved from status message
506
+ if "Removed" in status_msg:
507
+ try:
508
+ # Parse "Removed X.XXs" from status message
509
+ import re
510
+ match = re.search(r'Removed (\d+\.?\d*)s', status_msg)
511
+ if match:
512
+ total_time_saved += float(match.group(1))
513
+ except:
514
+ pass
515
+ else:
516
+ failed_count += 1
517
+ print(f"Failed to clean {audio_file}: {status_msg}")
518
+
519
+ if cleaned_count > 0:
520
+ return (
521
+ f"✅ Auto-cleaned {cleaned_count}/{len(audio_files)} audio files for project '{actual_name}'. "
522
+ f"Total silence removed: {total_time_saved:.2f}s. "
523
+ f"Failed: {failed_count}"
524
+ )
525
+ else:
526
+ return f"❌ Failed to clean any audio files for project '{actual_name}'"
527
+
528
+ except Exception as e:
529
+ return f"❌ Error auto-cleaning project audio: {str(e)}"
530
+
531
+
532
+ def analyze_project_audio_quality(project_name: str) -> str:
533
+ """Analyze audio quality for all chunks in a project.
534
+
535
+ Args:
536
+ project_name: Name of the project
537
+
538
+ Returns:
539
+ Analysis results
540
+ """
541
+ if not project_name:
542
+ return "❌ No project specified"
543
+
544
+ # Extract actual project name
545
+ actual_name = project_name.split(' (')[0] if ' (' in project_name else project_name
546
+ safe_name = "".join(c for c in actual_name if c.isalnum() or c in (' ', '-', '_')).strip()
547
+ safe_name = safe_name.replace(' ', '_')
548
+
549
+ project_dir = os.path.join("audiobook_projects", safe_name)
550
+
551
+ if not os.path.exists(project_dir):
552
+ return f"❌ Project directory not found: {safe_name}"
553
+
554
+ try:
555
+ # Get all WAV files in the project
556
+ audio_files = [f for f in os.listdir(project_dir)
557
+ if f.endswith('.wav') and not 'temp' in f.lower()]
558
+
559
+ if not audio_files:
560
+ return f"❌ No audio files found in project '{actual_name}'"
561
+
562
+ total_duration = 0.0
563
+ total_rms = 0.0
564
+ peak_levels = []
565
+ analyzed_count = 0
566
+
567
+ for audio_file in audio_files:
568
+ file_path = os.path.join(project_dir, audio_file)
569
+
570
+ # Analyze the audio
571
+ metrics = analyze_audio_quality(file_path)
572
+
573
+ if 'error' not in metrics:
574
+ total_duration += metrics.get('duration', 0)
575
+ total_rms += metrics.get('rms_level', 0)
576
+ peak_levels.append(metrics.get('peak_level', 0))
577
+ analyzed_count += 1
578
+
579
+ if analyzed_count > 0:
580
+ avg_rms = total_rms / analyzed_count
581
+ max_peak = max(peak_levels) if peak_levels else 0
582
+ avg_peak = sum(peak_levels) / len(peak_levels) if peak_levels else 0
583
+
584
+ # Convert to dB
585
+ avg_rms_db = 20 * np.log10(avg_rms) if avg_rms > 0 else -np.inf
586
+ max_peak_db = 20 * np.log10(max_peak) if max_peak > 0 else -np.inf
587
+ avg_peak_db = 20 * np.log10(avg_peak) if avg_peak > 0 else -np.inf
588
+
589
+ return (
590
+ f"📊 Audio Quality Analysis for '{actual_name}':\n"
591
+ f"• Files analyzed: {analyzed_count}/{len(audio_files)}\n"
592
+ f"• Total duration: {total_duration:.2f} seconds\n"
593
+ f"• Average RMS level: {avg_rms_db:.1f} dB\n"
594
+ f"• Average peak level: {avg_peak_db:.1f} dB\n"
595
+ f"• Maximum peak level: {max_peak_db:.1f} dB\n"
596
+ f"• Recommended: Keep peaks below -3 dB for headroom"
597
+ )
598
+ else:
599
+ return f"❌ Failed to analyze any audio files for project '{actual_name}'"
600
+
601
+ except Exception as e:
602
+ return f"❌ Error analyzing project audio quality: {str(e)}"
603
+
604
+
605
+ def get_project_chunks(project_name: str) -> List[Dict[str, Any]]:
606
+ """Get list of audio chunks for a project.
607
+
608
+ Args:
609
+ project_name: Name of the project
610
+
611
+ Returns:
612
+ List of chunk information dictionaries
613
+ """
614
+ if not project_name or project_name == "No projects found":
615
+ return []
616
+
617
+ # Extract actual project name
618
+ actual_name = project_name.split(' (')[0] if ' (' in project_name else project_name
619
+ safe_name = "".join(c for c in actual_name if c.isalnum() or c in (' ', '-', '_')).strip()
620
+ safe_name = safe_name.replace(' ', '_')
621
+
622
+ project_dir = os.path.join("audiobook_projects", safe_name)
623
+
624
+ if not os.path.exists(project_dir):
625
+ return []
626
+
627
+ try:
628
+ chunks = []
629
+ audio_files = [f for f in os.listdir(project_dir) if f.endswith('.wav') and not 'temp' in f.lower()]
630
+
631
+ # Sort files by chunk number
632
+ def extract_chunk_num_from_filename(filename: str) -> int:
633
+ # Extract number from filename like "project_001.wav"
634
+ parts = filename.replace('.wav', '').split('_')
635
+ for part in reversed(parts):
636
+ if part.isdigit():
637
+ return int(part)
638
+ return 0
639
+
640
+ audio_files.sort(key=extract_chunk_num_from_filename)
641
+
642
+ for i, filename in enumerate(audio_files):
643
+ file_path = os.path.join(project_dir, filename)
644
+ chunk_info = {
645
+ 'chunk_num': i + 1,
646
+ 'filename': filename,
647
+ 'file_path': file_path,
648
+ 'size': os.path.getsize(file_path) if os.path.exists(file_path) else 0
649
+ }
650
+ chunks.append(chunk_info)
651
+
652
+ return chunks
653
+
654
+ except Exception as e:
655
+ print(f"Error getting project chunks: {e}")
656
+ return []
src/audiobook/voice_management.py ADDED
@@ -0,0 +1,332 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Voice management utilities for audiobook generation.
3
+
4
+ Handles voice profile CRUD operations, voice library management, and voice selection.
5
+ """
6
+
7
+ import os
8
+ import json
9
+ import shutil
10
+ from pathlib import Path
11
+ from typing import List, Dict, Tuple, Optional, Any
12
+
13
+
14
+ def ensure_voice_library_exists(voice_library_path: str) -> None:
15
+ """Ensure the voice library directory exists.
16
+
17
+ Args:
18
+ voice_library_path: Path to voice library directory
19
+ """
20
+ os.makedirs(voice_library_path, exist_ok=True)
21
+
22
+
23
+ def get_voice_profiles(voice_library_path: str) -> List[Dict[str, Any]]:
24
+ """Get all voice profiles from the voice library.
25
+
26
+ Args:
27
+ voice_library_path: Path to voice library directory
28
+
29
+ Returns:
30
+ List of voice profile dictionaries
31
+ """
32
+ ensure_voice_library_exists(voice_library_path)
33
+ profiles = []
34
+
35
+ try:
36
+ for item in os.listdir(voice_library_path):
37
+ profile_dir = os.path.join(voice_library_path, item)
38
+ if os.path.isdir(profile_dir):
39
+ config_file = os.path.join(profile_dir, "config.json")
40
+ if os.path.exists(config_file):
41
+ try:
42
+ with open(config_file, 'r', encoding='utf-8') as f:
43
+ profile = json.load(f)
44
+ profile['voice_name'] = item
45
+ profiles.append(profile)
46
+ except Exception as e:
47
+ print(f"Warning: Could not load profile {item}: {e}")
48
+ except Exception as e:
49
+ print(f"Warning: Could not read voice library: {e}")
50
+
51
+ return profiles
52
+
53
+
54
+ def get_voice_choices(voice_library_path: str) -> List[str]:
55
+ """Get list of available voice names for UI dropdowns.
56
+
57
+ Args:
58
+ voice_library_path: Path to voice library directory
59
+
60
+ Returns:
61
+ List of voice names
62
+ """
63
+ profiles = get_voice_profiles(voice_library_path)
64
+ return [profile['voice_name'] for profile in profiles]
65
+
66
+
67
+ def get_audiobook_voice_choices(voice_library_path: str) -> List[str]:
68
+ """Get voice choices formatted for audiobook interface.
69
+
70
+ Args:
71
+ voice_library_path: Path to voice library directory
72
+
73
+ Returns:
74
+ List of voice names with display formatting
75
+ """
76
+ choices = get_voice_choices(voice_library_path)
77
+ if not choices:
78
+ return ["No voices available - Please add voices first"]
79
+ return choices
80
+
81
+
82
+ def get_voice_config(voice_library_path: str, voice_name: str) -> Dict[str, Any]:
83
+ """Get configuration for a specific voice.
84
+
85
+ Args:
86
+ voice_library_path: Path to voice library directory
87
+ voice_name: Name of the voice
88
+
89
+ Returns:
90
+ Voice configuration dictionary
91
+ """
92
+ profile_dir = os.path.join(voice_library_path, voice_name)
93
+ config_file = os.path.join(profile_dir, "config.json")
94
+
95
+ default_config = {
96
+ 'voice_name': voice_name,
97
+ 'display_name': voice_name,
98
+ 'description': '',
99
+ 'exaggeration': 1.0,
100
+ 'cfg_weight': 1.0,
101
+ 'temperature': 0.7
102
+ }
103
+
104
+ if os.path.exists(config_file):
105
+ try:
106
+ with open(config_file, 'r', encoding='utf-8') as f:
107
+ config = json.load(f)
108
+ return {**default_config, **config}
109
+ except Exception as e:
110
+ print(f"Warning: Could not load config for {voice_name}: {e}")
111
+
112
+ return default_config
113
+
114
+
115
+ def load_voice_for_tts(voice_library_path: str, voice_name: str) -> Tuple[Optional[str], Dict[str, Any]]:
116
+ """Load voice audio file and configuration for TTS generation.
117
+
118
+ Args:
119
+ voice_library_path: Path to voice library directory
120
+ voice_name: Name of the voice to load
121
+
122
+ Returns:
123
+ tuple: (audio_file_path, voice_config)
124
+ """
125
+ if not voice_name:
126
+ return None, {}
127
+
128
+ profile_dir = os.path.join(voice_library_path, voice_name)
129
+ if not os.path.exists(profile_dir):
130
+ return None, {}
131
+
132
+ # Look for audio file
133
+ audio_file = None
134
+ for ext in ['.wav', '.mp3', '.flac']:
135
+ potential_file = os.path.join(profile_dir, f"voice{ext}")
136
+ if os.path.exists(potential_file):
137
+ audio_file = potential_file
138
+ break
139
+
140
+ # Get voice configuration
141
+ config = get_voice_config(voice_library_path, voice_name)
142
+
143
+ return audio_file, config
144
+
145
+
146
+ def save_voice_profile(
147
+ voice_library_path: str,
148
+ voice_name: str,
149
+ display_name: str,
150
+ description: str,
151
+ audio_file: Any,
152
+ exaggeration: float,
153
+ cfg_weight: float,
154
+ temperature: float
155
+ ) -> str:
156
+ """Save a new voice profile to the library.
157
+
158
+ Args:
159
+ voice_library_path: Path to voice library directory
160
+ voice_name: Internal voice name (used for directory)
161
+ display_name: Display name for UI
162
+ description: Voice description
163
+ audio_file: Audio file data from Gradio
164
+ exaggeration: Exaggeration parameter
165
+ cfg_weight: CFG weight parameter
166
+ temperature: Temperature parameter
167
+
168
+ Returns:
169
+ Status message
170
+ """
171
+ if not voice_name.strip():
172
+ return "❌ Voice name cannot be empty"
173
+
174
+ # Sanitize voice name for directory
175
+ safe_voice_name = "".join(c for c in voice_name if c.isalnum() or c in (' ', '-', '_')).strip()
176
+ safe_voice_name = safe_voice_name.replace(' ', '_')
177
+
178
+ if not safe_voice_name:
179
+ return "❌ Voice name contains only invalid characters"
180
+
181
+ ensure_voice_library_exists(voice_library_path)
182
+
183
+ profile_dir = os.path.join(voice_library_path, safe_voice_name)
184
+ os.makedirs(profile_dir, exist_ok=True)
185
+
186
+ try:
187
+ # Save audio file
188
+ if audio_file is not None:
189
+ audio_path = os.path.join(profile_dir, "voice.wav")
190
+ if isinstance(audio_file, str):
191
+ # File path provided
192
+ shutil.copy2(audio_file, audio_path)
193
+ elif hasattr(audio_file, 'name'):
194
+ # Gradio file object
195
+ shutil.copy2(audio_file.name, audio_path)
196
+ else:
197
+ return "❌ Invalid audio file format"
198
+
199
+ # Save configuration
200
+ config = {
201
+ 'voice_name': safe_voice_name,
202
+ 'display_name': display_name or safe_voice_name,
203
+ 'description': description or '',
204
+ 'exaggeration': float(exaggeration),
205
+ 'cfg_weight': float(cfg_weight),
206
+ 'temperature': float(temperature)
207
+ }
208
+
209
+ config_path = os.path.join(profile_dir, "config.json")
210
+ with open(config_path, 'w', encoding='utf-8') as f:
211
+ json.dump(config, f, indent=2)
212
+
213
+ return f"✅ Voice profile '{display_name}' saved successfully"
214
+
215
+ except Exception as e:
216
+ return f"❌ Error saving voice profile: {str(e)}"
217
+
218
+
219
+ def load_voice_profile(voice_library_path: str, voice_name: str) -> Tuple[str, str, str, float, float, float]:
220
+ """Load voice profile data for editing.
221
+
222
+ Args:
223
+ voice_library_path: Path to voice library directory
224
+ voice_name: Name of voice to load
225
+
226
+ Returns:
227
+ tuple: (display_name, description, audio_path, exaggeration, cfg_weight, temperature)
228
+ """
229
+ if not voice_name:
230
+ return "", "", "", 1.0, 1.0, 0.7
231
+
232
+ config = get_voice_config(voice_library_path, voice_name)
233
+ audio_file, _ = load_voice_for_tts(voice_library_path, voice_name)
234
+
235
+ return (
236
+ config.get('display_name', voice_name),
237
+ config.get('description', ''),
238
+ audio_file or "",
239
+ config.get('exaggeration', 1.0),
240
+ config.get('cfg_weight', 1.0),
241
+ config.get('temperature', 0.7)
242
+ )
243
+
244
+
245
+ def delete_voice_profile(voice_library_path: str, voice_name: str) -> str:
246
+ """Delete a voice profile from the library.
247
+
248
+ Args:
249
+ voice_library_path: Path to voice library directory
250
+ voice_name: Name of voice to delete
251
+
252
+ Returns:
253
+ Status message
254
+ """
255
+ if not voice_name:
256
+ return "❌ No voice selected for deletion"
257
+
258
+ profile_dir = os.path.join(voice_library_path, voice_name)
259
+
260
+ if not os.path.exists(profile_dir):
261
+ return f"❌ Voice profile '{voice_name}' not found"
262
+
263
+ try:
264
+ shutil.rmtree(profile_dir)
265
+ return f"✅ Voice profile '{voice_name}' deleted successfully"
266
+ except Exception as e:
267
+ return f"❌ Error deleting voice profile: {str(e)}"
268
+
269
+
270
+ def refresh_voice_list(voice_library_path: str) -> List[str]:
271
+ """Refresh and return the current voice list.
272
+
273
+ Args:
274
+ voice_library_path: Path to voice library directory
275
+
276
+ Returns:
277
+ Updated list of voice names
278
+ """
279
+ return get_voice_choices(voice_library_path)
280
+
281
+
282
+ def refresh_voice_choices(voice_library_path: str) -> List[str]:
283
+ """Refresh voice choices for regular dropdowns.
284
+
285
+ Args:
286
+ voice_library_path: Path to voice library directory
287
+
288
+ Returns:
289
+ Updated list of voice choices
290
+ """
291
+ return get_voice_choices(voice_library_path)
292
+
293
+
294
+ def refresh_audiobook_voice_choices(voice_library_path: str) -> List[str]:
295
+ """Refresh voice choices for audiobook interface.
296
+
297
+ Args:
298
+ voice_library_path: Path to voice library directory
299
+
300
+ Returns:
301
+ Updated list of audiobook voice choices
302
+ """
303
+ return get_audiobook_voice_choices(voice_library_path)
304
+
305
+
306
+ def create_assignment_interface_with_dropdowns(
307
+ voice_counts: Dict[str, int],
308
+ voice_library_path: str
309
+ ) -> List[Any]:
310
+ """Create voice assignment interface components.
311
+
312
+ Args:
313
+ voice_counts: Dictionary mapping character names to word counts
314
+ voice_library_path: Path to voice library directory
315
+
316
+ Returns:
317
+ List of interface components
318
+ """
319
+ # This would typically return Gradio components
320
+ # For now, return character names and available voices
321
+ characters = list(voice_counts.keys())
322
+ available_voices = get_voice_choices(voice_library_path)
323
+
324
+ # Return data that can be used to create dropdowns
325
+ return [
326
+ {
327
+ 'character': char,
328
+ 'word_count': voice_counts[char],
329
+ 'available_voices': available_voices
330
+ }
331
+ for char in characters[:6] # Limit to 6 characters
332
+ ]
src/chatterbox/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ from .tts import ChatterboxTTS
2
+ from .vc import ChatterboxVC
src/chatterbox/models/s3gen/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ from .s3gen import S3Token2Wav as S3Gen
2
+ from .const import S3GEN_SR
src/chatterbox/models/s3gen/const.py ADDED
@@ -0,0 +1 @@
 
 
1
+ S3GEN_SR = 24000
src/chatterbox/models/s3gen/decoder.py ADDED
@@ -0,0 +1,317 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import torch
15
+ import torch.nn as nn
16
+ import torch.nn.functional as F
17
+ from einops import pack, rearrange, repeat
18
+
19
+ from .utils.mask import add_optional_chunk_mask
20
+ from .matcha.decoder import SinusoidalPosEmb, Block1D, ResnetBlock1D, Downsample1D, \
21
+ TimestepEmbedding, Upsample1D
22
+ from .matcha.transformer import BasicTransformerBlock
23
+
24
+
25
+ def mask_to_bias(mask: torch.Tensor, dtype: torch.dtype) -> torch.Tensor:
26
+ assert mask.dtype == torch.bool
27
+ assert dtype in [torch.float32, torch.bfloat16, torch.float16]
28
+ mask = mask.to(dtype)
29
+ # attention mask bias
30
+ # NOTE(Mddct): torch.finfo jit issues
31
+ # chunk_masks = (1.0 - chunk_masks) * torch.finfo(dtype).min
32
+ mask = (1.0 - mask) * -1.0e+10
33
+ return mask
34
+
35
+
36
+
37
+ class Transpose(torch.nn.Module):
38
+ def __init__(self, dim0: int, dim1: int):
39
+ super().__init__()
40
+ self.dim0 = dim0
41
+ self.dim1 = dim1
42
+
43
+ def forward(self, x: torch.Tensor):
44
+ x = torch.transpose(x, self.dim0, self.dim1)
45
+ return x
46
+
47
+
48
+ class CausalBlock1D(Block1D):
49
+ def __init__(self, dim: int, dim_out: int):
50
+ super(CausalBlock1D, self).__init__(dim, dim_out)
51
+ self.block = torch.nn.Sequential(
52
+ CausalConv1d(dim, dim_out, 3),
53
+ Transpose(1, 2),
54
+ nn.LayerNorm(dim_out),
55
+ Transpose(1, 2),
56
+ nn.Mish(),
57
+ )
58
+
59
+ def forward(self, x: torch.Tensor, mask: torch.Tensor):
60
+ output = self.block(x * mask)
61
+ return output * mask
62
+
63
+
64
+ class CausalResnetBlock1D(ResnetBlock1D):
65
+ def __init__(self, dim: int, dim_out: int, time_emb_dim: int, groups: int = 8):
66
+ super(CausalResnetBlock1D, self).__init__(dim, dim_out, time_emb_dim, groups)
67
+ self.block1 = CausalBlock1D(dim, dim_out)
68
+ self.block2 = CausalBlock1D(dim_out, dim_out)
69
+
70
+
71
+ class CausalConv1d(torch.nn.Conv1d):
72
+ def __init__(
73
+ self,
74
+ in_channels: int,
75
+ out_channels: int,
76
+ kernel_size: int,
77
+ stride: int = 1,
78
+ dilation: int = 1,
79
+ groups: int = 1,
80
+ bias: bool = True,
81
+ padding_mode: str = 'zeros',
82
+ device=None,
83
+ dtype=None
84
+ ) -> None:
85
+ super(CausalConv1d, self).__init__(in_channels, out_channels,
86
+ kernel_size, stride,
87
+ padding=0, dilation=dilation,
88
+ groups=groups, bias=bias,
89
+ padding_mode=padding_mode,
90
+ device=device, dtype=dtype)
91
+ assert stride == 1
92
+ self.causal_padding = (kernel_size - 1, 0)
93
+
94
+ def forward(self, x: torch.Tensor):
95
+ x = F.pad(x, self.causal_padding)
96
+ x = super(CausalConv1d, self).forward(x)
97
+ return x
98
+
99
+
100
+ class ConditionalDecoder(nn.Module):
101
+ def __init__(
102
+ self,
103
+ in_channels=320,
104
+ out_channels=80,
105
+ causal=True,
106
+ channels=[256],
107
+ dropout=0.0,
108
+ attention_head_dim=64,
109
+ n_blocks=4,
110
+ num_mid_blocks=12,
111
+ num_heads=8,
112
+ act_fn="gelu",
113
+ ):
114
+ """
115
+ This decoder requires an input with the same shape of the target. So, if your text content
116
+ is shorter or longer than the outputs, please re-sampling it before feeding to the decoder.
117
+ """
118
+ super().__init__()
119
+ channels = tuple(channels)
120
+ self.in_channels = in_channels
121
+ self.out_channels = out_channels
122
+ self.causal = causal
123
+ self.time_embeddings = SinusoidalPosEmb(in_channels)
124
+ time_embed_dim = channels[0] * 4
125
+ self.time_mlp = TimestepEmbedding(
126
+ in_channels=in_channels,
127
+ time_embed_dim=time_embed_dim,
128
+ act_fn="silu",
129
+ )
130
+ self.down_blocks = nn.ModuleList([])
131
+ self.mid_blocks = nn.ModuleList([])
132
+ self.up_blocks = nn.ModuleList([])
133
+
134
+ # NOTE jrm: `static_chunk_size` is missing?
135
+ self.static_chunk_size = 0
136
+
137
+ output_channel = in_channels
138
+ for i in range(len(channels)): # pylint: disable=consider-using-enumerate
139
+ input_channel = output_channel
140
+ output_channel = channels[i]
141
+ is_last = i == len(channels) - 1
142
+ resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) if self.causal else \
143
+ ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
144
+ transformer_blocks = nn.ModuleList(
145
+ [
146
+ BasicTransformerBlock(
147
+ dim=output_channel,
148
+ num_attention_heads=num_heads,
149
+ attention_head_dim=attention_head_dim,
150
+ dropout=dropout,
151
+ activation_fn=act_fn,
152
+ )
153
+ for _ in range(n_blocks)
154
+ ]
155
+ )
156
+ downsample = (
157
+ Downsample1D(output_channel) if not is_last else
158
+ CausalConv1d(output_channel, output_channel, 3) if self.causal else nn.Conv1d(output_channel, output_channel, 3, padding=1)
159
+ )
160
+ self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
161
+
162
+ for _ in range(num_mid_blocks):
163
+ input_channel = channels[-1]
164
+ out_channels = channels[-1]
165
+ resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) if self.causal else \
166
+ ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
167
+
168
+ transformer_blocks = nn.ModuleList(
169
+ [
170
+ BasicTransformerBlock(
171
+ dim=output_channel,
172
+ num_attention_heads=num_heads,
173
+ attention_head_dim=attention_head_dim,
174
+ dropout=dropout,
175
+ activation_fn=act_fn,
176
+ )
177
+ for _ in range(n_blocks)
178
+ ]
179
+ )
180
+
181
+ self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks]))
182
+
183
+ channels = channels[::-1] + (channels[0],)
184
+ for i in range(len(channels) - 1):
185
+ input_channel = channels[i] * 2
186
+ output_channel = channels[i + 1]
187
+ is_last = i == len(channels) - 2
188
+ resnet = CausalResnetBlock1D(
189
+ dim=input_channel,
190
+ dim_out=output_channel,
191
+ time_emb_dim=time_embed_dim,
192
+ ) if self.causal else ResnetBlock1D(
193
+ dim=input_channel,
194
+ dim_out=output_channel,
195
+ time_emb_dim=time_embed_dim,
196
+ )
197
+ transformer_blocks = nn.ModuleList(
198
+ [
199
+ BasicTransformerBlock(
200
+ dim=output_channel,
201
+ num_attention_heads=num_heads,
202
+ attention_head_dim=attention_head_dim,
203
+ dropout=dropout,
204
+ activation_fn=act_fn,
205
+ )
206
+ for _ in range(n_blocks)
207
+ ]
208
+ )
209
+ upsample = (
210
+ Upsample1D(output_channel, use_conv_transpose=True)
211
+ if not is_last
212
+ else CausalConv1d(output_channel, output_channel, 3) if self.causal else nn.Conv1d(output_channel, output_channel, 3, padding=1)
213
+ )
214
+ self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample]))
215
+ self.final_block = CausalBlock1D(channels[-1], channels[-1]) if self.causal else Block1D(channels[-1], channels[-1])
216
+ self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1)
217
+ self.initialize_weights()
218
+
219
+ def initialize_weights(self):
220
+ for m in self.modules():
221
+ if isinstance(m, nn.Conv1d):
222
+ nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
223
+ if m.bias is not None:
224
+ nn.init.constant_(m.bias, 0)
225
+ elif isinstance(m, nn.GroupNorm):
226
+ nn.init.constant_(m.weight, 1)
227
+ nn.init.constant_(m.bias, 0)
228
+ elif isinstance(m, nn.Linear):
229
+ nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
230
+ if m.bias is not None:
231
+ nn.init.constant_(m.bias, 0)
232
+
233
+ def forward(self, x, mask, mu, t, spks=None, cond=None):
234
+ """Forward pass of the UNet1DConditional model.
235
+
236
+ Args:
237
+ x (torch.Tensor): shape (batch_size, in_channels, time)
238
+ mask (_type_): shape (batch_size, 1, time)
239
+ t (_type_): shape (batch_size)
240
+ spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None.
241
+ cond (_type_, optional): placeholder for future use. Defaults to None.
242
+
243
+ Raises:
244
+ ValueError: _description_
245
+ ValueError: _description_
246
+
247
+ Returns:
248
+ _type_: _description_
249
+ """
250
+
251
+ t = self.time_embeddings(t).to(t.dtype)
252
+ t = self.time_mlp(t)
253
+
254
+ x = pack([x, mu], "b * t")[0]
255
+
256
+ if spks is not None:
257
+ spks = repeat(spks, "b c -> b c t", t=x.shape[-1])
258
+ x = pack([x, spks], "b * t")[0]
259
+ if cond is not None:
260
+ x = pack([x, cond], "b * t")[0]
261
+
262
+ hiddens = []
263
+ masks = [mask]
264
+ for resnet, transformer_blocks, downsample in self.down_blocks:
265
+ mask_down = masks[-1]
266
+ x = resnet(x, mask_down, t)
267
+ x = rearrange(x, "b c t -> b t c").contiguous()
268
+ # attn_mask = torch.matmul(mask_down.transpose(1, 2).contiguous(), mask_down)
269
+ attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, self.static_chunk_size, -1)
270
+ attn_mask = mask_to_bias(attn_mask == 1, x.dtype)
271
+ for transformer_block in transformer_blocks:
272
+ x = transformer_block(
273
+ hidden_states=x,
274
+ attention_mask=attn_mask,
275
+ timestep=t,
276
+ )
277
+ x = rearrange(x, "b t c -> b c t").contiguous()
278
+ hiddens.append(x) # Save hidden states for skip connections
279
+ x = downsample(x * mask_down)
280
+ masks.append(mask_down[:, :, ::2])
281
+ masks = masks[:-1]
282
+ mask_mid = masks[-1]
283
+
284
+ for resnet, transformer_blocks in self.mid_blocks:
285
+ x = resnet(x, mask_mid, t)
286
+ x = rearrange(x, "b c t -> b t c").contiguous()
287
+ # attn_mask = torch.matmul(mask_mid.transpose(1, 2).contiguous(), mask_mid)
288
+ attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, self.static_chunk_size, -1)
289
+ attn_mask = mask_to_bias(attn_mask == 1, x.dtype)
290
+ for transformer_block in transformer_blocks:
291
+ x = transformer_block(
292
+ hidden_states=x,
293
+ attention_mask=attn_mask,
294
+ timestep=t,
295
+ )
296
+ x = rearrange(x, "b t c -> b c t").contiguous()
297
+
298
+ for resnet, transformer_blocks, upsample in self.up_blocks:
299
+ mask_up = masks.pop()
300
+ skip = hiddens.pop()
301
+ x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0]
302
+ x = resnet(x, mask_up, t)
303
+ x = rearrange(x, "b c t -> b t c").contiguous()
304
+ # attn_mask = torch.matmul(mask_up.transpose(1, 2).contiguous(), mask_up)
305
+ attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, self.static_chunk_size, -1)
306
+ attn_mask = mask_to_bias(attn_mask == 1, x.dtype)
307
+ for transformer_block in transformer_blocks:
308
+ x = transformer_block(
309
+ hidden_states=x,
310
+ attention_mask=attn_mask,
311
+ timestep=t,
312
+ )
313
+ x = rearrange(x, "b t c -> b c t").contiguous()
314
+ x = upsample(x * mask_up)
315
+ x = self.final_block(x, mask_up)
316
+ output = self.final_proj(x * mask_up)
317
+ return output * mask
src/chatterbox/models/s3gen/f0_predictor.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Kai Hu)
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import torch
15
+ import torch.nn as nn
16
+ from torch.nn.utils.parametrizations import weight_norm
17
+
18
+
19
+ class ConvRNNF0Predictor(nn.Module):
20
+ def __init__(self,
21
+ num_class: int = 1,
22
+ in_channels: int = 80,
23
+ cond_channels: int = 512
24
+ ):
25
+ super().__init__()
26
+
27
+ self.num_class = num_class
28
+ self.condnet = nn.Sequential(
29
+ weight_norm(
30
+ nn.Conv1d(in_channels, cond_channels, kernel_size=3, padding=1)
31
+ ),
32
+ nn.ELU(),
33
+ weight_norm(
34
+ nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
35
+ ),
36
+ nn.ELU(),
37
+ weight_norm(
38
+ nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
39
+ ),
40
+ nn.ELU(),
41
+ weight_norm(
42
+ nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
43
+ ),
44
+ nn.ELU(),
45
+ weight_norm(
46
+ nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
47
+ ),
48
+ nn.ELU(),
49
+ )
50
+ self.classifier = nn.Linear(in_features=cond_channels, out_features=self.num_class)
51
+
52
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
53
+ x = self.condnet(x)
54
+ x = x.transpose(1, 2)
55
+ return torch.abs(self.classifier(x).squeeze(-1))
src/chatterbox/models/s3gen/flow.py ADDED
@@ -0,0 +1,242 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import logging
15
+ import random
16
+ from typing import Dict, Optional
17
+ import torch
18
+ import torch.nn as nn
19
+ from torch.nn import functional as F
20
+ from omegaconf import DictConfig
21
+ from .utils.mask import make_pad_mask
22
+
23
+
24
+ class MaskedDiffWithXvec(torch.nn.Module):
25
+ def __init__(self,
26
+ input_size: int = 512,
27
+ output_size: int = 80,
28
+ spk_embed_dim: int = 192,
29
+ output_type: str = "mel",
30
+ vocab_size: int = 4096,
31
+ input_frame_rate: int = 50,
32
+ only_mask_loss: bool = True,
33
+ encoder: torch.nn.Module = None,
34
+ length_regulator: torch.nn.Module = None,
35
+ decoder: torch.nn.Module = None,
36
+ decoder_conf: Dict = {'in_channels': 240, 'out_channel': 80, 'spk_emb_dim': 80, 'n_spks': 1,
37
+ 'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine',
38
+ 'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}),
39
+ 'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64,
40
+ 'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}},
41
+ mel_feat_conf: Dict = {'n_fft': 1024, 'num_mels': 80, 'sampling_rate': 22050,
42
+ 'hop_size': 256, 'win_size': 1024, 'fmin': 0, 'fmax': 8000}):
43
+ super().__init__()
44
+ self.input_size = input_size
45
+ self.output_size = output_size
46
+ self.decoder_conf = decoder_conf
47
+ self.mel_feat_conf = mel_feat_conf
48
+ self.vocab_size = vocab_size
49
+ self.output_type = output_type
50
+ self.input_frame_rate = input_frame_rate
51
+ logging.info(f"input frame rate={self.input_frame_rate}")
52
+ self.input_embedding = nn.Embedding(vocab_size, input_size)
53
+ self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, output_size)
54
+ self.encoder = encoder
55
+ self.encoder_proj = torch.nn.Linear(self.encoder.output_size(), output_size)
56
+ self.decoder = decoder
57
+ self.length_regulator = length_regulator
58
+ self.only_mask_loss = only_mask_loss
59
+
60
+ def forward(
61
+ self,
62
+ batch: dict,
63
+ device: torch.device,
64
+ ) -> Dict[str, Optional[torch.Tensor]]:
65
+ token = batch['speech_token'].to(device)
66
+ token_len = batch['speech_token_len'].to(device)
67
+ feat = batch['speech_feat'].to(device)
68
+ feat_len = batch['speech_feat_len'].to(device)
69
+ embedding = batch['embedding'].to(device)
70
+
71
+ # xvec projection
72
+ embedding = F.normalize(embedding, dim=1)
73
+ embedding = self.spk_embed_affine_layer(embedding)
74
+
75
+ # concat text and prompt_text
76
+ mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(device)
77
+ token = self.input_embedding(torch.clamp(token, min=0)) * mask
78
+
79
+ # text encode
80
+ h, h_lengths = self.encoder(token, token_len)
81
+ h = self.encoder_proj(h)
82
+ h, h_lengths = self.length_regulator(h, feat_len)
83
+
84
+ # get conditions
85
+ conds = torch.zeros(feat.shape, device=token.device)
86
+ for i, j in enumerate(feat_len):
87
+ if random.random() < 0.5:
88
+ continue
89
+ index = random.randint(0, int(0.3 * j))
90
+ conds[i, :index] = feat[i, :index]
91
+ conds = conds.transpose(1, 2)
92
+
93
+ mask = (~make_pad_mask(feat_len)).to(h)
94
+ feat = F.interpolate(feat.unsqueeze(dim=1), size=h.shape[1:], mode="nearest").squeeze(dim=1)
95
+ loss, _ = self.decoder.compute_loss(
96
+ feat.transpose(1, 2).contiguous(),
97
+ mask.unsqueeze(1),
98
+ h.transpose(1, 2).contiguous(),
99
+ embedding,
100
+ cond=conds
101
+ )
102
+ return {'loss': loss}
103
+
104
+ @torch.inference_mode()
105
+ def inference(self,
106
+ token,
107
+ token_len,
108
+ prompt_token,
109
+ prompt_token_len,
110
+ prompt_feat,
111
+ prompt_feat_len,
112
+ embedding,
113
+ flow_cache):
114
+ if self.fp16 is True:
115
+ prompt_feat = prompt_feat.half()
116
+ embedding = embedding.half()
117
+
118
+ assert token.shape[0] == 1
119
+ # xvec projection
120
+ embedding = F.normalize(embedding, dim=1)
121
+ embedding = self.spk_embed_affine_layer(embedding)
122
+
123
+ # concat text and prompt_text
124
+ token_len1, token_len2 = prompt_token.shape[1], token.shape[1]
125
+ token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
126
+ mask = (~make_pad_mask(token_len)).unsqueeze(-1).to(embedding)
127
+ token = self.input_embedding(torch.clamp(token, min=0)) * mask
128
+
129
+ # text encode
130
+ h, h_lengths = self.encoder(token, token_len)
131
+ h = self.encoder_proj(h)
132
+ mel_len1, mel_len2 = prompt_feat.shape[1], int(token_len2 / self.input_frame_rate * 22050 / 256)
133
+ h, h_lengths = self.length_regulator.inference(h[:, :token_len1], h[:, token_len1:], mel_len1, mel_len2, self.input_frame_rate)
134
+
135
+ # get conditions
136
+ conds = torch.zeros([1, mel_len1 + mel_len2, self.output_size], device=token.device).to(h.dtype)
137
+ conds[:, :mel_len1] = prompt_feat
138
+ conds = conds.transpose(1, 2)
139
+
140
+ mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h)
141
+ feat, flow_cache = self.decoder(
142
+ mu=h.transpose(1, 2).contiguous(),
143
+ mask=mask.unsqueeze(1),
144
+ spks=embedding,
145
+ cond=conds,
146
+ n_timesteps=10,
147
+ prompt_len=mel_len1,
148
+ flow_cache=flow_cache
149
+ )
150
+ feat = feat[:, :, mel_len1:]
151
+ assert feat.shape[2] == mel_len2
152
+ return feat.float(), flow_cache
153
+
154
+
155
+ class CausalMaskedDiffWithXvec(torch.nn.Module):
156
+ def __init__(self,
157
+ input_size: int = 512,
158
+ output_size: int = 80,
159
+ spk_embed_dim: int = 192,
160
+ output_type: str = "mel",
161
+ vocab_size: int = 6561,
162
+ input_frame_rate: int = 25,
163
+ only_mask_loss: bool = True,
164
+ token_mel_ratio: int = 2,
165
+ pre_lookahead_len: int = 3,
166
+ encoder: torch.nn.Module = None,
167
+ decoder: torch.nn.Module = None,
168
+ decoder_conf: Dict = {'in_channels': 240, 'out_channel': 80, 'spk_emb_dim': 80, 'n_spks': 1,
169
+ 'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine',
170
+ 'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}),
171
+ 'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64,
172
+ 'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}},
173
+ mel_feat_conf: Dict = {'n_fft': 1024, 'num_mels': 80, 'sampling_rate': 22050,
174
+ 'hop_size': 256, 'win_size': 1024, 'fmin': 0, 'fmax': 8000}):
175
+ super().__init__()
176
+ self.input_size = input_size
177
+ self.output_size = output_size
178
+ self.decoder_conf = decoder_conf
179
+ self.mel_feat_conf = mel_feat_conf
180
+ self.vocab_size = vocab_size
181
+ self.output_type = output_type
182
+ self.input_frame_rate = input_frame_rate
183
+ logging.info(f"input frame rate={self.input_frame_rate}")
184
+ self.input_embedding = nn.Embedding(vocab_size, input_size)
185
+ self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, output_size)
186
+ self.encoder = encoder
187
+ self.encoder_proj = torch.nn.Linear(self.encoder.output_size(), output_size)
188
+ self.decoder = decoder
189
+ self.only_mask_loss = only_mask_loss
190
+ self.token_mel_ratio = token_mel_ratio
191
+ self.pre_lookahead_len = pre_lookahead_len
192
+
193
+ # FIXME: this was missing - just putting it in as false
194
+ self.fp16 = False
195
+
196
+ @torch.inference_mode()
197
+ def inference(self,
198
+ token,
199
+ token_len,
200
+ prompt_token,
201
+ prompt_token_len,
202
+ prompt_feat,
203
+ prompt_feat_len,
204
+ embedding,
205
+ finalize):
206
+ if self.fp16 is True:
207
+ prompt_feat = prompt_feat.half()
208
+ embedding = embedding.half()
209
+
210
+ assert token.shape[0] == 1
211
+ # xvec projection
212
+ embedding = F.normalize(embedding, dim=1)
213
+ embedding = self.spk_embed_affine_layer(embedding)
214
+
215
+ # concat text and prompt_text
216
+ token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
217
+ mask = (~make_pad_mask(token_len)).unsqueeze(-1).to(embedding)
218
+ token = self.input_embedding(torch.clamp(token, min=0)) * mask
219
+
220
+ # text encode
221
+ h, h_lengths = self.encoder(token, token_len)
222
+ if finalize is False:
223
+ h = h[:, :-self.pre_lookahead_len * self.token_mel_ratio]
224
+ mel_len1, mel_len2 = prompt_feat.shape[1], h.shape[1] - prompt_feat.shape[1]
225
+ h = self.encoder_proj(h)
226
+
227
+ # get conditions
228
+ conds = torch.zeros([1, mel_len1 + mel_len2, self.output_size], device=token.device).to(h.dtype)
229
+ conds[:, :mel_len1] = prompt_feat
230
+ conds = conds.transpose(1, 2)
231
+
232
+ mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h)
233
+ feat, _ = self.decoder(
234
+ mu=h.transpose(1, 2).contiguous(),
235
+ mask=mask.unsqueeze(1),
236
+ spks=embedding,
237
+ cond=conds,
238
+ n_timesteps=10
239
+ )
240
+ feat = feat[:, :, mel_len1:]
241
+ assert feat.shape[2] == mel_len2
242
+ return feat.float(), None # NOTE jrm: why are they returning None here?
src/chatterbox/models/s3gen/flow_matching.py ADDED
@@ -0,0 +1,228 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import threading
15
+ import torch
16
+ import torch.nn.functional as F
17
+ from .matcha.flow_matching import BASECFM
18
+ from omegaconf import OmegaConf
19
+
20
+
21
+ CFM_PARAMS = OmegaConf.create({
22
+ "sigma_min": 1e-06,
23
+ "solver": "euler",
24
+ "t_scheduler": "cosine",
25
+ "training_cfg_rate": 0.2,
26
+ "inference_cfg_rate": 0.7,
27
+ "reg_loss_type": "l1"
28
+ })
29
+
30
+
31
+ class ConditionalCFM(BASECFM):
32
+ def __init__(self, in_channels, cfm_params, n_spks=1, spk_emb_dim=64, estimator: torch.nn.Module = None):
33
+ super().__init__(
34
+ n_feats=in_channels,
35
+ cfm_params=cfm_params,
36
+ n_spks=n_spks,
37
+ spk_emb_dim=spk_emb_dim,
38
+ )
39
+ self.t_scheduler = cfm_params.t_scheduler
40
+ self.training_cfg_rate = cfm_params.training_cfg_rate
41
+ self.inference_cfg_rate = cfm_params.inference_cfg_rate
42
+ in_channels = in_channels + (spk_emb_dim if n_spks > 0 else 0)
43
+ # Just change the architecture of the estimator here
44
+ self.estimator = estimator
45
+ self.lock = threading.Lock()
46
+
47
+ @torch.inference_mode()
48
+ def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None, prompt_len=0, flow_cache=torch.zeros(1, 80, 0, 2)):
49
+ """Forward diffusion
50
+
51
+ Args:
52
+ mu (torch.Tensor): output of encoder
53
+ shape: (batch_size, n_feats, mel_timesteps)
54
+ mask (torch.Tensor): output_mask
55
+ shape: (batch_size, 1, mel_timesteps)
56
+ n_timesteps (int): number of diffusion steps
57
+ temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
58
+ spks (torch.Tensor, optional): speaker ids. Defaults to None.
59
+ shape: (batch_size, spk_emb_dim)
60
+ cond: Not used but kept for future purposes
61
+
62
+ Returns:
63
+ sample: generated mel-spectrogram
64
+ shape: (batch_size, n_feats, mel_timesteps)
65
+ """
66
+
67
+ z = torch.randn_like(mu).to(mu.device).to(mu.dtype) * temperature
68
+ cache_size = flow_cache.shape[2]
69
+ # fix prompt and overlap part mu and z
70
+ if cache_size != 0:
71
+ z[:, :, :cache_size] = flow_cache[:, :, :, 0]
72
+ mu[:, :, :cache_size] = flow_cache[:, :, :, 1]
73
+ z_cache = torch.concat([z[:, :, :prompt_len], z[:, :, -34:]], dim=2)
74
+ mu_cache = torch.concat([mu[:, :, :prompt_len], mu[:, :, -34:]], dim=2)
75
+ flow_cache = torch.stack([z_cache, mu_cache], dim=-1)
76
+
77
+ t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
78
+ if self.t_scheduler == 'cosine':
79
+ t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
80
+ return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), flow_cache
81
+
82
+ def solve_euler(self, x, t_span, mu, mask, spks, cond):
83
+ """
84
+ Fixed euler solver for ODEs.
85
+ Args:
86
+ x (torch.Tensor): random noise
87
+ t_span (torch.Tensor): n_timesteps interpolated
88
+ shape: (n_timesteps + 1,)
89
+ mu (torch.Tensor): output of encoder
90
+ shape: (batch_size, n_feats, mel_timesteps)
91
+ mask (torch.Tensor): output_mask
92
+ shape: (batch_size, 1, mel_timesteps)
93
+ spks (torch.Tensor, optional): speaker ids. Defaults to None.
94
+ shape: (batch_size, spk_emb_dim)
95
+ cond: Not used but kept for future purposes
96
+ """
97
+ t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
98
+ t = t.unsqueeze(dim=0)
99
+
100
+ # I am storing this because I can later plot it by putting a debugger here and saving it to a file
101
+ # Or in future might add like a return_all_steps flag
102
+ sol = []
103
+
104
+ # Do not use concat, it may cause memory format changed and trt infer with wrong results!
105
+ x_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
106
+ mask_in = torch.zeros([2, 1, x.size(2)], device=x.device, dtype=x.dtype)
107
+ mu_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
108
+ t_in = torch.zeros([2], device=x.device, dtype=x.dtype)
109
+ spks_in = torch.zeros([2, 80], device=x.device, dtype=x.dtype)
110
+ cond_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
111
+ for step in range(1, len(t_span)):
112
+ # Classifier-Free Guidance inference introduced in VoiceBox
113
+ x_in[:] = x
114
+ mask_in[:] = mask
115
+ mu_in[0] = mu
116
+ t_in[:] = t.unsqueeze(0)
117
+ spks_in[0] = spks
118
+ cond_in[0] = cond
119
+ dphi_dt = self.forward_estimator(
120
+ x_in, mask_in,
121
+ mu_in, t_in,
122
+ spks_in,
123
+ cond_in
124
+ )
125
+ dphi_dt, cfg_dphi_dt = torch.split(dphi_dt, [x.size(0), x.size(0)], dim=0)
126
+ dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt - self.inference_cfg_rate * cfg_dphi_dt)
127
+ x = x + dt * dphi_dt
128
+ t = t + dt
129
+ sol.append(x)
130
+ if step < len(t_span) - 1:
131
+ dt = t_span[step + 1] - t
132
+
133
+ return sol[-1].float()
134
+
135
+ def forward_estimator(self, x, mask, mu, t, spks, cond):
136
+ if isinstance(self.estimator, torch.nn.Module):
137
+ return self.estimator.forward(x, mask, mu, t, spks, cond)
138
+ else:
139
+ with self.lock:
140
+ self.estimator.set_input_shape('x', (2, 80, x.size(2)))
141
+ self.estimator.set_input_shape('mask', (2, 1, x.size(2)))
142
+ self.estimator.set_input_shape('mu', (2, 80, x.size(2)))
143
+ self.estimator.set_input_shape('t', (2,))
144
+ self.estimator.set_input_shape('spks', (2, 80))
145
+ self.estimator.set_input_shape('cond', (2, 80, x.size(2)))
146
+ # run trt engine
147
+ self.estimator.execute_v2([x.contiguous().data_ptr(),
148
+ mask.contiguous().data_ptr(),
149
+ mu.contiguous().data_ptr(),
150
+ t.contiguous().data_ptr(),
151
+ spks.contiguous().data_ptr(),
152
+ cond.contiguous().data_ptr(),
153
+ x.data_ptr()])
154
+ return x
155
+
156
+ def compute_loss(self, x1, mask, mu, spks=None, cond=None):
157
+ """Computes diffusion loss
158
+
159
+ Args:
160
+ x1 (torch.Tensor): Target
161
+ shape: (batch_size, n_feats, mel_timesteps)
162
+ mask (torch.Tensor): target mask
163
+ shape: (batch_size, 1, mel_timesteps)
164
+ mu (torch.Tensor): output of encoder
165
+ shape: (batch_size, n_feats, mel_timesteps)
166
+ spks (torch.Tensor, optional): speaker embedding. Defaults to None.
167
+ shape: (batch_size, spk_emb_dim)
168
+
169
+ Returns:
170
+ loss: conditional flow matching loss
171
+ y: conditional flow
172
+ shape: (batch_size, n_feats, mel_timesteps)
173
+ """
174
+ b, _, t = mu.shape
175
+
176
+ # random timestep
177
+ t = torch.rand([b, 1, 1], device=mu.device, dtype=mu.dtype)
178
+ if self.t_scheduler == 'cosine':
179
+ t = 1 - torch.cos(t * 0.5 * torch.pi)
180
+ # sample noise p(x_0)
181
+ z = torch.randn_like(x1)
182
+
183
+ y = (1 - (1 - self.sigma_min) * t) * z + t * x1
184
+ u = x1 - (1 - self.sigma_min) * z
185
+
186
+ # during training, we randomly drop condition to trade off mode coverage and sample fidelity
187
+ if self.training_cfg_rate > 0:
188
+ cfg_mask = torch.rand(b, device=x1.device) > self.training_cfg_rate
189
+ mu = mu * cfg_mask.view(-1, 1, 1)
190
+ spks = spks * cfg_mask.view(-1, 1)
191
+ cond = cond * cfg_mask.view(-1, 1, 1)
192
+
193
+ pred = self.estimator(y, mask, mu, t.squeeze(), spks, cond)
194
+ loss = F.mse_loss(pred * mask, u * mask, reduction="sum") / (torch.sum(mask) * u.shape[1])
195
+ return loss, y
196
+
197
+
198
+ class CausalConditionalCFM(ConditionalCFM):
199
+ def __init__(self, in_channels=240, cfm_params=CFM_PARAMS, n_spks=1, spk_emb_dim=80, estimator=None):
200
+ super().__init__(in_channels, cfm_params, n_spks, spk_emb_dim, estimator)
201
+ self.rand_noise = torch.randn([1, 80, 50 * 300])
202
+
203
+ @torch.inference_mode()
204
+ def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
205
+ """Forward diffusion
206
+
207
+ Args:
208
+ mu (torch.Tensor): output of encoder
209
+ shape: (batch_size, n_feats, mel_timesteps)
210
+ mask (torch.Tensor): output_mask
211
+ shape: (batch_size, 1, mel_timesteps)
212
+ n_timesteps (int): number of diffusion steps
213
+ temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
214
+ spks (torch.Tensor, optional): speaker ids. Defaults to None.
215
+ shape: (batch_size, spk_emb_dim)
216
+ cond: Not used but kept for future purposes
217
+
218
+ Returns:
219
+ sample: generated mel-spectrogram
220
+ shape: (batch_size, n_feats, mel_timesteps)
221
+ """
222
+
223
+ z = self.rand_noise[:, :, :mu.size(2)].to(mu.device).to(mu.dtype) * temperature
224
+ # fix prompt and overlap part mu and z
225
+ t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
226
+ if self.t_scheduler == 'cosine':
227
+ t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
228
+ return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), None
src/chatterbox/models/s3gen/hifigan.py ADDED
@@ -0,0 +1,474 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # jrm: adapted from CosyVoice/cosyvoice/hifigan/generator.py
2
+ # most modules should be reusable, but I found their SineGen changed a git.
3
+
4
+ # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Kai Hu)
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+
18
+ """HIFI-GAN"""
19
+
20
+ from typing import Dict, Optional, List
21
+ import numpy as np
22
+ from scipy.signal import get_window
23
+ import torch
24
+ import torch.nn.functional as F
25
+ from torch.nn import Conv1d
26
+ from torch.nn import ConvTranspose1d
27
+ from torch.nn.utils import remove_weight_norm
28
+ from torch.nn.utils.parametrizations import weight_norm
29
+ from torch.distributions.uniform import Uniform
30
+ from torch import nn, sin, pow
31
+ from torch.nn import Parameter
32
+
33
+
34
+ class Snake(nn.Module):
35
+ '''
36
+ Implementation of a sine-based periodic activation function
37
+ Shape:
38
+ - Input: (B, C, T)
39
+ - Output: (B, C, T), same shape as the input
40
+ Parameters:
41
+ - alpha - trainable parameter
42
+ References:
43
+ - This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
44
+ https://arxiv.org/abs/2006.08195
45
+ Examples:
46
+ >>> a1 = snake(256)
47
+ >>> x = torch.randn(256)
48
+ >>> x = a1(x)
49
+ '''
50
+ def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
51
+ '''
52
+ Initialization.
53
+ INPUT:
54
+ - in_features: shape of the input
55
+ - alpha: trainable parameter
56
+ alpha is initialized to 1 by default, higher values = higher-frequency.
57
+ alpha will be trained along with the rest of your model.
58
+ '''
59
+ super(Snake, self).__init__()
60
+ self.in_features = in_features
61
+
62
+ # initialize alpha
63
+ self.alpha_logscale = alpha_logscale
64
+ if self.alpha_logscale: # log scale alphas initialized to zeros
65
+ self.alpha = Parameter(torch.zeros(in_features) * alpha)
66
+ else: # linear scale alphas initialized to ones
67
+ self.alpha = Parameter(torch.ones(in_features) * alpha)
68
+
69
+ self.alpha.requires_grad = alpha_trainable
70
+
71
+ self.no_div_by_zero = 0.000000001
72
+
73
+ def forward(self, x):
74
+ '''
75
+ Forward pass of the function.
76
+ Applies the function to the input elementwise.
77
+ Snake ∶= x + 1/a * sin^2 (xa)
78
+ '''
79
+ alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
80
+ if self.alpha_logscale:
81
+ alpha = torch.exp(alpha)
82
+ x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
83
+
84
+ return x
85
+
86
+
87
+
88
+ def get_padding(kernel_size, dilation=1):
89
+ return int((kernel_size * dilation - dilation) / 2)
90
+
91
+ def init_weights(m, mean=0.0, std=0.01):
92
+ classname = m.__class__.__name__
93
+ if classname.find("Conv") != -1:
94
+ m.weight.data.normal_(mean, std)
95
+
96
+
97
+ """hifigan based generator implementation.
98
+
99
+ This code is modified from https://github.com/jik876/hifi-gan
100
+ ,https://github.com/kan-bayashi/ParallelWaveGAN and
101
+ https://github.com/NVIDIA/BigVGAN
102
+
103
+ """
104
+
105
+
106
+ class ResBlock(torch.nn.Module):
107
+ """Residual block module in HiFiGAN/BigVGAN."""
108
+ def __init__(
109
+ self,
110
+ channels: int = 512,
111
+ kernel_size: int = 3,
112
+ dilations: List[int] = [1, 3, 5],
113
+ ):
114
+ super(ResBlock, self).__init__()
115
+ self.convs1 = nn.ModuleList()
116
+ self.convs2 = nn.ModuleList()
117
+
118
+ for dilation in dilations:
119
+ self.convs1.append(
120
+ weight_norm(
121
+ Conv1d(
122
+ channels,
123
+ channels,
124
+ kernel_size,
125
+ 1,
126
+ dilation=dilation,
127
+ padding=get_padding(kernel_size, dilation)
128
+ )
129
+ )
130
+ )
131
+ self.convs2.append(
132
+ weight_norm(
133
+ Conv1d(
134
+ channels,
135
+ channels,
136
+ kernel_size,
137
+ 1,
138
+ dilation=1,
139
+ padding=get_padding(kernel_size, 1)
140
+ )
141
+ )
142
+ )
143
+ self.convs1.apply(init_weights)
144
+ self.convs2.apply(init_weights)
145
+ self.activations1 = nn.ModuleList([
146
+ Snake(channels, alpha_logscale=False)
147
+ for _ in range(len(self.convs1))
148
+ ])
149
+ self.activations2 = nn.ModuleList([
150
+ Snake(channels, alpha_logscale=False)
151
+ for _ in range(len(self.convs2))
152
+ ])
153
+
154
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
155
+ for idx in range(len(self.convs1)):
156
+ xt = self.activations1[idx](x)
157
+ xt = self.convs1[idx](xt)
158
+ xt = self.activations2[idx](xt)
159
+ xt = self.convs2[idx](xt)
160
+ x = xt + x
161
+ return x
162
+
163
+ def remove_weight_norm(self):
164
+ for idx in range(len(self.convs1)):
165
+ remove_weight_norm(self.convs1[idx])
166
+ remove_weight_norm(self.convs2[idx])
167
+
168
+
169
+ class SineGen(torch.nn.Module):
170
+ """ Definition of sine generator
171
+ SineGen(samp_rate, harmonic_num = 0,
172
+ sine_amp = 0.1, noise_std = 0.003,
173
+ voiced_threshold = 0,
174
+ flag_for_pulse=False)
175
+ samp_rate: sampling rate in Hz
176
+ harmonic_num: number of harmonic overtones (default 0)
177
+ sine_amp: amplitude of sine-wavefrom (default 0.1)
178
+ noise_std: std of Gaussian noise (default 0.003)
179
+ voiced_thoreshold: F0 threshold for U/V classification (default 0)
180
+ flag_for_pulse: this SinGen is used inside PulseGen (default False)
181
+ Note: when flag_for_pulse is True, the first time step of a voiced
182
+ segment is always sin(np.pi) or cos(0)
183
+ """
184
+
185
+ def __init__(self, samp_rate, harmonic_num=0,
186
+ sine_amp=0.1, noise_std=0.003,
187
+ voiced_threshold=0):
188
+ super(SineGen, self).__init__()
189
+ self.sine_amp = sine_amp
190
+ self.noise_std = noise_std
191
+ self.harmonic_num = harmonic_num
192
+ self.sampling_rate = samp_rate
193
+ self.voiced_threshold = voiced_threshold
194
+
195
+ def _f02uv(self, f0):
196
+ # generate uv signal
197
+ uv = (f0 > self.voiced_threshold).type(torch.float32)
198
+ return uv
199
+
200
+ @torch.no_grad()
201
+ def forward(self, f0):
202
+ """
203
+ :param f0: [B, 1, sample_len], Hz
204
+ :return: [B, 1, sample_len]
205
+ """
206
+
207
+ F_mat = torch.zeros((f0.size(0), self.harmonic_num + 1, f0.size(-1))).to(f0.device)
208
+ for i in range(self.harmonic_num + 1):
209
+ F_mat[:, i: i + 1, :] = f0 * (i + 1) / self.sampling_rate
210
+
211
+ theta_mat = 2 * np.pi * (torch.cumsum(F_mat, dim=-1) % 1)
212
+ u_dist = Uniform(low=-np.pi, high=np.pi)
213
+ phase_vec = u_dist.sample(sample_shape=(f0.size(0), self.harmonic_num + 1, 1)).to(F_mat.device)
214
+ phase_vec[:, 0, :] = 0
215
+
216
+ # generate sine waveforms
217
+ sine_waves = self.sine_amp * torch.sin(theta_mat + phase_vec)
218
+
219
+ # generate uv signal
220
+ uv = self._f02uv(f0)
221
+
222
+ # noise: for unvoiced should be similar to sine_amp
223
+ # std = self.sine_amp/3 -> max value ~ self.sine_amp
224
+ # . for voiced regions is self.noise_std
225
+ noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
226
+ noise = noise_amp * torch.randn_like(sine_waves)
227
+
228
+ # first: set the unvoiced part to 0 by uv
229
+ # then: additive noise
230
+ sine_waves = sine_waves * uv + noise
231
+ return sine_waves, uv, noise
232
+
233
+
234
+ class SourceModuleHnNSF(torch.nn.Module):
235
+ """ SourceModule for hn-nsf
236
+ SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
237
+ add_noise_std=0.003, voiced_threshod=0)
238
+ sampling_rate: sampling_rate in Hz
239
+ harmonic_num: number of harmonic above F0 (default: 0)
240
+ sine_amp: amplitude of sine source signal (default: 0.1)
241
+ add_noise_std: std of additive Gaussian noise (default: 0.003)
242
+ note that amplitude of noise in unvoiced is decided
243
+ by sine_amp
244
+ voiced_threshold: threhold to set U/V given F0 (default: 0)
245
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
246
+ F0_sampled (batchsize, length, 1)
247
+ Sine_source (batchsize, length, 1)
248
+ noise_source (batchsize, length 1)
249
+ uv (batchsize, length, 1)
250
+ """
251
+
252
+ def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
253
+ add_noise_std=0.003, voiced_threshod=0):
254
+ super(SourceModuleHnNSF, self).__init__()
255
+
256
+ self.sine_amp = sine_amp
257
+ self.noise_std = add_noise_std
258
+
259
+ # to produce sine waveforms
260
+ self.l_sin_gen = SineGen(sampling_rate, harmonic_num,
261
+ sine_amp, add_noise_std, voiced_threshod)
262
+
263
+ # to merge source harmonics into a single excitation
264
+ self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
265
+ self.l_tanh = torch.nn.Tanh()
266
+
267
+ def forward(self, x):
268
+ """
269
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
270
+ F0_sampled (batchsize, length, 1)
271
+ Sine_source (batchsize, length, 1)
272
+ noise_source (batchsize, length 1)
273
+ """
274
+ # source for harmonic branch
275
+ with torch.no_grad():
276
+ sine_wavs, uv, _ = self.l_sin_gen(x.transpose(1, 2))
277
+ sine_wavs = sine_wavs.transpose(1, 2)
278
+ uv = uv.transpose(1, 2)
279
+ sine_merge = self.l_tanh(self.l_linear(sine_wavs))
280
+
281
+ # source for noise branch, in the same shape as uv
282
+ noise = torch.randn_like(uv) * self.sine_amp / 3
283
+ return sine_merge, noise, uv
284
+
285
+
286
+ class HiFTGenerator(nn.Module):
287
+ """
288
+ HiFTNet Generator: Neural Source Filter + ISTFTNet
289
+ https://arxiv.org/abs/2309.09493
290
+ """
291
+ def __init__(
292
+ self,
293
+ in_channels: int = 80,
294
+ base_channels: int = 512,
295
+ nb_harmonics: int = 8,
296
+ sampling_rate: int = 22050,
297
+ nsf_alpha: float = 0.1,
298
+ nsf_sigma: float = 0.003,
299
+ nsf_voiced_threshold: float = 10,
300
+ upsample_rates: List[int] = [8, 8],
301
+ upsample_kernel_sizes: List[int] = [16, 16],
302
+ istft_params: Dict[str, int] = {"n_fft": 16, "hop_len": 4},
303
+ resblock_kernel_sizes: List[int] = [3, 7, 11],
304
+ resblock_dilation_sizes: List[List[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
305
+ source_resblock_kernel_sizes: List[int] = [7, 11],
306
+ source_resblock_dilation_sizes: List[List[int]] = [[1, 3, 5], [1, 3, 5]],
307
+ lrelu_slope: float = 0.1,
308
+ audio_limit: float = 0.99,
309
+ f0_predictor: torch.nn.Module = None,
310
+ ):
311
+ super(HiFTGenerator, self).__init__()
312
+
313
+ self.out_channels = 1
314
+ self.nb_harmonics = nb_harmonics
315
+ self.sampling_rate = sampling_rate
316
+ self.istft_params = istft_params
317
+ self.lrelu_slope = lrelu_slope
318
+ self.audio_limit = audio_limit
319
+
320
+ self.num_kernels = len(resblock_kernel_sizes)
321
+ self.num_upsamples = len(upsample_rates)
322
+ self.m_source = SourceModuleHnNSF(
323
+ sampling_rate=sampling_rate,
324
+ upsample_scale=np.prod(upsample_rates) * istft_params["hop_len"],
325
+ harmonic_num=nb_harmonics,
326
+ sine_amp=nsf_alpha,
327
+ add_noise_std=nsf_sigma,
328
+ voiced_threshod=nsf_voiced_threshold)
329
+ self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * istft_params["hop_len"])
330
+
331
+ self.conv_pre = weight_norm(
332
+ Conv1d(in_channels, base_channels, 7, 1, padding=3)
333
+ )
334
+
335
+ # Up
336
+ self.ups = nn.ModuleList()
337
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
338
+ self.ups.append(
339
+ weight_norm(
340
+ ConvTranspose1d(
341
+ base_channels // (2**i),
342
+ base_channels // (2**(i + 1)),
343
+ k,
344
+ u,
345
+ padding=(k - u) // 2,
346
+ )
347
+ )
348
+ )
349
+
350
+ # Down
351
+ self.source_downs = nn.ModuleList()
352
+ self.source_resblocks = nn.ModuleList()
353
+ downsample_rates = [1] + upsample_rates[::-1][:-1]
354
+ downsample_cum_rates = np.cumprod(downsample_rates)
355
+ for i, (u, k, d) in enumerate(zip(downsample_cum_rates[::-1], source_resblock_kernel_sizes, source_resblock_dilation_sizes)):
356
+ if u == 1:
357
+ self.source_downs.append(
358
+ Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), 1, 1)
359
+ )
360
+ else:
361
+ self.source_downs.append(
362
+ Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), u * 2, u, padding=(u // 2))
363
+ )
364
+
365
+ self.source_resblocks.append(
366
+ ResBlock(base_channels // (2 ** (i + 1)), k, d)
367
+ )
368
+
369
+ self.resblocks = nn.ModuleList()
370
+ for i in range(len(self.ups)):
371
+ ch = base_channels // (2**(i + 1))
372
+ for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
373
+ self.resblocks.append(ResBlock(ch, k, d))
374
+
375
+ self.conv_post = weight_norm(Conv1d(ch, istft_params["n_fft"] + 2, 7, 1, padding=3))
376
+ self.ups.apply(init_weights)
377
+ self.conv_post.apply(init_weights)
378
+ self.reflection_pad = nn.ReflectionPad1d((1, 0))
379
+ self.stft_window = torch.from_numpy(get_window("hann", istft_params["n_fft"], fftbins=True).astype(np.float32))
380
+ self.f0_predictor = f0_predictor
381
+
382
+ def remove_weight_norm(self):
383
+ print('Removing weight norm...')
384
+ for l in self.ups:
385
+ remove_weight_norm(l)
386
+ for l in self.resblocks:
387
+ l.remove_weight_norm()
388
+ remove_weight_norm(self.conv_pre)
389
+ remove_weight_norm(self.conv_post)
390
+ self.m_source.remove_weight_norm()
391
+ for l in self.source_downs:
392
+ remove_weight_norm(l)
393
+ for l in self.source_resblocks:
394
+ l.remove_weight_norm()
395
+
396
+ def _stft(self, x):
397
+ spec = torch.stft(
398
+ x,
399
+ self.istft_params["n_fft"], self.istft_params["hop_len"], self.istft_params["n_fft"], window=self.stft_window.to(x.device),
400
+ return_complex=True)
401
+ spec = torch.view_as_real(spec) # [B, F, TT, 2]
402
+ return spec[..., 0], spec[..., 1]
403
+
404
+ def _istft(self, magnitude, phase):
405
+ magnitude = torch.clip(magnitude, max=1e2)
406
+ real = magnitude * torch.cos(phase)
407
+ img = magnitude * torch.sin(phase)
408
+ inverse_transform = torch.istft(torch.complex(real, img), self.istft_params["n_fft"], self.istft_params["hop_len"],
409
+ self.istft_params["n_fft"], window=self.stft_window.to(magnitude.device))
410
+ return inverse_transform
411
+
412
+ def decode(self, x: torch.Tensor, s: torch.Tensor = torch.zeros(1, 1, 0)) -> torch.Tensor:
413
+ s_stft_real, s_stft_imag = self._stft(s.squeeze(1))
414
+ s_stft = torch.cat([s_stft_real, s_stft_imag], dim=1)
415
+
416
+ x = self.conv_pre(x)
417
+ for i in range(self.num_upsamples):
418
+ x = F.leaky_relu(x, self.lrelu_slope)
419
+ x = self.ups[i](x)
420
+
421
+ if i == self.num_upsamples - 1:
422
+ x = self.reflection_pad(x)
423
+
424
+ # fusion
425
+ si = self.source_downs[i](s_stft)
426
+ si = self.source_resblocks[i](si)
427
+ x = x + si
428
+
429
+ xs = None
430
+ for j in range(self.num_kernels):
431
+ if xs is None:
432
+ xs = self.resblocks[i * self.num_kernels + j](x)
433
+ else:
434
+ xs += self.resblocks[i * self.num_kernels + j](x)
435
+ x = xs / self.num_kernels
436
+
437
+ x = F.leaky_relu(x)
438
+ x = self.conv_post(x)
439
+ magnitude = torch.exp(x[:, :self.istft_params["n_fft"] // 2 + 1, :])
440
+ phase = torch.sin(x[:, self.istft_params["n_fft"] // 2 + 1:, :]) # actually, sin is redundancy
441
+
442
+ x = self._istft(magnitude, phase)
443
+ x = torch.clamp(x, -self.audio_limit, self.audio_limit)
444
+ return x
445
+
446
+ def forward(
447
+ self,
448
+ batch: dict,
449
+ device: torch.device,
450
+ ) -> Dict[str, Optional[torch.Tensor]]:
451
+ speech_feat = batch['speech_feat'].transpose(1, 2).to(device)
452
+ # mel->f0
453
+ f0 = self.f0_predictor(speech_feat)
454
+ # f0->source
455
+ s = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
456
+ s, _, _ = self.m_source(s)
457
+ s = s.transpose(1, 2)
458
+ # mel+source->speech
459
+ generated_speech = self.decode(x=speech_feat, s=s)
460
+ return generated_speech, f0
461
+
462
+ @torch.inference_mode()
463
+ def inference(self, speech_feat: torch.Tensor, cache_source: torch.Tensor = torch.zeros(1, 1, 0)) -> torch.Tensor:
464
+ # mel->f0
465
+ f0 = self.f0_predictor(speech_feat)
466
+ # f0->source
467
+ s = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
468
+ s, _, _ = self.m_source(s)
469
+ s = s.transpose(1, 2)
470
+ # use cache_source to avoid glitch
471
+ if cache_source.shape[2] != 0:
472
+ s[:, :, :cache_source.shape[2]] = cache_source
473
+ generated_speech = self.decode(x=speech_feat, s=s)
474
+ return generated_speech, s
src/chatterbox/models/s3gen/matcha/decoder.py ADDED
@@ -0,0 +1,443 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from typing import Optional
3
+
4
+ import torch
5
+ import torch.nn as nn
6
+ import torch.nn.functional as F
7
+ from conformer import ConformerBlock
8
+ from diffusers.models.activations import get_activation
9
+ from einops import pack, rearrange, repeat
10
+
11
+ from .transformer import BasicTransformerBlock
12
+
13
+
14
+ class SinusoidalPosEmb(torch.nn.Module):
15
+ def __init__(self, dim):
16
+ super().__init__()
17
+ self.dim = dim
18
+ assert self.dim % 2 == 0, "SinusoidalPosEmb requires dim to be even"
19
+
20
+ def forward(self, x, scale=1000):
21
+ if x.ndim < 1:
22
+ x = x.unsqueeze(0)
23
+ device = x.device
24
+ half_dim = self.dim // 2
25
+ emb = math.log(10000) / (half_dim - 1)
26
+ emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb)
27
+ emb = scale * x.unsqueeze(1) * emb.unsqueeze(0)
28
+ emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
29
+ return emb
30
+
31
+
32
+ class Block1D(torch.nn.Module):
33
+ def __init__(self, dim, dim_out, groups=8):
34
+ super().__init__()
35
+ self.block = torch.nn.Sequential(
36
+ torch.nn.Conv1d(dim, dim_out, 3, padding=1),
37
+ torch.nn.GroupNorm(groups, dim_out),
38
+ nn.Mish(),
39
+ )
40
+
41
+ def forward(self, x, mask):
42
+ output = self.block(x * mask)
43
+ return output * mask
44
+
45
+
46
+ class ResnetBlock1D(torch.nn.Module):
47
+ def __init__(self, dim, dim_out, time_emb_dim, groups=8):
48
+ super().__init__()
49
+ self.mlp = torch.nn.Sequential(nn.Mish(), torch.nn.Linear(time_emb_dim, dim_out))
50
+
51
+ self.block1 = Block1D(dim, dim_out, groups=groups)
52
+ self.block2 = Block1D(dim_out, dim_out, groups=groups)
53
+
54
+ self.res_conv = torch.nn.Conv1d(dim, dim_out, 1)
55
+
56
+ def forward(self, x, mask, time_emb):
57
+ h = self.block1(x, mask)
58
+ h += self.mlp(time_emb).unsqueeze(-1)
59
+ h = self.block2(h, mask)
60
+ output = h + self.res_conv(x * mask)
61
+ return output
62
+
63
+
64
+ class Downsample1D(nn.Module):
65
+ def __init__(self, dim):
66
+ super().__init__()
67
+ self.conv = torch.nn.Conv1d(dim, dim, 3, 2, 1)
68
+
69
+ def forward(self, x):
70
+ return self.conv(x)
71
+
72
+
73
+ class TimestepEmbedding(nn.Module):
74
+ def __init__(
75
+ self,
76
+ in_channels: int,
77
+ time_embed_dim: int,
78
+ act_fn: str = "silu",
79
+ out_dim: int = None,
80
+ post_act_fn: Optional[str] = None,
81
+ cond_proj_dim=None,
82
+ ):
83
+ super().__init__()
84
+
85
+ self.linear_1 = nn.Linear(in_channels, time_embed_dim)
86
+
87
+ if cond_proj_dim is not None:
88
+ self.cond_proj = nn.Linear(cond_proj_dim, in_channels, bias=False)
89
+ else:
90
+ self.cond_proj = None
91
+
92
+ self.act = get_activation(act_fn)
93
+
94
+ if out_dim is not None:
95
+ time_embed_dim_out = out_dim
96
+ else:
97
+ time_embed_dim_out = time_embed_dim
98
+ self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim_out)
99
+
100
+ if post_act_fn is None:
101
+ self.post_act = None
102
+ else:
103
+ self.post_act = get_activation(post_act_fn)
104
+
105
+ def forward(self, sample, condition=None):
106
+ if condition is not None:
107
+ sample = sample + self.cond_proj(condition)
108
+ sample = self.linear_1(sample)
109
+
110
+ if self.act is not None:
111
+ sample = self.act(sample)
112
+
113
+ sample = self.linear_2(sample)
114
+
115
+ if self.post_act is not None:
116
+ sample = self.post_act(sample)
117
+ return sample
118
+
119
+
120
+ class Upsample1D(nn.Module):
121
+ """A 1D upsampling layer with an optional convolution.
122
+
123
+ Parameters:
124
+ channels (`int`):
125
+ number of channels in the inputs and outputs.
126
+ use_conv (`bool`, default `False`):
127
+ option to use a convolution.
128
+ use_conv_transpose (`bool`, default `False`):
129
+ option to use a convolution transpose.
130
+ out_channels (`int`, optional):
131
+ number of output channels. Defaults to `channels`.
132
+ """
133
+
134
+ def __init__(self, channels, use_conv=False, use_conv_transpose=True, out_channels=None, name="conv"):
135
+ super().__init__()
136
+ self.channels = channels
137
+ self.out_channels = out_channels or channels
138
+ self.use_conv = use_conv
139
+ self.use_conv_transpose = use_conv_transpose
140
+ self.name = name
141
+
142
+ self.conv = None
143
+ if use_conv_transpose:
144
+ self.conv = nn.ConvTranspose1d(channels, self.out_channels, 4, 2, 1)
145
+ elif use_conv:
146
+ self.conv = nn.Conv1d(self.channels, self.out_channels, 3, padding=1)
147
+
148
+ def forward(self, inputs):
149
+ assert inputs.shape[1] == self.channels
150
+ if self.use_conv_transpose:
151
+ return self.conv(inputs)
152
+
153
+ outputs = F.interpolate(inputs, scale_factor=2.0, mode="nearest")
154
+
155
+ if self.use_conv:
156
+ outputs = self.conv(outputs)
157
+
158
+ return outputs
159
+
160
+
161
+ class ConformerWrapper(ConformerBlock):
162
+ def __init__( # pylint: disable=useless-super-delegation
163
+ self,
164
+ *,
165
+ dim,
166
+ dim_head=64,
167
+ heads=8,
168
+ ff_mult=4,
169
+ conv_expansion_factor=2,
170
+ conv_kernel_size=31,
171
+ attn_dropout=0,
172
+ ff_dropout=0,
173
+ conv_dropout=0,
174
+ conv_causal=False,
175
+ ):
176
+ super().__init__(
177
+ dim=dim,
178
+ dim_head=dim_head,
179
+ heads=heads,
180
+ ff_mult=ff_mult,
181
+ conv_expansion_factor=conv_expansion_factor,
182
+ conv_kernel_size=conv_kernel_size,
183
+ attn_dropout=attn_dropout,
184
+ ff_dropout=ff_dropout,
185
+ conv_dropout=conv_dropout,
186
+ conv_causal=conv_causal,
187
+ )
188
+
189
+ def forward(
190
+ self,
191
+ hidden_states,
192
+ attention_mask,
193
+ encoder_hidden_states=None,
194
+ encoder_attention_mask=None,
195
+ timestep=None,
196
+ ):
197
+ return super().forward(x=hidden_states, mask=attention_mask.bool())
198
+
199
+
200
+ class Decoder(nn.Module):
201
+ def __init__(
202
+ self,
203
+ in_channels,
204
+ out_channels,
205
+ channels=(256, 256),
206
+ dropout=0.05,
207
+ attention_head_dim=64,
208
+ n_blocks=1,
209
+ num_mid_blocks=2,
210
+ num_heads=4,
211
+ act_fn="snake",
212
+ down_block_type="transformer",
213
+ mid_block_type="transformer",
214
+ up_block_type="transformer",
215
+ ):
216
+ super().__init__()
217
+ channels = tuple(channels)
218
+ self.in_channels = in_channels
219
+ self.out_channels = out_channels
220
+
221
+ self.time_embeddings = SinusoidalPosEmb(in_channels)
222
+ time_embed_dim = channels[0] * 4
223
+ self.time_mlp = TimestepEmbedding(
224
+ in_channels=in_channels,
225
+ time_embed_dim=time_embed_dim,
226
+ act_fn="silu",
227
+ )
228
+
229
+ self.down_blocks = nn.ModuleList([])
230
+ self.mid_blocks = nn.ModuleList([])
231
+ self.up_blocks = nn.ModuleList([])
232
+
233
+ output_channel = in_channels
234
+ for i in range(len(channels)): # pylint: disable=consider-using-enumerate
235
+ input_channel = output_channel
236
+ output_channel = channels[i]
237
+ is_last = i == len(channels) - 1
238
+ resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
239
+ transformer_blocks = nn.ModuleList(
240
+ [
241
+ self.get_block(
242
+ down_block_type,
243
+ output_channel,
244
+ attention_head_dim,
245
+ num_heads,
246
+ dropout,
247
+ act_fn,
248
+ )
249
+ for _ in range(n_blocks)
250
+ ]
251
+ )
252
+ downsample = (
253
+ Downsample1D(output_channel) if not is_last else nn.Conv1d(output_channel, output_channel, 3, padding=1)
254
+ )
255
+
256
+ self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
257
+
258
+ for i in range(num_mid_blocks):
259
+ input_channel = channels[-1]
260
+ out_channels = channels[-1]
261
+
262
+ resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
263
+
264
+ transformer_blocks = nn.ModuleList(
265
+ [
266
+ self.get_block(
267
+ mid_block_type,
268
+ output_channel,
269
+ attention_head_dim,
270
+ num_heads,
271
+ dropout,
272
+ act_fn,
273
+ )
274
+ for _ in range(n_blocks)
275
+ ]
276
+ )
277
+
278
+ self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks]))
279
+
280
+ channels = channels[::-1] + (channels[0],)
281
+ for i in range(len(channels) - 1):
282
+ input_channel = channels[i]
283
+ output_channel = channels[i + 1]
284
+ is_last = i == len(channels) - 2
285
+
286
+ resnet = ResnetBlock1D(
287
+ dim=2 * input_channel,
288
+ dim_out=output_channel,
289
+ time_emb_dim=time_embed_dim,
290
+ )
291
+ transformer_blocks = nn.ModuleList(
292
+ [
293
+ self.get_block(
294
+ up_block_type,
295
+ output_channel,
296
+ attention_head_dim,
297
+ num_heads,
298
+ dropout,
299
+ act_fn,
300
+ )
301
+ for _ in range(n_blocks)
302
+ ]
303
+ )
304
+ upsample = (
305
+ Upsample1D(output_channel, use_conv_transpose=True)
306
+ if not is_last
307
+ else nn.Conv1d(output_channel, output_channel, 3, padding=1)
308
+ )
309
+
310
+ self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample]))
311
+
312
+ self.final_block = Block1D(channels[-1], channels[-1])
313
+ self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1)
314
+
315
+ self.initialize_weights()
316
+ # nn.init.normal_(self.final_proj.weight)
317
+
318
+ @staticmethod
319
+ def get_block(block_type, dim, attention_head_dim, num_heads, dropout, act_fn):
320
+ if block_type == "conformer":
321
+ block = ConformerWrapper(
322
+ dim=dim,
323
+ dim_head=attention_head_dim,
324
+ heads=num_heads,
325
+ ff_mult=1,
326
+ conv_expansion_factor=2,
327
+ ff_dropout=dropout,
328
+ attn_dropout=dropout,
329
+ conv_dropout=dropout,
330
+ conv_kernel_size=31,
331
+ )
332
+ elif block_type == "transformer":
333
+ block = BasicTransformerBlock(
334
+ dim=dim,
335
+ num_attention_heads=num_heads,
336
+ attention_head_dim=attention_head_dim,
337
+ dropout=dropout,
338
+ activation_fn=act_fn,
339
+ )
340
+ else:
341
+ raise ValueError(f"Unknown block type {block_type}")
342
+
343
+ return block
344
+
345
+ def initialize_weights(self):
346
+ for m in self.modules():
347
+ if isinstance(m, nn.Conv1d):
348
+ nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
349
+
350
+ if m.bias is not None:
351
+ nn.init.constant_(m.bias, 0)
352
+
353
+ elif isinstance(m, nn.GroupNorm):
354
+ nn.init.constant_(m.weight, 1)
355
+ nn.init.constant_(m.bias, 0)
356
+
357
+ elif isinstance(m, nn.Linear):
358
+ nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
359
+
360
+ if m.bias is not None:
361
+ nn.init.constant_(m.bias, 0)
362
+
363
+ def forward(self, x, mask, mu, t, spks=None, cond=None):
364
+ """Forward pass of the UNet1DConditional model.
365
+
366
+ Args:
367
+ x (torch.Tensor): shape (batch_size, in_channels, time)
368
+ mask (_type_): shape (batch_size, 1, time)
369
+ t (_type_): shape (batch_size)
370
+ spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None.
371
+ cond (_type_, optional): placeholder for future use. Defaults to None.
372
+
373
+ Raises:
374
+ ValueError: _description_
375
+ ValueError: _description_
376
+
377
+ Returns:
378
+ _type_: _description_
379
+ """
380
+
381
+ t = self.time_embeddings(t)
382
+ t = self.time_mlp(t)
383
+
384
+ x = pack([x, mu], "b * t")[0]
385
+
386
+ if spks is not None:
387
+ spks = repeat(spks, "b c -> b c t", t=x.shape[-1])
388
+ x = pack([x, spks], "b * t")[0]
389
+
390
+ hiddens = []
391
+ masks = [mask]
392
+ for resnet, transformer_blocks, downsample in self.down_blocks:
393
+ mask_down = masks[-1]
394
+ x = resnet(x, mask_down, t)
395
+ x = rearrange(x, "b c t -> b t c")
396
+ mask_down = rearrange(mask_down, "b 1 t -> b t")
397
+ for transformer_block in transformer_blocks:
398
+ x = transformer_block(
399
+ hidden_states=x,
400
+ attention_mask=mask_down,
401
+ timestep=t,
402
+ )
403
+ x = rearrange(x, "b t c -> b c t")
404
+ mask_down = rearrange(mask_down, "b t -> b 1 t")
405
+ hiddens.append(x) # Save hidden states for skip connections
406
+ x = downsample(x * mask_down)
407
+ masks.append(mask_down[:, :, ::2])
408
+
409
+ masks = masks[:-1]
410
+ mask_mid = masks[-1]
411
+
412
+ for resnet, transformer_blocks in self.mid_blocks:
413
+ x = resnet(x, mask_mid, t)
414
+ x = rearrange(x, "b c t -> b t c")
415
+ mask_mid = rearrange(mask_mid, "b 1 t -> b t")
416
+ for transformer_block in transformer_blocks:
417
+ x = transformer_block(
418
+ hidden_states=x,
419
+ attention_mask=mask_mid,
420
+ timestep=t,
421
+ )
422
+ x = rearrange(x, "b t c -> b c t")
423
+ mask_mid = rearrange(mask_mid, "b t -> b 1 t")
424
+
425
+ for resnet, transformer_blocks, upsample in self.up_blocks:
426
+ mask_up = masks.pop()
427
+ x = resnet(pack([x, hiddens.pop()], "b * t")[0], mask_up, t)
428
+ x = rearrange(x, "b c t -> b t c")
429
+ mask_up = rearrange(mask_up, "b 1 t -> b t")
430
+ for transformer_block in transformer_blocks:
431
+ x = transformer_block(
432
+ hidden_states=x,
433
+ attention_mask=mask_up,
434
+ timestep=t,
435
+ )
436
+ x = rearrange(x, "b t c -> b c t")
437
+ mask_up = rearrange(mask_up, "b t -> b 1 t")
438
+ x = upsample(x * mask_up)
439
+
440
+ x = self.final_block(x, mask_up)
441
+ output = self.final_proj(x * mask_up)
442
+
443
+ return output * mask
src/chatterbox/models/s3gen/matcha/flow_matching.py ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from abc import ABC
2
+
3
+ import torch
4
+ import torch.nn.functional as F
5
+
6
+ from .decoder import Decoder
7
+
8
+
9
+ class BASECFM(torch.nn.Module, ABC):
10
+ def __init__(
11
+ self,
12
+ n_feats,
13
+ cfm_params,
14
+ n_spks=1,
15
+ spk_emb_dim=128,
16
+ ):
17
+ super().__init__()
18
+ self.n_feats = n_feats
19
+ self.n_spks = n_spks
20
+ self.spk_emb_dim = spk_emb_dim
21
+ self.solver = cfm_params.solver
22
+ if hasattr(cfm_params, "sigma_min"):
23
+ self.sigma_min = cfm_params.sigma_min
24
+ else:
25
+ self.sigma_min = 1e-4
26
+
27
+ self.estimator = None
28
+
29
+ @torch.inference_mode()
30
+ def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
31
+ """Forward diffusion
32
+
33
+ Args:
34
+ mu (torch.Tensor): output of encoder
35
+ shape: (batch_size, n_feats, mel_timesteps)
36
+ mask (torch.Tensor): output_mask
37
+ shape: (batch_size, 1, mel_timesteps)
38
+ n_timesteps (int): number of diffusion steps
39
+ temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
40
+ spks (torch.Tensor, optional): speaker ids. Defaults to None.
41
+ shape: (batch_size, spk_emb_dim)
42
+ cond: Not used but kept for future purposes
43
+
44
+ Returns:
45
+ sample: generated mel-spectrogram
46
+ shape: (batch_size, n_feats, mel_timesteps)
47
+ """
48
+ z = torch.randn_like(mu) * temperature
49
+ t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device)
50
+ return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond)
51
+
52
+ def solve_euler(self, x, t_span, mu, mask, spks, cond):
53
+ """
54
+ Fixed euler solver for ODEs.
55
+ Args:
56
+ x (torch.Tensor): random noise
57
+ t_span (torch.Tensor): n_timesteps interpolated
58
+ shape: (n_timesteps + 1,)
59
+ mu (torch.Tensor): output of encoder
60
+ shape: (batch_size, n_feats, mel_timesteps)
61
+ mask (torch.Tensor): output_mask
62
+ shape: (batch_size, 1, mel_timesteps)
63
+ spks (torch.Tensor, optional): speaker ids. Defaults to None.
64
+ shape: (batch_size, spk_emb_dim)
65
+ cond: Not used but kept for future purposes
66
+ """
67
+ t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
68
+
69
+ # I am storing this because I can later plot it by putting a debugger here and saving it to a file
70
+ # Or in future might add like a return_all_steps flag
71
+ sol = []
72
+
73
+ for step in range(1, len(t_span)):
74
+ dphi_dt = self.estimator(x, mask, mu, t, spks, cond)
75
+
76
+ x = x + dt * dphi_dt
77
+ t = t + dt
78
+ sol.append(x)
79
+ if step < len(t_span) - 1:
80
+ dt = t_span[step + 1] - t
81
+
82
+ return sol[-1]
83
+
84
+ def compute_loss(self, x1, mask, mu, spks=None, cond=None):
85
+ """Computes diffusion loss
86
+
87
+ Args:
88
+ x1 (torch.Tensor): Target
89
+ shape: (batch_size, n_feats, mel_timesteps)
90
+ mask (torch.Tensor): target mask
91
+ shape: (batch_size, 1, mel_timesteps)
92
+ mu (torch.Tensor): output of encoder
93
+ shape: (batch_size, n_feats, mel_timesteps)
94
+ spks (torch.Tensor, optional): speaker embedding. Defaults to None.
95
+ shape: (batch_size, spk_emb_dim)
96
+
97
+ Returns:
98
+ loss: conditional flow matching loss
99
+ y: conditional flow
100
+ shape: (batch_size, n_feats, mel_timesteps)
101
+ """
102
+ b, _, t = mu.shape
103
+
104
+ # random timestep
105
+ t = torch.rand([b, 1, 1], device=mu.device, dtype=mu.dtype)
106
+ # sample noise p(x_0)
107
+ z = torch.randn_like(x1)
108
+
109
+ y = (1 - (1 - self.sigma_min) * t) * z + t * x1
110
+ u = x1 - (1 - self.sigma_min) * z
111
+
112
+ loss = F.mse_loss(self.estimator(y, mask, mu, t.squeeze(), spks), u, reduction="sum") / (
113
+ torch.sum(mask) * u.shape[1]
114
+ )
115
+ return loss, y
116
+
117
+
118
+ class CFM(BASECFM):
119
+ def __init__(self, in_channels, out_channel, cfm_params, decoder_params, n_spks=1, spk_emb_dim=64):
120
+ super().__init__(
121
+ n_feats=in_channels,
122
+ cfm_params=cfm_params,
123
+ n_spks=n_spks,
124
+ spk_emb_dim=spk_emb_dim,
125
+ )
126
+
127
+ in_channels = in_channels + (spk_emb_dim if n_spks > 1 else 0)
128
+ # Just change the architecture of the estimator here
129
+ self.estimator = Decoder(in_channels=in_channels, out_channels=out_channel, **decoder_params)
src/chatterbox/models/s3gen/matcha/text_encoder.py ADDED
@@ -0,0 +1,413 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ from https://github.com/jaywalnut310/glow-tts """
2
+
3
+ import math
4
+
5
+ import torch
6
+ import torch.nn as nn
7
+ from einops import rearrange
8
+
9
+
10
+ def sequence_mask(length, max_length=None):
11
+ if max_length is None:
12
+ max_length = length.max()
13
+ x = torch.arange(max_length, dtype=length.dtype, device=length.device)
14
+ return x.unsqueeze(0) < length.unsqueeze(1)
15
+
16
+
17
+
18
+ class LayerNorm(nn.Module):
19
+ def __init__(self, channels, eps=1e-4):
20
+ super().__init__()
21
+ self.channels = channels
22
+ self.eps = eps
23
+
24
+ self.gamma = torch.nn.Parameter(torch.ones(channels))
25
+ self.beta = torch.nn.Parameter(torch.zeros(channels))
26
+
27
+ def forward(self, x):
28
+ n_dims = len(x.shape)
29
+ mean = torch.mean(x, 1, keepdim=True)
30
+ variance = torch.mean((x - mean) ** 2, 1, keepdim=True)
31
+
32
+ x = (x - mean) * torch.rsqrt(variance + self.eps)
33
+
34
+ shape = [1, -1] + [1] * (n_dims - 2)
35
+ x = x * self.gamma.view(*shape) + self.beta.view(*shape)
36
+ return x
37
+
38
+
39
+ class ConvReluNorm(nn.Module):
40
+ def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
41
+ super().__init__()
42
+ self.in_channels = in_channels
43
+ self.hidden_channels = hidden_channels
44
+ self.out_channels = out_channels
45
+ self.kernel_size = kernel_size
46
+ self.n_layers = n_layers
47
+ self.p_dropout = p_dropout
48
+
49
+ self.conv_layers = torch.nn.ModuleList()
50
+ self.norm_layers = torch.nn.ModuleList()
51
+ self.conv_layers.append(torch.nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size // 2))
52
+ self.norm_layers.append(LayerNorm(hidden_channels))
53
+ self.relu_drop = torch.nn.Sequential(torch.nn.ReLU(), torch.nn.Dropout(p_dropout))
54
+ for _ in range(n_layers - 1):
55
+ self.conv_layers.append(
56
+ torch.nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size // 2)
57
+ )
58
+ self.norm_layers.append(LayerNorm(hidden_channels))
59
+ self.proj = torch.nn.Conv1d(hidden_channels, out_channels, 1)
60
+ self.proj.weight.data.zero_()
61
+ self.proj.bias.data.zero_()
62
+
63
+ def forward(self, x, x_mask):
64
+ x_org = x
65
+ for i in range(self.n_layers):
66
+ x = self.conv_layers[i](x * x_mask)
67
+ x = self.norm_layers[i](x)
68
+ x = self.relu_drop(x)
69
+ x = x_org + self.proj(x)
70
+ return x * x_mask
71
+
72
+
73
+ class DurationPredictor(nn.Module):
74
+ def __init__(self, in_channels, filter_channels, kernel_size, p_dropout):
75
+ super().__init__()
76
+ self.in_channels = in_channels
77
+ self.filter_channels = filter_channels
78
+ self.p_dropout = p_dropout
79
+
80
+ self.drop = torch.nn.Dropout(p_dropout)
81
+ self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
82
+ self.norm_1 = LayerNorm(filter_channels)
83
+ self.conv_2 = torch.nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
84
+ self.norm_2 = LayerNorm(filter_channels)
85
+ self.proj = torch.nn.Conv1d(filter_channels, 1, 1)
86
+
87
+ def forward(self, x, x_mask):
88
+ x = self.conv_1(x * x_mask)
89
+ x = torch.relu(x)
90
+ x = self.norm_1(x)
91
+ x = self.drop(x)
92
+ x = self.conv_2(x * x_mask)
93
+ x = torch.relu(x)
94
+ x = self.norm_2(x)
95
+ x = self.drop(x)
96
+ x = self.proj(x * x_mask)
97
+ return x * x_mask
98
+
99
+
100
+ class RotaryPositionalEmbeddings(nn.Module):
101
+ """
102
+ ## RoPE module
103
+
104
+ Rotary encoding transforms pairs of features by rotating in the 2D plane.
105
+ That is, it organizes the $d$ features as $\frac{d}{2}$ pairs.
106
+ Each pair can be considered a coordinate in a 2D plane, and the encoding will rotate it
107
+ by an angle depending on the position of the token.
108
+ """
109
+
110
+ def __init__(self, d: int, base: int = 10_000):
111
+ r"""
112
+ * `d` is the number of features $d$
113
+ * `base` is the constant used for calculating $\Theta$
114
+ """
115
+ super().__init__()
116
+
117
+ self.base = base
118
+ self.d = int(d)
119
+ self.cos_cached = None
120
+ self.sin_cached = None
121
+
122
+ def _build_cache(self, x: torch.Tensor):
123
+ r"""
124
+ Cache $\cos$ and $\sin$ values
125
+ """
126
+ # Return if cache is already built
127
+ if self.cos_cached is not None and x.shape[0] <= self.cos_cached.shape[0]:
128
+ return
129
+
130
+ # Get sequence length
131
+ seq_len = x.shape[0]
132
+
133
+ # $\Theta = {\theta_i = 10000^{-\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
134
+ theta = 1.0 / (self.base ** (torch.arange(0, self.d, 2).float() / self.d)).to(x.device)
135
+
136
+ # Create position indexes `[0, 1, ..., seq_len - 1]`
137
+ seq_idx = torch.arange(seq_len, device=x.device).float().to(x.device)
138
+
139
+ # Calculate the product of position index and $\theta_i$
140
+ idx_theta = torch.einsum("n,d->nd", seq_idx, theta)
141
+
142
+ # Concatenate so that for row $m$ we have
143
+ # $[m \theta_0, m \theta_1, ..., m \theta_{\frac{d}{2}}, m \theta_0, m \theta_1, ..., m \theta_{\frac{d}{2}}]$
144
+ idx_theta2 = torch.cat([idx_theta, idx_theta], dim=1)
145
+
146
+ # Cache them
147
+ self.cos_cached = idx_theta2.cos()[:, None, None, :]
148
+ self.sin_cached = idx_theta2.sin()[:, None, None, :]
149
+
150
+ def _neg_half(self, x: torch.Tensor):
151
+ # $\frac{d}{2}$
152
+ d_2 = self.d // 2
153
+
154
+ # Calculate $[-x^{(\frac{d}{2} + 1)}, -x^{(\frac{d}{2} + 2)}, ..., -x^{(d)}, x^{(1)}, x^{(2)}, ..., x^{(\frac{d}{2})}]$
155
+ return torch.cat([-x[:, :, :, d_2:], x[:, :, :, :d_2]], dim=-1)
156
+
157
+ def forward(self, x: torch.Tensor):
158
+ """
159
+ * `x` is the Tensor at the head of a key or a query with shape `[seq_len, batch_size, n_heads, d]`
160
+ """
161
+ # Cache $\cos$ and $\sin$ values
162
+ x = rearrange(x, "b h t d -> t b h d")
163
+
164
+ self._build_cache(x)
165
+
166
+ # Split the features, we can choose to apply rotary embeddings only to a partial set of features.
167
+ x_rope, x_pass = x[..., : self.d], x[..., self.d :]
168
+
169
+ # Calculate
170
+ # $[-x^{(\frac{d}{2} + 1)}, -x^{(\frac{d}{2} + 2)}, ..., -x^{(d)}, x^{(1)}, x^{(2)}, ..., x^{(\frac{d}{2})}]$
171
+ neg_half_x = self._neg_half(x_rope)
172
+
173
+ x_rope = (x_rope * self.cos_cached[: x.shape[0]]) + (neg_half_x * self.sin_cached[: x.shape[0]])
174
+
175
+ return rearrange(torch.cat((x_rope, x_pass), dim=-1), "t b h d -> b h t d")
176
+
177
+
178
+ class MultiHeadAttention(nn.Module):
179
+ def __init__(
180
+ self,
181
+ channels,
182
+ out_channels,
183
+ n_heads,
184
+ heads_share=True,
185
+ p_dropout=0.0,
186
+ proximal_bias=False,
187
+ proximal_init=False,
188
+ ):
189
+ super().__init__()
190
+ assert channels % n_heads == 0
191
+
192
+ self.channels = channels
193
+ self.out_channels = out_channels
194
+ self.n_heads = n_heads
195
+ self.heads_share = heads_share
196
+ self.proximal_bias = proximal_bias
197
+ self.p_dropout = p_dropout
198
+ self.attn = None
199
+
200
+ self.k_channels = channels // n_heads
201
+ self.conv_q = torch.nn.Conv1d(channels, channels, 1)
202
+ self.conv_k = torch.nn.Conv1d(channels, channels, 1)
203
+ self.conv_v = torch.nn.Conv1d(channels, channels, 1)
204
+
205
+ # from https://nn.labml.ai/transformers/rope/index.html
206
+ self.query_rotary_pe = RotaryPositionalEmbeddings(self.k_channels * 0.5)
207
+ self.key_rotary_pe = RotaryPositionalEmbeddings(self.k_channels * 0.5)
208
+
209
+ self.conv_o = torch.nn.Conv1d(channels, out_channels, 1)
210
+ self.drop = torch.nn.Dropout(p_dropout)
211
+
212
+ torch.nn.init.xavier_uniform_(self.conv_q.weight)
213
+ torch.nn.init.xavier_uniform_(self.conv_k.weight)
214
+ if proximal_init:
215
+ self.conv_k.weight.data.copy_(self.conv_q.weight.data)
216
+ self.conv_k.bias.data.copy_(self.conv_q.bias.data)
217
+ torch.nn.init.xavier_uniform_(self.conv_v.weight)
218
+
219
+ def forward(self, x, c, attn_mask=None):
220
+ q = self.conv_q(x)
221
+ k = self.conv_k(c)
222
+ v = self.conv_v(c)
223
+
224
+ x, self.attn = self.attention(q, k, v, mask=attn_mask)
225
+
226
+ x = self.conv_o(x)
227
+ return x
228
+
229
+ def attention(self, query, key, value, mask=None):
230
+ b, d, t_s, t_t = (*key.size(), query.size(2))
231
+ query = rearrange(query, "b (h c) t-> b h t c", h=self.n_heads)
232
+ key = rearrange(key, "b (h c) t-> b h t c", h=self.n_heads)
233
+ value = rearrange(value, "b (h c) t-> b h t c", h=self.n_heads)
234
+
235
+ query = self.query_rotary_pe(query)
236
+ key = self.key_rotary_pe(key)
237
+
238
+ scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.k_channels)
239
+
240
+ if self.proximal_bias:
241
+ assert t_s == t_t, "Proximal bias is only available for self-attention."
242
+ scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
243
+ if mask is not None:
244
+ scores = scores.masked_fill(mask == 0, -1e4)
245
+ p_attn = torch.nn.functional.softmax(scores, dim=-1)
246
+ p_attn = self.drop(p_attn)
247
+ output = torch.matmul(p_attn, value)
248
+ output = output.transpose(2, 3).contiguous().view(b, d, t_t)
249
+ return output, p_attn
250
+
251
+ @staticmethod
252
+ def _attention_bias_proximal(length):
253
+ r = torch.arange(length, dtype=torch.float32)
254
+ diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
255
+ return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
256
+
257
+
258
+ class FFN(nn.Module):
259
+ def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0.0):
260
+ super().__init__()
261
+ self.in_channels = in_channels
262
+ self.out_channels = out_channels
263
+ self.filter_channels = filter_channels
264
+ self.kernel_size = kernel_size
265
+ self.p_dropout = p_dropout
266
+
267
+ self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
268
+ self.conv_2 = torch.nn.Conv1d(filter_channels, out_channels, kernel_size, padding=kernel_size // 2)
269
+ self.drop = torch.nn.Dropout(p_dropout)
270
+
271
+ def forward(self, x, x_mask):
272
+ x = self.conv_1(x * x_mask)
273
+ x = torch.relu(x)
274
+ x = self.drop(x)
275
+ x = self.conv_2(x * x_mask)
276
+ return x * x_mask
277
+
278
+
279
+ class Encoder(nn.Module):
280
+ def __init__(
281
+ self,
282
+ hidden_channels,
283
+ filter_channels,
284
+ n_heads,
285
+ n_layers,
286
+ kernel_size=1,
287
+ p_dropout=0.0,
288
+ **kwargs,
289
+ ):
290
+ super().__init__()
291
+ self.hidden_channels = hidden_channels
292
+ self.filter_channels = filter_channels
293
+ self.n_heads = n_heads
294
+ self.n_layers = n_layers
295
+ self.kernel_size = kernel_size
296
+ self.p_dropout = p_dropout
297
+
298
+ self.drop = torch.nn.Dropout(p_dropout)
299
+ self.attn_layers = torch.nn.ModuleList()
300
+ self.norm_layers_1 = torch.nn.ModuleList()
301
+ self.ffn_layers = torch.nn.ModuleList()
302
+ self.norm_layers_2 = torch.nn.ModuleList()
303
+ for _ in range(self.n_layers):
304
+ self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
305
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
306
+ self.ffn_layers.append(
307
+ FFN(
308
+ hidden_channels,
309
+ hidden_channels,
310
+ filter_channels,
311
+ kernel_size,
312
+ p_dropout=p_dropout,
313
+ )
314
+ )
315
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
316
+
317
+ def forward(self, x, x_mask):
318
+ attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
319
+ for i in range(self.n_layers):
320
+ x = x * x_mask
321
+ y = self.attn_layers[i](x, x, attn_mask)
322
+ y = self.drop(y)
323
+ x = self.norm_layers_1[i](x + y)
324
+ y = self.ffn_layers[i](x, x_mask)
325
+ y = self.drop(y)
326
+ x = self.norm_layers_2[i](x + y)
327
+ x = x * x_mask
328
+ return x
329
+
330
+
331
+ class TextEncoder(nn.Module):
332
+ def __init__(
333
+ self,
334
+ encoder_type,
335
+ encoder_params,
336
+ duration_predictor_params,
337
+ n_vocab,
338
+ n_spks=1,
339
+ spk_emb_dim=128,
340
+ ):
341
+ super().__init__()
342
+ self.encoder_type = encoder_type
343
+ self.n_vocab = n_vocab
344
+ self.n_feats = encoder_params.n_feats
345
+ self.n_channels = encoder_params.n_channels
346
+ self.spk_emb_dim = spk_emb_dim
347
+ self.n_spks = n_spks
348
+
349
+ self.emb = torch.nn.Embedding(n_vocab, self.n_channels)
350
+ torch.nn.init.normal_(self.emb.weight, 0.0, self.n_channels**-0.5)
351
+
352
+ if encoder_params.prenet:
353
+ self.prenet = ConvReluNorm(
354
+ self.n_channels,
355
+ self.n_channels,
356
+ self.n_channels,
357
+ kernel_size=5,
358
+ n_layers=3,
359
+ p_dropout=0.5,
360
+ )
361
+ else:
362
+ self.prenet = lambda x, x_mask: x
363
+
364
+ self.encoder = Encoder(
365
+ encoder_params.n_channels + (spk_emb_dim if n_spks > 1 else 0),
366
+ encoder_params.filter_channels,
367
+ encoder_params.n_heads,
368
+ encoder_params.n_layers,
369
+ encoder_params.kernel_size,
370
+ encoder_params.p_dropout,
371
+ )
372
+
373
+ self.proj_m = torch.nn.Conv1d(self.n_channels + (spk_emb_dim if n_spks > 1 else 0), self.n_feats, 1)
374
+ self.proj_w = DurationPredictor(
375
+ self.n_channels + (spk_emb_dim if n_spks > 1 else 0),
376
+ duration_predictor_params.filter_channels_dp,
377
+ duration_predictor_params.kernel_size,
378
+ duration_predictor_params.p_dropout,
379
+ )
380
+
381
+ def forward(self, x, x_lengths, spks=None):
382
+ """Run forward pass to the transformer based encoder and duration predictor
383
+
384
+ Args:
385
+ x (torch.Tensor): text input
386
+ shape: (batch_size, max_text_length)
387
+ x_lengths (torch.Tensor): text input lengths
388
+ shape: (batch_size,)
389
+ spks (torch.Tensor, optional): speaker ids. Defaults to None.
390
+ shape: (batch_size,)
391
+
392
+ Returns:
393
+ mu (torch.Tensor): average output of the encoder
394
+ shape: (batch_size, n_feats, max_text_length)
395
+ logw (torch.Tensor): log duration predicted by the duration predictor
396
+ shape: (batch_size, 1, max_text_length)
397
+ x_mask (torch.Tensor): mask for the text input
398
+ shape: (batch_size, 1, max_text_length)
399
+ """
400
+ x = self.emb(x) * math.sqrt(self.n_channels)
401
+ x = torch.transpose(x, 1, -1)
402
+ x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
403
+
404
+ x = self.prenet(x, x_mask)
405
+ if self.n_spks > 1:
406
+ x = torch.cat([x, spks.unsqueeze(-1).repeat(1, 1, x.shape[-1])], dim=1)
407
+ x = self.encoder(x, x_mask)
408
+ mu = self.proj_m(x) * x_mask
409
+
410
+ x_dp = torch.detach(x)
411
+ logw = self.proj_w(x_dp, x_mask)
412
+
413
+ return mu, logw, x_mask
src/chatterbox/models/s3gen/matcha/transformer.py ADDED
@@ -0,0 +1,316 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, Dict, Optional
2
+
3
+ import torch
4
+ import torch.nn as nn
5
+ from diffusers.models.attention import (
6
+ GEGLU,
7
+ GELU,
8
+ AdaLayerNorm,
9
+ AdaLayerNormZero,
10
+ ApproximateGELU,
11
+ )
12
+ from diffusers.models.attention_processor import Attention
13
+ from diffusers.models.lora import LoRACompatibleLinear
14
+ from diffusers.utils.torch_utils import maybe_allow_in_graph
15
+
16
+
17
+ class SnakeBeta(nn.Module):
18
+ """
19
+ A modified Snake function which uses separate parameters for the magnitude of the periodic components
20
+ Shape:
21
+ - Input: (B, C, T)
22
+ - Output: (B, C, T), same shape as the input
23
+ Parameters:
24
+ - alpha - trainable parameter that controls frequency
25
+ - beta - trainable parameter that controls magnitude
26
+ References:
27
+ - This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
28
+ https://arxiv.org/abs/2006.08195
29
+ Examples:
30
+ >>> a1 = snakebeta(256)
31
+ >>> x = torch.randn(256)
32
+ >>> x = a1(x)
33
+ """
34
+
35
+ def __init__(self, in_features, out_features, alpha=1.0, alpha_trainable=True, alpha_logscale=True):
36
+ """
37
+ Initialization.
38
+ INPUT:
39
+ - in_features: shape of the input
40
+ - alpha - trainable parameter that controls frequency
41
+ - beta - trainable parameter that controls magnitude
42
+ alpha is initialized to 1 by default, higher values = higher-frequency.
43
+ beta is initialized to 1 by default, higher values = higher-magnitude.
44
+ alpha will be trained along with the rest of your model.
45
+ """
46
+ super().__init__()
47
+ self.in_features = out_features if isinstance(out_features, list) else [out_features]
48
+ self.proj = LoRACompatibleLinear(in_features, out_features)
49
+
50
+ # initialize alpha
51
+ self.alpha_logscale = alpha_logscale
52
+ if self.alpha_logscale: # log scale alphas initialized to zeros
53
+ self.alpha = nn.Parameter(torch.zeros(self.in_features) * alpha)
54
+ self.beta = nn.Parameter(torch.zeros(self.in_features) * alpha)
55
+ else: # linear scale alphas initialized to ones
56
+ self.alpha = nn.Parameter(torch.ones(self.in_features) * alpha)
57
+ self.beta = nn.Parameter(torch.ones(self.in_features) * alpha)
58
+
59
+ self.alpha.requires_grad = alpha_trainable
60
+ self.beta.requires_grad = alpha_trainable
61
+
62
+ self.no_div_by_zero = 0.000000001
63
+
64
+ def forward(self, x):
65
+ """
66
+ Forward pass of the function.
67
+ Applies the function to the input elementwise.
68
+ SnakeBeta ∶= x + 1/b * sin^2 (xa)
69
+ """
70
+ x = self.proj(x)
71
+ if self.alpha_logscale:
72
+ alpha = torch.exp(self.alpha)
73
+ beta = torch.exp(self.beta)
74
+ else:
75
+ alpha = self.alpha
76
+ beta = self.beta
77
+
78
+ x = x + (1.0 / (beta + self.no_div_by_zero)) * torch.pow(torch.sin(x * alpha), 2)
79
+
80
+ return x
81
+
82
+
83
+ class FeedForward(nn.Module):
84
+ r"""
85
+ A feed-forward layer.
86
+
87
+ Parameters:
88
+ dim (`int`): The number of channels in the input.
89
+ dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
90
+ mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
91
+ dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
92
+ activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
93
+ final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
94
+ """
95
+
96
+ def __init__(
97
+ self,
98
+ dim: int,
99
+ dim_out: Optional[int] = None,
100
+ mult: int = 4,
101
+ dropout: float = 0.0,
102
+ activation_fn: str = "geglu",
103
+ final_dropout: bool = False,
104
+ ):
105
+ super().__init__()
106
+ inner_dim = int(dim * mult)
107
+ dim_out = dim_out if dim_out is not None else dim
108
+
109
+ if activation_fn == "gelu":
110
+ act_fn = GELU(dim, inner_dim)
111
+ if activation_fn == "gelu-approximate":
112
+ act_fn = GELU(dim, inner_dim, approximate="tanh")
113
+ elif activation_fn == "geglu":
114
+ act_fn = GEGLU(dim, inner_dim)
115
+ elif activation_fn == "geglu-approximate":
116
+ act_fn = ApproximateGELU(dim, inner_dim)
117
+ elif activation_fn == "snakebeta":
118
+ act_fn = SnakeBeta(dim, inner_dim)
119
+
120
+ self.net = nn.ModuleList([])
121
+ # project in
122
+ self.net.append(act_fn)
123
+ # project dropout
124
+ self.net.append(nn.Dropout(dropout))
125
+ # project out
126
+ self.net.append(LoRACompatibleLinear(inner_dim, dim_out))
127
+ # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
128
+ if final_dropout:
129
+ self.net.append(nn.Dropout(dropout))
130
+
131
+ def forward(self, hidden_states):
132
+ for module in self.net:
133
+ hidden_states = module(hidden_states)
134
+ return hidden_states
135
+
136
+
137
+ @maybe_allow_in_graph
138
+ class BasicTransformerBlock(nn.Module):
139
+ r"""
140
+ A basic Transformer block.
141
+
142
+ Parameters:
143
+ dim (`int`): The number of channels in the input and output.
144
+ num_attention_heads (`int`): The number of heads to use for multi-head attention.
145
+ attention_head_dim (`int`): The number of channels in each head.
146
+ dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
147
+ cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
148
+ only_cross_attention (`bool`, *optional*):
149
+ Whether to use only cross-attention layers. In this case two cross attention layers are used.
150
+ double_self_attention (`bool`, *optional*):
151
+ Whether to use two self-attention layers. In this case no cross attention layers are used.
152
+ activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
153
+ num_embeds_ada_norm (:
154
+ obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
155
+ attention_bias (:
156
+ obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
157
+ """
158
+
159
+ def __init__(
160
+ self,
161
+ dim: int,
162
+ num_attention_heads: int,
163
+ attention_head_dim: int,
164
+ dropout=0.0,
165
+ cross_attention_dim: Optional[int] = None,
166
+ activation_fn: str = "geglu",
167
+ num_embeds_ada_norm: Optional[int] = None,
168
+ attention_bias: bool = False,
169
+ only_cross_attention: bool = False,
170
+ double_self_attention: bool = False,
171
+ upcast_attention: bool = False,
172
+ norm_elementwise_affine: bool = True,
173
+ norm_type: str = "layer_norm",
174
+ final_dropout: bool = False,
175
+ ):
176
+ super().__init__()
177
+ self.only_cross_attention = only_cross_attention
178
+
179
+ self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
180
+ self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
181
+
182
+ if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
183
+ raise ValueError(
184
+ f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
185
+ f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
186
+ )
187
+
188
+ # Define 3 blocks. Each block has its own normalization layer.
189
+ # 1. Self-Attn
190
+ if self.use_ada_layer_norm:
191
+ self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
192
+ elif self.use_ada_layer_norm_zero:
193
+ self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
194
+ else:
195
+ self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
196
+ self.attn1 = Attention(
197
+ query_dim=dim,
198
+ heads=num_attention_heads,
199
+ dim_head=attention_head_dim,
200
+ dropout=dropout,
201
+ bias=attention_bias,
202
+ cross_attention_dim=cross_attention_dim if only_cross_attention else None,
203
+ upcast_attention=upcast_attention,
204
+ )
205
+
206
+ # 2. Cross-Attn
207
+ if cross_attention_dim is not None or double_self_attention:
208
+ # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
209
+ # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
210
+ # the second cross attention block.
211
+ self.norm2 = (
212
+ AdaLayerNorm(dim, num_embeds_ada_norm)
213
+ if self.use_ada_layer_norm
214
+ else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
215
+ )
216
+ self.attn2 = Attention(
217
+ query_dim=dim,
218
+ cross_attention_dim=cross_attention_dim if not double_self_attention else None,
219
+ heads=num_attention_heads,
220
+ dim_head=attention_head_dim,
221
+ dropout=dropout,
222
+ bias=attention_bias,
223
+ upcast_attention=upcast_attention,
224
+ # scale_qk=False, # uncomment this to not to use flash attention
225
+ ) # is self-attn if encoder_hidden_states is none
226
+ else:
227
+ self.norm2 = None
228
+ self.attn2 = None
229
+
230
+ # 3. Feed-forward
231
+ self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
232
+ self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout)
233
+
234
+ # let chunk size default to None
235
+ self._chunk_size = None
236
+ self._chunk_dim = 0
237
+
238
+ def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int):
239
+ # Sets chunk feed-forward
240
+ self._chunk_size = chunk_size
241
+ self._chunk_dim = dim
242
+
243
+ def forward(
244
+ self,
245
+ hidden_states: torch.FloatTensor,
246
+ attention_mask: Optional[torch.FloatTensor] = None,
247
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
248
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
249
+ timestep: Optional[torch.LongTensor] = None,
250
+ cross_attention_kwargs: Dict[str, Any] = None,
251
+ class_labels: Optional[torch.LongTensor] = None,
252
+ ):
253
+ # Notice that normalization is always applied before the real computation in the following blocks.
254
+ # 1. Self-Attention
255
+ if self.use_ada_layer_norm:
256
+ norm_hidden_states = self.norm1(hidden_states, timestep)
257
+ elif self.use_ada_layer_norm_zero:
258
+ norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
259
+ hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
260
+ )
261
+ else:
262
+ norm_hidden_states = self.norm1(hidden_states)
263
+
264
+ cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
265
+
266
+ attn_output = self.attn1(
267
+ norm_hidden_states,
268
+ encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
269
+ attention_mask=encoder_attention_mask if self.only_cross_attention else attention_mask,
270
+ **cross_attention_kwargs,
271
+ )
272
+ if self.use_ada_layer_norm_zero:
273
+ attn_output = gate_msa.unsqueeze(1) * attn_output
274
+ hidden_states = attn_output + hidden_states
275
+
276
+ # 2. Cross-Attention
277
+ if self.attn2 is not None:
278
+ norm_hidden_states = (
279
+ self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
280
+ )
281
+
282
+ attn_output = self.attn2(
283
+ norm_hidden_states,
284
+ encoder_hidden_states=encoder_hidden_states,
285
+ attention_mask=encoder_attention_mask,
286
+ **cross_attention_kwargs,
287
+ )
288
+ hidden_states = attn_output + hidden_states
289
+
290
+ # 3. Feed-forward
291
+ norm_hidden_states = self.norm3(hidden_states)
292
+
293
+ if self.use_ada_layer_norm_zero:
294
+ norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
295
+
296
+ if self._chunk_size is not None:
297
+ # "feed_forward_chunk_size" can be used to save memory
298
+ if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
299
+ raise ValueError(
300
+ f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
301
+ )
302
+
303
+ num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
304
+ ff_output = torch.cat(
305
+ [self.ff(hid_slice) for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)],
306
+ dim=self._chunk_dim,
307
+ )
308
+ else:
309
+ ff_output = self.ff(norm_hidden_states)
310
+
311
+ if self.use_ada_layer_norm_zero:
312
+ ff_output = gate_mlp.unsqueeze(1) * ff_output
313
+
314
+ hidden_states = ff_output + hidden_states
315
+
316
+ return hidden_states
src/chatterbox/models/s3gen/s3gen.py ADDED
@@ -0,0 +1,305 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Modified from CosyVoice https://github.com/FunAudioLLM/CosyVoice
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import logging
16
+
17
+ import numpy as np
18
+ import torch
19
+ import torchaudio as ta
20
+ from functools import lru_cache
21
+ from typing import Optional
22
+ from omegaconf import DictConfig
23
+
24
+ from ..s3tokenizer import S3_SR, SPEECH_VOCAB_SIZE, S3Tokenizer
25
+ from .const import S3GEN_SR
26
+ from .flow import CausalMaskedDiffWithXvec
27
+ from .xvector import CAMPPlus
28
+ from .utils.mel import mel_spectrogram
29
+ from .f0_predictor import ConvRNNF0Predictor
30
+ from .hifigan import HiFTGenerator
31
+ from .transformer.upsample_encoder import UpsampleConformerEncoder
32
+ from .flow_matching import CausalConditionalCFM
33
+ from .decoder import ConditionalDecoder
34
+
35
+
36
+ def drop_invalid_tokens(x):
37
+ assert len(x.shape) <= 2 and x.shape[0] == 1, "only batch size of one allowed for now"
38
+ return x[x < SPEECH_VOCAB_SIZE]
39
+
40
+
41
+ # TODO: global resampler cache
42
+ @lru_cache(100)
43
+ def get_resampler(src_sr, dst_sr, device):
44
+ return ta.transforms.Resample(src_sr, dst_sr).to(device)
45
+
46
+
47
+ class S3Token2Mel(torch.nn.Module):
48
+ """
49
+ CosyVoice2's CFM decoder maps S3 speech tokens to mel-spectrograms.
50
+
51
+ TODO: make these modules configurable?
52
+ """
53
+ def __init__(self):
54
+ super().__init__()
55
+ self.tokenizer = S3Tokenizer("speech_tokenizer_v2_25hz")
56
+ self.mel_extractor = mel_spectrogram # TODO: make it a torch module?
57
+ self.speaker_encoder = CAMPPlus() # use default args
58
+
59
+ encoder = UpsampleConformerEncoder(
60
+ output_size=512,
61
+ attention_heads=8,
62
+ linear_units=2048,
63
+ num_blocks=6,
64
+ dropout_rate=0.1,
65
+ positional_dropout_rate=0.1,
66
+ attention_dropout_rate=0.1,
67
+ normalize_before=True,
68
+ input_layer='linear',
69
+ pos_enc_layer_type='rel_pos_espnet',
70
+ selfattention_layer_type='rel_selfattn',
71
+ input_size=512,
72
+ use_cnn_module=False,
73
+ macaron_style=False,
74
+ )
75
+
76
+ estimator = ConditionalDecoder(
77
+ in_channels=320,
78
+ out_channels=80,
79
+ causal=True,
80
+ channels=[256],
81
+ dropout=0.0,
82
+ attention_head_dim=64,
83
+ n_blocks=4,
84
+ num_mid_blocks=12,
85
+ num_heads=8,
86
+ act_fn='gelu',
87
+ )
88
+ cfm_params = DictConfig({
89
+ "sigma_min": 1e-06,
90
+ "solver": 'euler',
91
+ "t_scheduler": 'cosine',
92
+ "training_cfg_rate": 0.2,
93
+ "inference_cfg_rate": 0.7,
94
+ "reg_loss_type": 'l1',
95
+ })
96
+ decoder = CausalConditionalCFM(
97
+ spk_emb_dim=80,
98
+ cfm_params=cfm_params,
99
+ estimator=estimator,
100
+ )
101
+
102
+ self.flow = CausalMaskedDiffWithXvec(
103
+ encoder=encoder,
104
+ decoder=decoder
105
+ )
106
+
107
+ self.resamplers = {}
108
+
109
+ @property
110
+ def device(self):
111
+ params = self.tokenizer.parameters()
112
+ return next(params).device
113
+
114
+ def embed_ref(
115
+ self,
116
+ ref_wav: torch.Tensor,
117
+ ref_sr: int,
118
+ device="auto",
119
+ ref_fade_out=True,
120
+ ):
121
+ device = self.device if device == "auto" else device
122
+ if isinstance(ref_wav, np.ndarray):
123
+ ref_wav = torch.from_numpy(ref_wav).float()
124
+
125
+ if ref_wav.device != device:
126
+ ref_wav = ref_wav.to(device)
127
+
128
+ if len(ref_wav.shape) == 1:
129
+ ref_wav = ref_wav.unsqueeze(0) # (B, L)
130
+
131
+ if ref_wav.size(1) > 10 * ref_sr:
132
+ print("WARNING: cosydec received ref longer than 10s")
133
+
134
+ ref_wav_24 = ref_wav
135
+ if ref_sr != S3GEN_SR:
136
+ ref_wav_24 = get_resampler(ref_sr, S3GEN_SR, device)(ref_wav)
137
+
138
+ ref_mels_24 = self.mel_extractor(ref_wav_24).transpose(1, 2).to(device)
139
+ ref_mels_24_len = None
140
+
141
+ # Resample to 16kHz
142
+ ref_wav_16 = get_resampler(ref_sr, S3_SR, device)(ref_wav).to(device)
143
+
144
+ # Speaker embedding
145
+ ref_x_vector = self.speaker_encoder.inference(ref_wav_16)
146
+
147
+ # Tokenize 16khz reference
148
+ ref_speech_tokens, ref_speech_token_lens = self.tokenizer(ref_wav_16)
149
+
150
+ # Make sure mel_len = 2 * stoken_len (happens when the input is not padded to multiple of 40ms)
151
+ if ref_mels_24.shape[1] != 2 * ref_speech_tokens.shape[1]:
152
+ logging.warning(
153
+ "Reference mel length is not equal to 2 * reference token length.\n"
154
+ )
155
+ ref_speech_tokens = ref_speech_tokens[:, :ref_mels_24.shape[1] // 2]
156
+ ref_speech_token_lens[0] = ref_speech_tokens.shape[1]
157
+
158
+ return dict(
159
+ prompt_token=ref_speech_tokens.to(device),
160
+ prompt_token_len=ref_speech_token_lens,
161
+ prompt_feat=ref_mels_24,
162
+ prompt_feat_len=ref_mels_24_len,
163
+ embedding=ref_x_vector,
164
+ )
165
+
166
+ def forward(
167
+ self,
168
+ speech_tokens: torch.LongTensor,
169
+ # locally-computed ref embedding (mutex with ref_dict)
170
+ ref_wav: Optional[torch.Tensor],
171
+ ref_sr: Optional[int],
172
+ # pre-computed ref embedding (prod API)
173
+ ref_dict: Optional[dict] = None,
174
+ finalize: bool = False,
175
+ ):
176
+ """
177
+ Generate waveforms from S3 speech tokens and a reference waveform, which the speaker timbre is inferred from.
178
+
179
+ NOTE:
180
+ - The speaker encoder accepts 16 kHz waveform.
181
+ - S3TokenizerV2 accepts 16 kHz waveform.
182
+ - The mel-spectrogram for the reference assumes 24 kHz input signal.
183
+ - This function is designed for batch_size=1 only.
184
+
185
+ Args
186
+ ----
187
+ - `speech_tokens`: S3 speech tokens [B=1, T]
188
+ - `ref_wav`: reference waveform (`torch.Tensor` with shape=[B=1, T])
189
+ - `ref_sr`: reference sample rate
190
+ - `finalize`: whether streaming is finished or not. Note that if False, the last 3 tokens will be ignored.
191
+ """
192
+ assert (ref_wav is None) ^ (ref_dict is None), f"Must provide exactly one of ref_wav or ref_dict (got {ref_wav} and {ref_dict})"
193
+
194
+ if ref_dict is None:
195
+ ref_dict = self.embed_ref(ref_wav, ref_sr)
196
+ else:
197
+ # type/device casting (all values will be numpy if it's from a prod API call)
198
+ for rk in list(ref_dict):
199
+ if isinstance(ref_dict[rk], np.ndarray):
200
+ ref_dict[rk] = torch.from_numpy(ref_dict[rk])
201
+ if torch.is_tensor(ref_dict[rk]):
202
+ ref_dict[rk] = ref_dict[rk].to(self.device)
203
+
204
+ if len(speech_tokens.shape) == 1:
205
+ speech_tokens = speech_tokens.unsqueeze(0)
206
+
207
+ # assert speech_tokens.shape[0] == 1, "only batch size of one allowed for now"
208
+ speech_token_lens = torch.LongTensor([speech_tokens.size(1)]).to(self.device)
209
+
210
+ output_mels, _ = self.flow.inference(
211
+ token=speech_tokens,
212
+ token_len=speech_token_lens,
213
+ finalize=finalize,
214
+ **ref_dict,
215
+ )
216
+ return output_mels
217
+
218
+
219
+ class S3Token2Wav(S3Token2Mel):
220
+ """
221
+ The decoder of CosyVoice2 is a concat of token-to-mel (CFM) and a mel-to-waveform (HiFiGAN) modules.
222
+
223
+ TODO: make these modules configurable?
224
+ """
225
+
226
+ def __init__(self):
227
+ super().__init__()
228
+
229
+ f0_predictor = ConvRNNF0Predictor()
230
+ self.mel2wav = HiFTGenerator(
231
+ sampling_rate=S3GEN_SR,
232
+ upsample_rates=[8, 5, 3],
233
+ upsample_kernel_sizes=[16, 11, 7],
234
+ source_resblock_kernel_sizes=[7, 7, 11],
235
+ source_resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
236
+ f0_predictor=f0_predictor,
237
+ )
238
+
239
+ # silence out a few ms and fade audio in to reduce artifacts
240
+ n_trim = S3GEN_SR // 50 # 20ms = half of a frame
241
+ trim_fade = torch.zeros(2 * n_trim)
242
+ trim_fade[n_trim:] = (torch.cos(torch.linspace(torch.pi, 0, n_trim)) + 1) / 2
243
+ self.register_buffer("trim_fade", trim_fade, persistent=False) # (buffers get automatic device casting)
244
+
245
+ def forward(
246
+ self,
247
+ speech_tokens,
248
+ # locally-computed ref embedding (mutex with ref_dict)
249
+ ref_wav: Optional[torch.Tensor],
250
+ ref_sr: Optional[int],
251
+ # pre-computed ref embedding (prod API)
252
+ ref_dict: Optional[dict] = None,
253
+ finalize: bool = False
254
+ ):
255
+ output_mels = super().forward(speech_tokens, ref_wav=ref_wav, ref_sr=ref_sr, ref_dict=ref_dict, finalize=finalize)
256
+
257
+ # TODO jrm: ignoring the speed control (mel interpolation) and the HiFTGAN caching mechanisms for now.
258
+ hift_cache_source = torch.zeros(1, 1, 0).to(self.device)
259
+
260
+ output_wavs, *_ = self.mel2wav.inference(speech_feat=output_mels, cache_source=hift_cache_source)
261
+
262
+ if not self.training:
263
+ # NOTE: ad-hoc method to reduce "spillover" from the reference clip.
264
+ output_wavs[:, :len(self.trim_fade)] *= self.trim_fade
265
+
266
+ return output_wavs
267
+
268
+ @torch.inference_mode()
269
+ def flow_inference(
270
+ self,
271
+ speech_tokens,
272
+ # locally-computed ref embedding (mutex with ref_dict)
273
+ ref_wav: Optional[torch.Tensor] = None,
274
+ ref_sr: Optional[int] = None,
275
+ # pre-computed ref embedding (prod API)
276
+ ref_dict: Optional[dict] = None,
277
+ finalize: bool = False,
278
+ ):
279
+ return super().forward(speech_tokens, ref_wav=ref_wav, ref_sr=ref_sr, ref_dict=ref_dict, finalize=finalize)
280
+
281
+ @torch.inference_mode()
282
+ def hift_inference(self, speech_feat, cache_source: torch.Tensor = None):
283
+ if cache_source is None:
284
+ cache_source = torch.zeros(1, 1, 0).to(self.device)
285
+ return self.mel2wav.inference(speech_feat=speech_feat, cache_source=cache_source)
286
+
287
+ @torch.inference_mode()
288
+ def inference(
289
+ self,
290
+ speech_tokens,
291
+ # locally-computed ref embedding (mutex with ref_dict)
292
+ ref_wav: Optional[torch.Tensor] = None,
293
+ ref_sr: Optional[int] = None,
294
+ # pre-computed ref embedding (prod API)
295
+ ref_dict: Optional[dict] = None,
296
+ cache_source: torch.Tensor = None, # NOTE: this arg is for streaming, it can probably be removed here
297
+ finalize: bool = True,
298
+ ):
299
+ output_mels = self.flow_inference(speech_tokens, ref_wav=ref_wav, ref_sr=ref_sr, ref_dict=ref_dict, finalize=finalize)
300
+ output_wavs, output_sources = self.hift_inference(output_mels, cache_source)
301
+
302
+ # NOTE: ad-hoc method to reduce "spillover" from the reference clip.
303
+ output_wavs[:, :len(self.trim_fade)] *= self.trim_fade
304
+
305
+ return output_wavs, output_sources
src/chatterbox/models/s3gen/transformer/__init__.py ADDED
File without changes
src/chatterbox/models/s3gen/transformer/activation.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2020 Johns Hopkins University (Shinji Watanabe)
2
+ # 2020 Northwestern Polytechnical University (Pengcheng Guo)
3
+ # 2020 Mobvoi Inc (Binbin Zhang)
4
+ # 2024 Alibaba Inc (Xiang Lyu)
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+ """Swish() activation function for Conformer."""
18
+
19
+ import torch
20
+ from torch import nn, sin, pow
21
+ from torch.nn import Parameter
22
+
23
+
24
+ class Swish(torch.nn.Module):
25
+ """Construct an Swish object."""
26
+
27
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
28
+ """Return Swish activation function."""
29
+ return x * torch.sigmoid(x)
30
+
31
+
32
+ # Implementation adapted from https://github.com/EdwardDixon/snake under the MIT license.
33
+ # LICENSE is in incl_licenses directory.
34
+ class Snake(nn.Module):
35
+ '''
36
+ Implementation of a sine-based periodic activation function
37
+ Shape:
38
+ - Input: (B, C, T)
39
+ - Output: (B, C, T), same shape as the input
40
+ Parameters:
41
+ - alpha - trainable parameter
42
+ References:
43
+ - This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
44
+ https://arxiv.org/abs/2006.08195
45
+ Examples:
46
+ >>> a1 = snake(256)
47
+ >>> x = torch.randn(256)
48
+ >>> x = a1(x)
49
+ '''
50
+ def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
51
+ '''
52
+ Initialization.
53
+ INPUT:
54
+ - in_features: shape of the input
55
+ - alpha: trainable parameter
56
+ alpha is initialized to 1 by default, higher values = higher-frequency.
57
+ alpha will be trained along with the rest of your model.
58
+ '''
59
+ super(Snake, self).__init__()
60
+ self.in_features = in_features
61
+
62
+ # initialize alpha
63
+ self.alpha_logscale = alpha_logscale
64
+ if self.alpha_logscale: # log scale alphas initialized to zeros
65
+ self.alpha = Parameter(torch.zeros(in_features) * alpha)
66
+ else: # linear scale alphas initialized to ones
67
+ self.alpha = Parameter(torch.ones(in_features) * alpha)
68
+
69
+ self.alpha.requires_grad = alpha_trainable
70
+
71
+ self.no_div_by_zero = 0.000000001
72
+
73
+ def forward(self, x):
74
+ '''
75
+ Forward pass of the function.
76
+ Applies the function to the input elementwise.
77
+ Snake ∶= x + 1/a * sin^2 (xa)
78
+ '''
79
+ alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
80
+ if self.alpha_logscale:
81
+ alpha = torch.exp(alpha)
82
+ x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
83
+
84
+ return x
src/chatterbox/models/s3gen/transformer/attention.py ADDED
@@ -0,0 +1,330 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2019 Shigeki Karita
2
+ # 2020 Mobvoi Inc (Binbin Zhang)
3
+ # 2022 Xingchen Song (sxc19@mails.tsinghua.edu.cn)
4
+ # 2024 Alibaba Inc (Xiang Lyu)
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+ """Multi-Head Attention layer definition."""
18
+
19
+ import math
20
+ from typing import Tuple
21
+
22
+ import torch
23
+ from torch import nn
24
+
25
+
26
+ class MultiHeadedAttention(nn.Module):
27
+ """Multi-Head Attention layer.
28
+
29
+ Args:
30
+ n_head (int): The number of heads.
31
+ n_feat (int): The number of features.
32
+ dropout_rate (float): Dropout rate.
33
+
34
+ """
35
+
36
+ def __init__(self,
37
+ n_head: int,
38
+ n_feat: int,
39
+ dropout_rate: float,
40
+ key_bias: bool = True):
41
+ """Construct an MultiHeadedAttention object."""
42
+ super().__init__()
43
+ assert n_feat % n_head == 0
44
+ # We assume d_v always equals d_k
45
+ self.d_k = n_feat // n_head
46
+ self.h = n_head
47
+ self.linear_q = nn.Linear(n_feat, n_feat)
48
+ self.linear_k = nn.Linear(n_feat, n_feat, bias=key_bias)
49
+ self.linear_v = nn.Linear(n_feat, n_feat)
50
+ self.linear_out = nn.Linear(n_feat, n_feat)
51
+ self.dropout = nn.Dropout(p=dropout_rate)
52
+
53
+ def forward_qkv(
54
+ self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor
55
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
56
+ """Transform query, key and value.
57
+
58
+ Args:
59
+ query (torch.Tensor): Query tensor (#batch, time1, size).
60
+ key (torch.Tensor): Key tensor (#batch, time2, size).
61
+ value (torch.Tensor): Value tensor (#batch, time2, size).
62
+
63
+ Returns:
64
+ torch.Tensor: Transformed query tensor, size
65
+ (#batch, n_head, time1, d_k).
66
+ torch.Tensor: Transformed key tensor, size
67
+ (#batch, n_head, time2, d_k).
68
+ torch.Tensor: Transformed value tensor, size
69
+ (#batch, n_head, time2, d_k).
70
+
71
+ """
72
+ n_batch = query.size(0)
73
+ q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k)
74
+ k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k)
75
+ v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k)
76
+ q = q.transpose(1, 2) # (batch, head, time1, d_k)
77
+ k = k.transpose(1, 2) # (batch, head, time2, d_k)
78
+ v = v.transpose(1, 2) # (batch, head, time2, d_k)
79
+
80
+ return q, k, v
81
+
82
+ def forward_attention(
83
+ self,
84
+ value: torch.Tensor,
85
+ scores: torch.Tensor,
86
+ mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool)
87
+ ) -> torch.Tensor:
88
+ """Compute attention context vector.
89
+
90
+ Args:
91
+ value (torch.Tensor): Transformed value, size
92
+ (#batch, n_head, time2, d_k).
93
+ scores (torch.Tensor): Attention score, size
94
+ (#batch, n_head, time1, time2).
95
+ mask (torch.Tensor): Mask, size (#batch, 1, time2) or
96
+ (#batch, time1, time2), (0, 0, 0) means fake mask.
97
+
98
+ Returns:
99
+ torch.Tensor: Transformed value (#batch, time1, d_model)
100
+ weighted by the attention score (#batch, time1, time2).
101
+
102
+ """
103
+ n_batch = value.size(0)
104
+ # NOTE(xcsong): When will `if mask.size(2) > 0` be True?
105
+ # 1. onnx(16/4) [WHY? Because we feed real cache & real mask for the
106
+ # 1st chunk to ease the onnx export.]
107
+ # 2. pytorch training
108
+ if mask.size(2) > 0: # time2 > 0
109
+ mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2)
110
+ # For last chunk, time2 might be larger than scores.size(-1)
111
+ mask = mask[:, :, :, :scores.size(-1)] # (batch, 1, *, time2)
112
+ scores = scores.masked_fill(mask, -float('inf'))
113
+ attn = torch.softmax(scores, dim=-1).masked_fill(
114
+ mask, 0.0) # (batch, head, time1, time2)
115
+ # NOTE(xcsong): When will `if mask.size(2) > 0` be False?
116
+ # 1. onnx(16/-1, -1/-1, 16/0)
117
+ # 2. jit (16/-1, -1/-1, 16/0, 16/4)
118
+ else:
119
+ attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2)
120
+
121
+ p_attn = self.dropout(attn)
122
+ x = torch.matmul(p_attn, value) # (batch, head, time1, d_k)
123
+ x = (x.transpose(1, 2).contiguous().view(n_batch, -1,
124
+ self.h * self.d_k)
125
+ ) # (batch, time1, d_model)
126
+
127
+ return self.linear_out(x) # (batch, time1, d_model)
128
+
129
+ def forward(
130
+ self,
131
+ query: torch.Tensor,
132
+ key: torch.Tensor,
133
+ value: torch.Tensor,
134
+ mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
135
+ pos_emb: torch.Tensor = torch.empty(0),
136
+ cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
137
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
138
+ """Compute scaled dot product attention.
139
+
140
+ Args:
141
+ query (torch.Tensor): Query tensor (#batch, time1, size).
142
+ key (torch.Tensor): Key tensor (#batch, time2, size).
143
+ value (torch.Tensor): Value tensor (#batch, time2, size).
144
+ mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
145
+ (#batch, time1, time2).
146
+ 1.When applying cross attention between decoder and encoder,
147
+ the batch padding mask for input is in (#batch, 1, T) shape.
148
+ 2.When applying self attention of encoder,
149
+ the mask is in (#batch, T, T) shape.
150
+ 3.When applying self attention of decoder,
151
+ the mask is in (#batch, L, L) shape.
152
+ 4.If the different position in decoder see different block
153
+ of the encoder, such as Mocha, the passed in mask could be
154
+ in (#batch, L, T) shape. But there is no such case in current
155
+ CosyVoice.
156
+ cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
157
+ where `cache_t == chunk_size * num_decoding_left_chunks`
158
+ and `head * d_k == size`
159
+
160
+
161
+ Returns:
162
+ torch.Tensor: Output tensor (#batch, time1, d_model).
163
+ torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
164
+ where `cache_t == chunk_size * num_decoding_left_chunks`
165
+ and `head * d_k == size`
166
+
167
+ """
168
+ q, k, v = self.forward_qkv(query, key, value)
169
+
170
+ # NOTE(xcsong):
171
+ # when export onnx model, for 1st chunk, we feed
172
+ # cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
173
+ # or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
174
+ # In all modes, `if cache.size(0) > 0` will alwayse be `True`
175
+ # and we will always do splitting and
176
+ # concatnation(this will simplify onnx export). Note that
177
+ # it's OK to concat & split zero-shaped tensors(see code below).
178
+ # when export jit model, for 1st chunk, we always feed
179
+ # cache(0, 0, 0, 0) since jit supports dynamic if-branch.
180
+ # >>> a = torch.ones((1, 2, 0, 4))
181
+ # >>> b = torch.ones((1, 2, 3, 4))
182
+ # >>> c = torch.cat((a, b), dim=2)
183
+ # >>> torch.equal(b, c) # True
184
+ # >>> d = torch.split(a, 2, dim=-1)
185
+ # >>> torch.equal(d[0], d[1]) # True
186
+ if cache.size(0) > 0:
187
+ key_cache, value_cache = torch.split(cache,
188
+ cache.size(-1) // 2,
189
+ dim=-1)
190
+ k = torch.cat([key_cache, k], dim=2)
191
+ v = torch.cat([value_cache, v], dim=2)
192
+ # NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's
193
+ # non-trivial to calculate `next_cache_start` here.
194
+ new_cache = torch.cat((k, v), dim=-1)
195
+
196
+ scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k)
197
+ return self.forward_attention(v, scores, mask), new_cache
198
+
199
+
200
+ class RelPositionMultiHeadedAttention(MultiHeadedAttention):
201
+ """Multi-Head Attention layer with relative position encoding.
202
+ Paper: https://arxiv.org/abs/1901.02860
203
+ Args:
204
+ n_head (int): The number of heads.
205
+ n_feat (int): The number of features.
206
+ dropout_rate (float): Dropout rate.
207
+ """
208
+
209
+ def __init__(self,
210
+ n_head: int,
211
+ n_feat: int,
212
+ dropout_rate: float,
213
+ key_bias: bool = True):
214
+ """Construct an RelPositionMultiHeadedAttention object."""
215
+ super().__init__(n_head, n_feat, dropout_rate, key_bias)
216
+ # linear transformation for positional encoding
217
+ self.linear_pos = nn.Linear(n_feat, n_feat, bias=False)
218
+ # these two learnable bias are used in matrix c and matrix d
219
+ # as described in https://arxiv.org/abs/1901.02860 Section 3.3
220
+ self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k))
221
+ self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k))
222
+ torch.nn.init.xavier_uniform_(self.pos_bias_u)
223
+ torch.nn.init.xavier_uniform_(self.pos_bias_v)
224
+
225
+ def rel_shift(self, x: torch.Tensor) -> torch.Tensor:
226
+ """Compute relative positional encoding.
227
+
228
+ Args:
229
+ x (torch.Tensor): Input tensor (batch, head, time1, 2*time1-1).
230
+ time1 means the length of query vector.
231
+
232
+ Returns:
233
+ torch.Tensor: Output tensor.
234
+
235
+ """
236
+ zero_pad = torch.zeros((x.size()[0], x.size()[1], x.size()[2], 1),
237
+ device=x.device,
238
+ dtype=x.dtype)
239
+ x_padded = torch.cat([zero_pad, x], dim=-1)
240
+
241
+ x_padded = x_padded.view(x.size()[0],
242
+ x.size()[1],
243
+ x.size(3) + 1, x.size(2))
244
+ x = x_padded[:, :, 1:].view_as(x)[
245
+ :, :, :, : x.size(-1) // 2 + 1
246
+ ] # only keep the positions from 0 to time2
247
+ return x
248
+
249
+ def forward(
250
+ self,
251
+ query: torch.Tensor,
252
+ key: torch.Tensor,
253
+ value: torch.Tensor,
254
+ mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
255
+ pos_emb: torch.Tensor = torch.empty(0),
256
+ cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
257
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
258
+ """Compute 'Scaled Dot Product Attention' with rel. positional encoding.
259
+ Args:
260
+ query (torch.Tensor): Query tensor (#batch, time1, size).
261
+ key (torch.Tensor): Key tensor (#batch, time2, size).
262
+ value (torch.Tensor): Value tensor (#batch, time2, size).
263
+ mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
264
+ (#batch, time1, time2), (0, 0, 0) means fake mask.
265
+ pos_emb (torch.Tensor): Positional embedding tensor
266
+ (#batch, time2, size).
267
+ cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
268
+ where `cache_t == chunk_size * num_decoding_left_chunks`
269
+ and `head * d_k == size`
270
+ Returns:
271
+ torch.Tensor: Output tensor (#batch, time1, d_model).
272
+ torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
273
+ where `cache_t == chunk_size * num_decoding_left_chunks`
274
+ and `head * d_k == size`
275
+ """
276
+ q, k, v = self.forward_qkv(query, key, value)
277
+ q = q.transpose(1, 2) # (batch, time1, head, d_k)
278
+
279
+ # NOTE(xcsong):
280
+ # when export onnx model, for 1st chunk, we feed
281
+ # cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
282
+ # or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
283
+ # In all modes, `if cache.size(0) > 0` will alwayse be `True`
284
+ # and we will always do splitting and
285
+ # concatnation(this will simplify onnx export). Note that
286
+ # it's OK to concat & split zero-shaped tensors(see code below).
287
+ # when export jit model, for 1st chunk, we always feed
288
+ # cache(0, 0, 0, 0) since jit supports dynamic if-branch.
289
+ # >>> a = torch.ones((1, 2, 0, 4))
290
+ # >>> b = torch.ones((1, 2, 3, 4))
291
+ # >>> c = torch.cat((a, b), dim=2)
292
+ # >>> torch.equal(b, c) # True
293
+ # >>> d = torch.split(a, 2, dim=-1)
294
+ # >>> torch.equal(d[0], d[1]) # True
295
+ if cache.size(0) > 0:
296
+ key_cache, value_cache = torch.split(cache,
297
+ cache.size(-1) // 2,
298
+ dim=-1)
299
+ k = torch.cat([key_cache, k], dim=2)
300
+ v = torch.cat([value_cache, v], dim=2)
301
+ # NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's
302
+ # non-trivial to calculate `next_cache_start` here.
303
+ new_cache = torch.cat((k, v), dim=-1)
304
+
305
+ n_batch_pos = pos_emb.size(0)
306
+ p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k)
307
+ p = p.transpose(1, 2) # (batch, head, time1, d_k)
308
+
309
+ # (batch, head, time1, d_k)
310
+ q_with_bias_u = (q + self.pos_bias_u.to(q.device)).transpose(1, 2)
311
+ # (batch, head, time1, d_k)
312
+ q_with_bias_v = (q + self.pos_bias_v.to(q.device)).transpose(1, 2)
313
+
314
+ # compute attention score
315
+ # first compute matrix a and matrix c
316
+ # as described in https://arxiv.org/abs/1901.02860 Section 3.3
317
+ # (batch, head, time1, time2)
318
+ matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1))
319
+
320
+ # compute matrix b and matrix d
321
+ # (batch, head, time1, time2)
322
+ matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1))
323
+ # NOTE(Xiang Lyu): Keep rel_shift since espnet rel_pos_emb is used
324
+ if matrix_ac.shape != matrix_bd.shape:
325
+ matrix_bd = self.rel_shift(matrix_bd)
326
+
327
+ scores = (matrix_ac + matrix_bd) / math.sqrt(
328
+ self.d_k) # (batch, head, time1, time2)
329
+
330
+ return self.forward_attention(v, scores, mask), new_cache
src/chatterbox/models/s3gen/transformer/convolution.py ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2020 Mobvoi Inc. (authors: Binbin Zhang, Di Wu)
2
+ # 2024 Alibaba Inc (Xiang Lyu)
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # Modified from ESPnet(https://github.com/espnet/espnet)
16
+ """ConvolutionModule definition."""
17
+
18
+ from typing import Tuple
19
+
20
+ import torch
21
+ from torch import nn
22
+
23
+
24
+ class ConvolutionModule(nn.Module):
25
+ """ConvolutionModule in Conformer model."""
26
+
27
+ def __init__(self,
28
+ channels: int,
29
+ kernel_size: int = 15,
30
+ activation: nn.Module = nn.ReLU(),
31
+ norm: str = "batch_norm",
32
+ causal: bool = False,
33
+ bias: bool = True):
34
+ """Construct an ConvolutionModule object.
35
+ Args:
36
+ channels (int): The number of channels of conv layers.
37
+ kernel_size (int): Kernel size of conv layers.
38
+ causal (int): Whether use causal convolution or not
39
+ """
40
+ super().__init__()
41
+
42
+ self.pointwise_conv1 = nn.Conv1d(
43
+ channels,
44
+ 2 * channels,
45
+ kernel_size=1,
46
+ stride=1,
47
+ padding=0,
48
+ bias=bias,
49
+ )
50
+ # self.lorder is used to distinguish if it's a causal convolution,
51
+ # if self.lorder > 0: it's a causal convolution, the input will be
52
+ # padded with self.lorder frames on the left in forward.
53
+ # else: it's a symmetrical convolution
54
+ if causal:
55
+ padding = 0
56
+ self.lorder = kernel_size - 1
57
+ else:
58
+ # kernel_size should be an odd number for none causal convolution
59
+ assert (kernel_size - 1) % 2 == 0
60
+ padding = (kernel_size - 1) // 2
61
+ self.lorder = 0
62
+ self.depthwise_conv = nn.Conv1d(
63
+ channels,
64
+ channels,
65
+ kernel_size,
66
+ stride=1,
67
+ padding=padding,
68
+ groups=channels,
69
+ bias=bias,
70
+ )
71
+
72
+ assert norm in ['batch_norm', 'layer_norm']
73
+ if norm == "batch_norm":
74
+ self.use_layer_norm = False
75
+ self.norm = nn.BatchNorm1d(channels)
76
+ else:
77
+ self.use_layer_norm = True
78
+ self.norm = nn.LayerNorm(channels)
79
+
80
+ self.pointwise_conv2 = nn.Conv1d(
81
+ channels,
82
+ channels,
83
+ kernel_size=1,
84
+ stride=1,
85
+ padding=0,
86
+ bias=bias,
87
+ )
88
+ self.activation = activation
89
+
90
+ def forward(
91
+ self,
92
+ x: torch.Tensor,
93
+ mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
94
+ cache: torch.Tensor = torch.zeros((0, 0, 0)),
95
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
96
+ """Compute convolution module.
97
+ Args:
98
+ x (torch.Tensor): Input tensor (#batch, time, channels).
99
+ mask_pad (torch.Tensor): used for batch padding (#batch, 1, time),
100
+ (0, 0, 0) means fake mask.
101
+ cache (torch.Tensor): left context cache, it is only
102
+ used in causal convolution (#batch, channels, cache_t),
103
+ (0, 0, 0) meas fake cache.
104
+ Returns:
105
+ torch.Tensor: Output tensor (#batch, time, channels).
106
+ """
107
+ # exchange the temporal dimension and the feature dimension
108
+ x = x.transpose(1, 2) # (#batch, channels, time)
109
+
110
+ # mask batch padding
111
+ if mask_pad.size(2) > 0: # time > 0
112
+ x.masked_fill_(~mask_pad, 0.0)
113
+
114
+ if self.lorder > 0:
115
+ if cache.size(2) == 0: # cache_t == 0
116
+ x = nn.functional.pad(x, (self.lorder, 0), 'constant', 0.0)
117
+ else:
118
+ assert cache.size(0) == x.size(0) # equal batch
119
+ assert cache.size(1) == x.size(1) # equal channel
120
+ x = torch.cat((cache, x), dim=2)
121
+ assert (x.size(2) > self.lorder)
122
+ new_cache = x[:, :, -self.lorder:]
123
+ else:
124
+ # It's better we just return None if no cache is required,
125
+ # However, for JIT export, here we just fake one tensor instead of
126
+ # None.
127
+ new_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device)
128
+
129
+ # GLU mechanism
130
+ x = self.pointwise_conv1(x) # (batch, 2*channel, dim)
131
+ x = nn.functional.glu(x, dim=1) # (batch, channel, dim)
132
+
133
+ # 1D Depthwise Conv
134
+ x = self.depthwise_conv(x)
135
+ if self.use_layer_norm:
136
+ x = x.transpose(1, 2)
137
+ x = self.activation(self.norm(x))
138
+ if self.use_layer_norm:
139
+ x = x.transpose(1, 2)
140
+ x = self.pointwise_conv2(x)
141
+ # mask batch padding
142
+ if mask_pad.size(2) > 0: # time > 0
143
+ x.masked_fill_(~mask_pad, 0.0)
144
+
145
+ return x.transpose(1, 2), new_cache
src/chatterbox/models/s3gen/transformer/embedding.py ADDED
@@ -0,0 +1,294 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2020 Mobvoi Inc. (authors: Binbin Zhang, Di Wu)
2
+ # 2024 Alibaba Inc (Xiang Lyu)
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # Modified from ESPnet(https://github.com/espnet/espnet)
16
+ """Positonal Encoding Module."""
17
+
18
+ import math
19
+ from typing import Tuple, Union
20
+
21
+ import torch
22
+ import torch.nn.functional as F
23
+ import numpy as np
24
+
25
+
26
+ class PositionalEncoding(torch.nn.Module):
27
+ """Positional encoding.
28
+
29
+ :param int d_model: embedding dim
30
+ :param float dropout_rate: dropout rate
31
+ :param int max_len: maximum input length
32
+
33
+ PE(pos, 2i) = sin(pos/(10000^(2i/dmodel)))
34
+ PE(pos, 2i+1) = cos(pos/(10000^(2i/dmodel)))
35
+ """
36
+
37
+ def __init__(self,
38
+ d_model: int,
39
+ dropout_rate: float,
40
+ max_len: int = 5000,
41
+ reverse: bool = False):
42
+ """Construct an PositionalEncoding object."""
43
+ super().__init__()
44
+ self.d_model = d_model
45
+ self.xscale = math.sqrt(self.d_model)
46
+ self.dropout = torch.nn.Dropout(p=dropout_rate)
47
+ self.max_len = max_len
48
+
49
+ self.pe = torch.zeros(self.max_len, self.d_model)
50
+ position = torch.arange(0, self.max_len,
51
+ dtype=torch.float32).unsqueeze(1)
52
+ div_term = torch.exp(
53
+ torch.arange(0, self.d_model, 2, dtype=torch.float32) *
54
+ -(math.log(10000.0) / self.d_model))
55
+ self.pe[:, 0::2] = torch.sin(position * div_term)
56
+ self.pe[:, 1::2] = torch.cos(position * div_term)
57
+ self.pe = self.pe.unsqueeze(0)
58
+
59
+ def forward(self,
60
+ x: torch.Tensor,
61
+ offset: Union[int, torch.Tensor] = 0) \
62
+ -> Tuple[torch.Tensor, torch.Tensor]:
63
+ """Add positional encoding.
64
+
65
+ Args:
66
+ x (torch.Tensor): Input. Its shape is (batch, time, ...)
67
+ offset (int, torch.tensor): position offset
68
+
69
+ Returns:
70
+ torch.Tensor: Encoded tensor. Its shape is (batch, time, ...)
71
+ torch.Tensor: for compatibility to RelPositionalEncoding
72
+ """
73
+
74
+ self.pe = self.pe.to(x.device)
75
+ pos_emb = self.position_encoding(offset, x.size(1), False)
76
+ x = x * self.xscale + pos_emb
77
+ return self.dropout(x), self.dropout(pos_emb)
78
+
79
+ def position_encoding(self,
80
+ offset: Union[int, torch.Tensor],
81
+ size: int,
82
+ apply_dropout: bool = True) -> torch.Tensor:
83
+ """ For getting encoding in a streaming fashion
84
+
85
+ Attention!!!!!
86
+ we apply dropout only once at the whole utterance level in a none
87
+ streaming way, but will call this function several times with
88
+ increasing input size in a streaming scenario, so the dropout will
89
+ be applied several times.
90
+
91
+ Args:
92
+ offset (int or torch.tensor): start offset
93
+ size (int): required size of position encoding
94
+
95
+ Returns:
96
+ torch.Tensor: Corresponding encoding
97
+ """
98
+ # How to subscript a Union type:
99
+ # https://github.com/pytorch/pytorch/issues/69434
100
+ if isinstance(offset, int):
101
+ assert offset + size <= self.max_len
102
+ pos_emb = self.pe[:, offset:offset + size]
103
+ elif isinstance(offset, torch.Tensor) and offset.dim() == 0: # scalar
104
+ assert offset + size <= self.max_len
105
+ pos_emb = self.pe[:, offset:offset + size]
106
+ else: # for batched streaming decoding on GPU
107
+ assert torch.max(offset) + size <= self.max_len
108
+ index = offset.unsqueeze(1) + \
109
+ torch.arange(0, size).to(offset.device) # B X T
110
+ flag = index > 0
111
+ # remove negative offset
112
+ index = index * flag
113
+ pos_emb = F.embedding(index, self.pe[0]) # B X T X d_model
114
+
115
+ if apply_dropout:
116
+ pos_emb = self.dropout(pos_emb)
117
+ return pos_emb
118
+
119
+
120
+ class RelPositionalEncoding(PositionalEncoding):
121
+ """Relative positional encoding module.
122
+ See : Appendix B in https://arxiv.org/abs/1901.02860
123
+ Args:
124
+ d_model (int): Embedding dimension.
125
+ dropout_rate (float): Dropout rate.
126
+ max_len (int): Maximum input length.
127
+ """
128
+
129
+ def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000):
130
+ """Initialize class."""
131
+ super().__init__(d_model, dropout_rate, max_len, reverse=True)
132
+
133
+ def forward(self,
134
+ x: torch.Tensor,
135
+ offset: Union[int, torch.Tensor] = 0) \
136
+ -> Tuple[torch.Tensor, torch.Tensor]:
137
+ """Compute positional encoding.
138
+ Args:
139
+ x (torch.Tensor): Input tensor (batch, time, `*`).
140
+ Returns:
141
+ torch.Tensor: Encoded tensor (batch, time, `*`).
142
+ torch.Tensor: Positional embedding tensor (1, time, `*`).
143
+ """
144
+ self.pe = self.pe.to(x.device)
145
+ x = x * self.xscale
146
+ pos_emb = self.position_encoding(offset, x.size(1), False)
147
+ return self.dropout(x), self.dropout(pos_emb)
148
+
149
+
150
+ class WhisperPositionalEncoding(PositionalEncoding):
151
+ """ Sinusoids position encoding used in openai-whisper.encoder
152
+ """
153
+
154
+ def __init__(self, d_model: int, dropout_rate: float, max_len: int = 1500):
155
+ super().__init__(d_model, dropout_rate, max_len)
156
+ self.xscale = 1.0
157
+ log_timescale_increment = np.log(10000) / (d_model // 2 - 1)
158
+ inv_timescales = torch.exp(-log_timescale_increment *
159
+ torch.arange(d_model // 2))
160
+ scaled_time = torch.arange(max_len)[:, np.newaxis] * \
161
+ inv_timescales[np.newaxis, :]
162
+ pe = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1)
163
+ delattr(self, "pe")
164
+ self.register_buffer("pe", pe.unsqueeze(0))
165
+
166
+
167
+ class LearnablePositionalEncoding(PositionalEncoding):
168
+ """ Learnable position encoding used in openai-whisper.decoder
169
+ """
170
+
171
+ def __init__(self, d_model: int, dropout_rate: float, max_len: int = 448):
172
+ super().__init__(d_model, dropout_rate, max_len)
173
+ # NOTE(xcsong): overwrite self.pe & self.xscale
174
+ self.pe = torch.nn.Parameter(torch.empty(1, max_len, d_model))
175
+ self.xscale = 1.0
176
+
177
+
178
+ class NoPositionalEncoding(torch.nn.Module):
179
+ """ No position encoding
180
+ """
181
+
182
+ def __init__(self, d_model: int, dropout_rate: float):
183
+ super().__init__()
184
+ self.d_model = d_model
185
+ self.dropout = torch.nn.Dropout(p=dropout_rate)
186
+
187
+ def forward(self,
188
+ x: torch.Tensor,
189
+ offset: Union[int, torch.Tensor] = 0) \
190
+ -> Tuple[torch.Tensor, torch.Tensor]:
191
+ """ Just return zero vector for interface compatibility
192
+ """
193
+ pos_emb = torch.zeros(1, x.size(1), self.d_model).to(x.device)
194
+ return self.dropout(x), pos_emb
195
+
196
+ def position_encoding(self, offset: Union[int, torch.Tensor],
197
+ size: int) -> torch.Tensor:
198
+ return torch.zeros(1, size, self.d_model)
199
+
200
+
201
+ class EspnetRelPositionalEncoding(torch.nn.Module):
202
+ """Relative positional encoding module (new implementation).
203
+
204
+ Details can be found in https://github.com/espnet/espnet/pull/2816.
205
+
206
+ See : Appendix B in https://arxiv.org/abs/1901.02860
207
+
208
+ Args:
209
+ d_model (int): Embedding dimension.
210
+ dropout_rate (float): Dropout rate.
211
+ max_len (int): Maximum input length.
212
+
213
+ """
214
+
215
+ def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000):
216
+ """Construct an PositionalEncoding object."""
217
+ super(EspnetRelPositionalEncoding, self).__init__()
218
+ self.d_model = d_model
219
+ self.xscale = math.sqrt(self.d_model)
220
+ self.dropout = torch.nn.Dropout(p=dropout_rate)
221
+ self.pe = None
222
+ self.extend_pe(torch.tensor(0.0).expand(1, max_len))
223
+
224
+ def extend_pe(self, x: torch.Tensor):
225
+ """Reset the positional encodings."""
226
+ if self.pe is not None:
227
+ # self.pe contains both positive and negative parts
228
+ # the length of self.pe is 2 * input_len - 1
229
+ if self.pe.size(1) >= x.size(1) * 2 - 1:
230
+ if self.pe.dtype != x.dtype or self.pe.device != x.device:
231
+ self.pe = self.pe.to(dtype=x.dtype, device=x.device)
232
+ return
233
+ # Suppose `i` means to the position of query vecotr and `j` means the
234
+ # position of key vector. We use position relative positions when keys
235
+ # are to the left (i>j) and negative relative positions otherwise (i<j).
236
+ pe_positive = torch.zeros(x.size(1), self.d_model)
237
+ pe_negative = torch.zeros(x.size(1), self.d_model)
238
+ position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
239
+ div_term = torch.exp(
240
+ torch.arange(0, self.d_model, 2, dtype=torch.float32)
241
+ * -(math.log(10000.0) / self.d_model)
242
+ )
243
+ pe_positive[:, 0::2] = torch.sin(position * div_term)
244
+ pe_positive[:, 1::2] = torch.cos(position * div_term)
245
+ pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
246
+ pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)
247
+
248
+ # Reserve the order of positive indices and concat both positive and
249
+ # negative indices. This is used to support the shifting trick
250
+ # as in https://arxiv.org/abs/1901.02860
251
+ pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
252
+ pe_negative = pe_negative[1:].unsqueeze(0)
253
+ pe = torch.cat([pe_positive, pe_negative], dim=1)
254
+ self.pe = pe.to(device=x.device, dtype=x.dtype)
255
+
256
+ def forward(self, x: torch.Tensor, offset: Union[int, torch.Tensor] = 0) \
257
+ -> Tuple[torch.Tensor, torch.Tensor]:
258
+ """Add positional encoding.
259
+
260
+ Args:
261
+ x (torch.Tensor): Input tensor (batch, time, `*`).
262
+
263
+ Returns:
264
+ torch.Tensor: Encoded tensor (batch, time, `*`).
265
+
266
+ """
267
+ self.extend_pe(x)
268
+ x = x * self.xscale
269
+ pos_emb = self.position_encoding(size=x.size(1), offset=offset)
270
+ return self.dropout(x), self.dropout(pos_emb)
271
+
272
+ def position_encoding(self,
273
+ offset: Union[int, torch.Tensor],
274
+ size: int) -> torch.Tensor:
275
+ """ For getting encoding in a streaming fashion
276
+
277
+ Attention!!!!!
278
+ we apply dropout only once at the whole utterance level in a none
279
+ streaming way, but will call this function several times with
280
+ increasing input size in a streaming scenario, so the dropout will
281
+ be applied several times.
282
+
283
+ Args:
284
+ offset (int or torch.tensor): start offset
285
+ size (int): required size of position encoding
286
+
287
+ Returns:
288
+ torch.Tensor: Corresponding encoding
289
+ """
290
+ pos_emb = self.pe[
291
+ :,
292
+ self.pe.size(1) // 2 - size + 1: self.pe.size(1) // 2 + size,
293
+ ]
294
+ return pos_emb
src/chatterbox/models/s3gen/transformer/encoder_layer.py ADDED
@@ -0,0 +1,236 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu)
2
+ # 2022 Xingchen Song (sxc19@mails.tsinghua.edu.cn)
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # Modified from ESPnet(https://github.com/espnet/espnet)
16
+ """Encoder self-attention layer definition."""
17
+
18
+ from typing import Optional, Tuple
19
+
20
+ import torch
21
+ from torch import nn
22
+
23
+
24
+ class TransformerEncoderLayer(nn.Module):
25
+ """Encoder layer module.
26
+
27
+ Args:
28
+ size (int): Input dimension.
29
+ self_attn (torch.nn.Module): Self-attention module instance.
30
+ `MultiHeadedAttention` or `RelPositionMultiHeadedAttention`
31
+ instance can be used as the argument.
32
+ feed_forward (torch.nn.Module): Feed-forward module instance.
33
+ `PositionwiseFeedForward`, instance can be used as the argument.
34
+ dropout_rate (float): Dropout rate.
35
+ normalize_before (bool):
36
+ True: use layer_norm before each sub-block.
37
+ False: to use layer_norm after each sub-block.
38
+ """
39
+
40
+ def __init__(
41
+ self,
42
+ size: int,
43
+ self_attn: torch.nn.Module,
44
+ feed_forward: torch.nn.Module,
45
+ dropout_rate: float,
46
+ normalize_before: bool = True,
47
+ ):
48
+ """Construct an EncoderLayer object."""
49
+ super().__init__()
50
+ self.self_attn = self_attn
51
+ self.feed_forward = feed_forward
52
+ self.norm1 = nn.LayerNorm(size, eps=1e-12)
53
+ self.norm2 = nn.LayerNorm(size, eps=1e-12)
54
+ self.dropout = nn.Dropout(dropout_rate)
55
+ self.size = size
56
+ self.normalize_before = normalize_before
57
+
58
+ def forward(
59
+ self,
60
+ x: torch.Tensor,
61
+ mask: torch.Tensor,
62
+ pos_emb: torch.Tensor,
63
+ mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
64
+ att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
65
+ cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
66
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
67
+ """Compute encoded features.
68
+
69
+ Args:
70
+ x (torch.Tensor): (#batch, time, size)
71
+ mask (torch.Tensor): Mask tensor for the input (#batch, time,time),
72
+ (0, 0, 0) means fake mask.
73
+ pos_emb (torch.Tensor): just for interface compatibility
74
+ to ConformerEncoderLayer
75
+ mask_pad (torch.Tensor): does not used in transformer layer,
76
+ just for unified api with conformer.
77
+ att_cache (torch.Tensor): Cache tensor of the KEY & VALUE
78
+ (#batch=1, head, cache_t1, d_k * 2), head * d_k == size.
79
+ cnn_cache (torch.Tensor): Convolution cache in conformer layer
80
+ (#batch=1, size, cache_t2), not used here, it's for interface
81
+ compatibility to ConformerEncoderLayer.
82
+ Returns:
83
+ torch.Tensor: Output tensor (#batch, time, size).
84
+ torch.Tensor: Mask tensor (#batch, time, time).
85
+ torch.Tensor: att_cache tensor,
86
+ (#batch=1, head, cache_t1 + time, d_k * 2).
87
+ torch.Tensor: cnn_cahce tensor (#batch=1, size, cache_t2).
88
+
89
+ """
90
+ residual = x
91
+ if self.normalize_before:
92
+ x = self.norm1(x)
93
+ x_att, new_att_cache = self.self_attn(x, x, x, mask, pos_emb=pos_emb, cache=att_cache)
94
+ x = residual + self.dropout(x_att)
95
+ if not self.normalize_before:
96
+ x = self.norm1(x)
97
+
98
+ residual = x
99
+ if self.normalize_before:
100
+ x = self.norm2(x)
101
+ x = residual + self.dropout(self.feed_forward(x))
102
+ if not self.normalize_before:
103
+ x = self.norm2(x)
104
+
105
+ fake_cnn_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device)
106
+ return x, mask, new_att_cache, fake_cnn_cache
107
+
108
+
109
+ class ConformerEncoderLayer(nn.Module):
110
+ """Encoder layer module.
111
+ Args:
112
+ size (int): Input dimension.
113
+ self_attn (torch.nn.Module): Self-attention module instance.
114
+ `MultiHeadedAttention` or `RelPositionMultiHeadedAttention`
115
+ instance can be used as the argument.
116
+ feed_forward (torch.nn.Module): Feed-forward module instance.
117
+ `PositionwiseFeedForward` instance can be used as the argument.
118
+ feed_forward_macaron (torch.nn.Module): Additional feed-forward module
119
+ instance.
120
+ `PositionwiseFeedForward` instance can be used as the argument.
121
+ conv_module (torch.nn.Module): Convolution module instance.
122
+ `ConvlutionModule` instance can be used as the argument.
123
+ dropout_rate (float): Dropout rate.
124
+ normalize_before (bool):
125
+ True: use layer_norm before each sub-block.
126
+ False: use layer_norm after each sub-block.
127
+ """
128
+
129
+ def __init__(
130
+ self,
131
+ size: int,
132
+ self_attn: torch.nn.Module,
133
+ feed_forward: Optional[nn.Module] = None,
134
+ feed_forward_macaron: Optional[nn.Module] = None,
135
+ conv_module: Optional[nn.Module] = None,
136
+ dropout_rate: float = 0.1,
137
+ normalize_before: bool = True,
138
+ ):
139
+ """Construct an EncoderLayer object."""
140
+ super().__init__()
141
+ self.self_attn = self_attn
142
+ self.feed_forward = feed_forward
143
+ self.feed_forward_macaron = feed_forward_macaron
144
+ self.conv_module = conv_module
145
+ self.norm_ff = nn.LayerNorm(size, eps=1e-12) # for the FNN module
146
+ self.norm_mha = nn.LayerNorm(size, eps=1e-12) # for the MHA module
147
+ if feed_forward_macaron is not None:
148
+ self.norm_ff_macaron = nn.LayerNorm(size, eps=1e-12)
149
+ self.ff_scale = 0.5
150
+ else:
151
+ self.ff_scale = 1.0
152
+ if self.conv_module is not None:
153
+ self.norm_conv = nn.LayerNorm(size, eps=1e-12) # for the CNN module
154
+ self.norm_final = nn.LayerNorm(
155
+ size, eps=1e-12) # for the final output of the block
156
+ self.dropout = nn.Dropout(dropout_rate)
157
+ self.size = size
158
+ self.normalize_before = normalize_before
159
+
160
+ def forward(
161
+ self,
162
+ x: torch.Tensor,
163
+ mask: torch.Tensor,
164
+ pos_emb: torch.Tensor,
165
+ mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
166
+ att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
167
+ cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
168
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
169
+ """Compute encoded features.
170
+
171
+ Args:
172
+ x (torch.Tensor): (#batch, time, size)
173
+ mask (torch.Tensor): Mask tensor for the input (#batch, time,time),
174
+ (0, 0, 0) means fake mask.
175
+ pos_emb (torch.Tensor): positional encoding, must not be None
176
+ for ConformerEncoderLayer.
177
+ mask_pad (torch.Tensor): batch padding mask used for conv module.
178
+ (#batch, 1,time), (0, 0, 0) means fake mask.
179
+ att_cache (torch.Tensor): Cache tensor of the KEY & VALUE
180
+ (#batch=1, head, cache_t1, d_k * 2), head * d_k == size.
181
+ cnn_cache (torch.Tensor): Convolution cache in conformer layer
182
+ (#batch=1, size, cache_t2)
183
+ Returns:
184
+ torch.Tensor: Output tensor (#batch, time, size).
185
+ torch.Tensor: Mask tensor (#batch, time, time).
186
+ torch.Tensor: att_cache tensor,
187
+ (#batch=1, head, cache_t1 + time, d_k * 2).
188
+ torch.Tensor: cnn_cahce tensor (#batch, size, cache_t2).
189
+ """
190
+
191
+ # whether to use macaron style
192
+ if self.feed_forward_macaron is not None:
193
+ residual = x
194
+ if self.normalize_before:
195
+ x = self.norm_ff_macaron(x)
196
+ x = residual + self.ff_scale * self.dropout(
197
+ self.feed_forward_macaron(x))
198
+ if not self.normalize_before:
199
+ x = self.norm_ff_macaron(x)
200
+
201
+ # multi-headed self-attention module
202
+ residual = x
203
+ if self.normalize_before:
204
+ x = self.norm_mha(x)
205
+ x_att, new_att_cache = self.self_attn(x, x, x, mask, pos_emb,
206
+ att_cache)
207
+ x = residual + self.dropout(x_att)
208
+ if not self.normalize_before:
209
+ x = self.norm_mha(x)
210
+
211
+ # convolution module
212
+ # Fake new cnn cache here, and then change it in conv_module
213
+ new_cnn_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device)
214
+ if self.conv_module is not None:
215
+ residual = x
216
+ if self.normalize_before:
217
+ x = self.norm_conv(x)
218
+ x, new_cnn_cache = self.conv_module(x, mask_pad, cnn_cache)
219
+ x = residual + self.dropout(x)
220
+
221
+ if not self.normalize_before:
222
+ x = self.norm_conv(x)
223
+
224
+ # feed forward module
225
+ residual = x
226
+ if self.normalize_before:
227
+ x = self.norm_ff(x)
228
+
229
+ x = residual + self.ff_scale * self.dropout(self.feed_forward(x))
230
+ if not self.normalize_before:
231
+ x = self.norm_ff(x)
232
+
233
+ if self.conv_module is not None:
234
+ x = self.norm_final(x)
235
+
236
+ return x, mask, new_att_cache, new_cnn_cache
src/chatterbox/models/s3gen/transformer/positionwise_feed_forward.py ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2019 Shigeki Karita
2
+ # 2020 Mobvoi Inc (Binbin Zhang)
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Positionwise feed forward layer definition."""
16
+
17
+ import torch
18
+
19
+
20
+ class PositionwiseFeedForward(torch.nn.Module):
21
+ """Positionwise feed forward layer.
22
+
23
+ FeedForward are appied on each position of the sequence.
24
+ The output dim is same with the input dim.
25
+
26
+ Args:
27
+ idim (int): Input dimenstion.
28
+ hidden_units (int): The number of hidden units.
29
+ dropout_rate (float): Dropout rate.
30
+ activation (torch.nn.Module): Activation function
31
+ """
32
+
33
+ def __init__(
34
+ self,
35
+ idim: int,
36
+ hidden_units: int,
37
+ dropout_rate: float,
38
+ activation: torch.nn.Module = torch.nn.ReLU(),
39
+ ):
40
+ """Construct a PositionwiseFeedForward object."""
41
+ super(PositionwiseFeedForward, self).__init__()
42
+ self.w_1 = torch.nn.Linear(idim, hidden_units)
43
+ self.activation = activation
44
+ self.dropout = torch.nn.Dropout(dropout_rate)
45
+ self.w_2 = torch.nn.Linear(hidden_units, idim)
46
+
47
+ def forward(self, xs: torch.Tensor) -> torch.Tensor:
48
+ """Forward function.
49
+
50
+ Args:
51
+ xs: input tensor (B, L, D)
52
+ Returns:
53
+ output tensor, (B, L, D)
54
+ """
55
+ return self.w_2(self.dropout(self.activation(self.w_1(xs))))
56
+
57
+
58
+ class MoEFFNLayer(torch.nn.Module):
59
+ """
60
+ Mixture of expert with Positionwise feed forward layer
61
+ See also figure 1 in https://arxiv.org/pdf/2305.15663.pdf
62
+ The output dim is same with the input dim.
63
+
64
+ Modified from https://github.com/Lightning-AI/lit-gpt/pull/823
65
+ https://github.com/mistralai/mistral-src/blob/b46d6/moe_one_file_ref.py#L203-L219
66
+ Args:
67
+ n_expert: number of expert.
68
+ n_expert_per_token: The actual number of experts used for each frame
69
+ idim (int): Input dimenstion.
70
+ hidden_units (int): The number of hidden units.
71
+ dropout_rate (float): Dropout rate.
72
+ activation (torch.nn.Module): Activation function
73
+ """
74
+
75
+ def __init__(
76
+ self,
77
+ n_expert: int,
78
+ n_expert_per_token: int,
79
+ idim: int,
80
+ hidden_units: int,
81
+ dropout_rate: float,
82
+ activation: torch.nn.Module = torch.nn.ReLU(),
83
+ ):
84
+ super(MoEFFNLayer, self).__init__()
85
+ self.gate = torch.nn.Linear(idim, n_expert, bias=False)
86
+ self.experts = torch.nn.ModuleList(
87
+ PositionwiseFeedForward(idim, hidden_units, dropout_rate,
88
+ activation) for _ in range(n_expert))
89
+ self.n_expert_per_token = n_expert_per_token
90
+
91
+ def forward(self, xs: torch.Tensor) -> torch.Tensor:
92
+ """Foward function.
93
+ Args:
94
+ xs: input tensor (B, L, D)
95
+ Returns:
96
+ output tensor, (B, L, D)
97
+
98
+ """
99
+ B, L, D = xs.size(
100
+ ) # batch size, sequence length, embedding dimension (idim)
101
+ xs = xs.view(-1, D) # (B*L, D)
102
+ router = self.gate(xs) # (B*L, n_expert)
103
+ logits, indices = torch.topk(
104
+ router, self.n_expert_per_token
105
+ ) # probs:(B*L, n_expert), indices: (B*L, n_expert)
106
+ weights = torch.nn.functional.softmax(
107
+ logits, dim=1,
108
+ dtype=torch.float).to(dtype=xs.dtype) # (B*L, n_expert_per_token)
109
+ output = torch.zeros_like(xs) # (B*L, D)
110
+ for i, expert in enumerate(self.experts):
111
+ mask = indices == i
112
+ batch_idx, ith_expert = torch.where(mask)
113
+ output[batch_idx] += weights[batch_idx, ith_expert, None] * expert(
114
+ xs[batch_idx])
115
+ return output.view(B, L, D)
src/chatterbox/models/s3gen/transformer/subsampling.py ADDED
@@ -0,0 +1,383 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu)
2
+ # 2024 Alibaba Inc (Xiang Lyu)
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # Modified from ESPnet(https://github.com/espnet/espnet)
16
+ """Subsampling layer definition."""
17
+
18
+ from typing import Tuple, Union
19
+
20
+ import torch
21
+
22
+
23
+ class BaseSubsampling(torch.nn.Module):
24
+
25
+ def __init__(self):
26
+ super().__init__()
27
+ self.right_context = 0
28
+ self.subsampling_rate = 1
29
+
30
+ def position_encoding(self, offset: Union[int, torch.Tensor],
31
+ size: int) -> torch.Tensor:
32
+ return self.pos_enc.position_encoding(offset, size)
33
+
34
+
35
+ class EmbedinigNoSubsampling(BaseSubsampling):
36
+ """Embedding input without subsampling
37
+ """
38
+
39
+ def __init__(self, idim: int, odim: int, dropout_rate: float,
40
+ pos_enc_class: torch.nn.Module):
41
+ super().__init__()
42
+ self.embed = torch.nn.Embedding(idim, odim)
43
+ self.pos_enc = pos_enc_class
44
+
45
+ def forward(
46
+ self,
47
+ x: torch.Tensor,
48
+ x_mask: torch.Tensor,
49
+ offset: Union[int, torch.Tensor] = 0
50
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
51
+ """Input x.
52
+
53
+ Args:
54
+ x (torch.Tensor): Input tensor (#batch, time, idim).
55
+ x_mask (torch.Tensor): Input mask (#batch, 1, time).
56
+
57
+ Returns:
58
+ torch.Tensor: linear input tensor (#batch, time', odim),
59
+ where time' = time .
60
+ torch.Tensor: linear input mask (#batch, 1, time'),
61
+ where time' = time .
62
+
63
+ """
64
+ x = self.embed(x)
65
+ x, pos_emb = self.pos_enc(x, offset)
66
+ return x, pos_emb, x_mask
67
+
68
+
69
+ class LinearNoSubsampling(BaseSubsampling):
70
+ """Linear transform the input without subsampling
71
+
72
+ Args:
73
+ idim (int): Input dimension.
74
+ odim (int): Output dimension.
75
+ dropout_rate (float): Dropout rate.
76
+
77
+ """
78
+
79
+ def __init__(self, idim: int, odim: int, dropout_rate: float,
80
+ pos_enc_class: torch.nn.Module):
81
+ """Construct an linear object."""
82
+ super().__init__()
83
+ self.out = torch.nn.Sequential(
84
+ torch.nn.Linear(idim, odim),
85
+ torch.nn.LayerNorm(odim, eps=1e-5),
86
+ torch.nn.Dropout(dropout_rate),
87
+ )
88
+ self.pos_enc = pos_enc_class
89
+ self.right_context = 0
90
+ self.subsampling_rate = 1
91
+
92
+ def forward(
93
+ self,
94
+ x: torch.Tensor,
95
+ x_mask: torch.Tensor,
96
+ offset: Union[int, torch.Tensor] = 0
97
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
98
+ """Input x.
99
+
100
+ Args:
101
+ x (torch.Tensor): Input tensor (#batch, time, idim).
102
+ x_mask (torch.Tensor): Input mask (#batch, 1, time).
103
+
104
+ Returns:
105
+ torch.Tensor: linear input tensor (#batch, time', odim),
106
+ where time' = time .
107
+ torch.Tensor: linear input mask (#batch, 1, time'),
108
+ where time' = time .
109
+
110
+ """
111
+ x = self.out(x)
112
+ x, pos_emb = self.pos_enc(x, offset)
113
+ return x, pos_emb, x_mask
114
+
115
+
116
+ class Conv1dSubsampling2(BaseSubsampling):
117
+ """Convolutional 1D subsampling (to 1/2 length).
118
+ It is designed for Whisper, ref:
119
+ https://github.com/openai/whisper/blob/main/whisper/model.py
120
+
121
+ Args:
122
+ idim (int): Input dimension.
123
+ odim (int): Output dimension.
124
+ dropout_rate (float): Dropout rate.
125
+
126
+ """
127
+
128
+ def __init__(self, idim: int, odim: int, dropout_rate: float,
129
+ pos_enc_class: torch.nn.Module):
130
+ """Construct an Conv1dSubsampling2 object."""
131
+ super().__init__()
132
+ self.conv = torch.nn.Sequential(
133
+ torch.nn.Conv1d(idim, odim, kernel_size=3, padding=1),
134
+ torch.nn.GELU(),
135
+ torch.nn.Conv1d(odim, odim, kernel_size=3, stride=2, padding=1),
136
+ torch.nn.GELU(),
137
+ )
138
+ self.pos_enc = pos_enc_class
139
+ # The right context for every conv layer is computed by:
140
+ # (kernel_size - 1) * frame_rate_of_this_layer
141
+ self.subsampling_rate = 2
142
+ # 4 = (3 - 1) * 1 + (3 - 1) * 1
143
+ self.right_context = 4
144
+
145
+ def forward(
146
+ self,
147
+ x: torch.Tensor,
148
+ x_mask: torch.Tensor,
149
+ offset: Union[int, torch.Tensor] = 0
150
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
151
+ """Subsample x.
152
+
153
+ Args:
154
+ x (torch.Tensor): Input tensor (#batch, time, idim).
155
+ x_mask (torch.Tensor): Input mask (#batch, 1, time).
156
+
157
+ Returns:
158
+ torch.Tensor: Subsampled tensor (#batch, time', odim),
159
+ where time' = time // 2.
160
+ torch.Tensor: Subsampled mask (#batch, 1, time'),
161
+ where time' = time // 2.
162
+ torch.Tensor: positional encoding
163
+
164
+ """
165
+ time = x.size(1)
166
+ x = x.transpose(1, 2) # (b, f, t)
167
+ x = self.conv(x)
168
+ x = x.transpose(1, 2) # (b, t, f)
169
+ x, pos_emb = self.pos_enc(x, offset)
170
+ return x, pos_emb, x_mask[:, :, (time + 1) % 2::2]
171
+
172
+
173
+ class Conv2dSubsampling4(BaseSubsampling):
174
+ """Convolutional 2D subsampling (to 1/4 length).
175
+
176
+ Args:
177
+ idim (int): Input dimension.
178
+ odim (int): Output dimension.
179
+ dropout_rate (float): Dropout rate.
180
+
181
+ """
182
+
183
+ def __init__(self, idim: int, odim: int, dropout_rate: float,
184
+ pos_enc_class: torch.nn.Module):
185
+ """Construct an Conv2dSubsampling4 object."""
186
+ super().__init__()
187
+ self.conv = torch.nn.Sequential(
188
+ torch.nn.Conv2d(1, odim, 3, 2),
189
+ torch.nn.ReLU(),
190
+ torch.nn.Conv2d(odim, odim, 3, 2),
191
+ torch.nn.ReLU(),
192
+ )
193
+ self.out = torch.nn.Sequential(
194
+ torch.nn.Linear(odim * (((idim - 1) // 2 - 1) // 2), odim))
195
+ self.pos_enc = pos_enc_class
196
+ # The right context for every conv layer is computed by:
197
+ # (kernel_size - 1) * frame_rate_of_this_layer
198
+ self.subsampling_rate = 4
199
+ # 6 = (3 - 1) * 1 + (3 - 1) * 2
200
+ self.right_context = 6
201
+
202
+ def forward(
203
+ self,
204
+ x: torch.Tensor,
205
+ x_mask: torch.Tensor,
206
+ offset: Union[int, torch.Tensor] = 0
207
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
208
+ """Subsample x.
209
+
210
+ Args:
211
+ x (torch.Tensor): Input tensor (#batch, time, idim).
212
+ x_mask (torch.Tensor): Input mask (#batch, 1, time).
213
+
214
+ Returns:
215
+ torch.Tensor: Subsampled tensor (#batch, time', odim),
216
+ where time' = time // 4.
217
+ torch.Tensor: Subsampled mask (#batch, 1, time'),
218
+ where time' = time // 4.
219
+ torch.Tensor: positional encoding
220
+
221
+ """
222
+ x = x.unsqueeze(1) # (b, c=1, t, f)
223
+ x = self.conv(x)
224
+ b, c, t, f = x.size()
225
+ x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
226
+ x, pos_emb = self.pos_enc(x, offset)
227
+ return x, pos_emb, x_mask[:, :, 2::2][:, :, 2::2]
228
+
229
+
230
+ class Conv2dSubsampling6(BaseSubsampling):
231
+ """Convolutional 2D subsampling (to 1/6 length).
232
+ Args:
233
+ idim (int): Input dimension.
234
+ odim (int): Output dimension.
235
+ dropout_rate (float): Dropout rate.
236
+ pos_enc (torch.nn.Module): Custom position encoding layer.
237
+ """
238
+
239
+ def __init__(self, idim: int, odim: int, dropout_rate: float,
240
+ pos_enc_class: torch.nn.Module):
241
+ """Construct an Conv2dSubsampling6 object."""
242
+ super().__init__()
243
+ self.conv = torch.nn.Sequential(
244
+ torch.nn.Conv2d(1, odim, 3, 2),
245
+ torch.nn.ReLU(),
246
+ torch.nn.Conv2d(odim, odim, 5, 3),
247
+ torch.nn.ReLU(),
248
+ )
249
+ self.linear = torch.nn.Linear(odim * (((idim - 1) // 2 - 2) // 3),
250
+ odim)
251
+ self.pos_enc = pos_enc_class
252
+ # 10 = (3 - 1) * 1 + (5 - 1) * 2
253
+ self.subsampling_rate = 6
254
+ self.right_context = 10
255
+
256
+ def forward(
257
+ self,
258
+ x: torch.Tensor,
259
+ x_mask: torch.Tensor,
260
+ offset: Union[int, torch.Tensor] = 0
261
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
262
+ """Subsample x.
263
+ Args:
264
+ x (torch.Tensor): Input tensor (#batch, time, idim).
265
+ x_mask (torch.Tensor): Input mask (#batch, 1, time).
266
+
267
+ Returns:
268
+ torch.Tensor: Subsampled tensor (#batch, time', odim),
269
+ where time' = time // 6.
270
+ torch.Tensor: Subsampled mask (#batch, 1, time'),
271
+ where time' = time // 6.
272
+ torch.Tensor: positional encoding
273
+ """
274
+ x = x.unsqueeze(1) # (b, c, t, f)
275
+ x = self.conv(x)
276
+ b, c, t, f = x.size()
277
+ x = self.linear(x.transpose(1, 2).contiguous().view(b, t, c * f))
278
+ x, pos_emb = self.pos_enc(x, offset)
279
+ return x, pos_emb, x_mask[:, :, 2::2][:, :, 4::3]
280
+
281
+
282
+ class Conv2dSubsampling8(BaseSubsampling):
283
+ """Convolutional 2D subsampling (to 1/8 length).
284
+
285
+ Args:
286
+ idim (int): Input dimension.
287
+ odim (int): Output dimension.
288
+ dropout_rate (float): Dropout rate.
289
+
290
+ """
291
+
292
+ def __init__(self, idim: int, odim: int, dropout_rate: float,
293
+ pos_enc_class: torch.nn.Module):
294
+ """Construct an Conv2dSubsampling8 object."""
295
+ super().__init__()
296
+ self.conv = torch.nn.Sequential(
297
+ torch.nn.Conv2d(1, odim, 3, 2),
298
+ torch.nn.ReLU(),
299
+ torch.nn.Conv2d(odim, odim, 3, 2),
300
+ torch.nn.ReLU(),
301
+ torch.nn.Conv2d(odim, odim, 3, 2),
302
+ torch.nn.ReLU(),
303
+ )
304
+ self.linear = torch.nn.Linear(
305
+ odim * ((((idim - 1) // 2 - 1) // 2 - 1) // 2), odim)
306
+ self.pos_enc = pos_enc_class
307
+ self.subsampling_rate = 8
308
+ # 14 = (3 - 1) * 1 + (3 - 1) * 2 + (3 - 1) * 4
309
+ self.right_context = 14
310
+
311
+ def forward(
312
+ self,
313
+ x: torch.Tensor,
314
+ x_mask: torch.Tensor,
315
+ offset: Union[int, torch.Tensor] = 0
316
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
317
+ """Subsample x.
318
+
319
+ Args:
320
+ x (torch.Tensor): Input tensor (#batch, time, idim).
321
+ x_mask (torch.Tensor): Input mask (#batch, 1, time).
322
+
323
+ Returns:
324
+ torch.Tensor: Subsampled tensor (#batch, time', odim),
325
+ where time' = time // 8.
326
+ torch.Tensor: Subsampled mask (#batch, 1, time'),
327
+ where time' = time // 8.
328
+ torch.Tensor: positional encoding
329
+ """
330
+ x = x.unsqueeze(1) # (b, c, t, f)
331
+ x = self.conv(x)
332
+ b, c, t, f = x.size()
333
+ x = self.linear(x.transpose(1, 2).contiguous().view(b, t, c * f))
334
+ x, pos_emb = self.pos_enc(x, offset)
335
+ return x, pos_emb, x_mask[:, :, 2::2][:, :, 2::2][:, :, 2::2]
336
+
337
+
338
+ class LegacyLinearNoSubsampling(BaseSubsampling):
339
+ """Linear transform the input without subsampling
340
+
341
+ Args:
342
+ idim (int): Input dimension.
343
+ odim (int): Output dimension.
344
+ dropout_rate (float): Dropout rate.
345
+
346
+ """
347
+
348
+ def __init__(self, idim: int, odim: int, dropout_rate: float,
349
+ pos_enc_class: torch.nn.Module):
350
+ """Construct an linear object."""
351
+ super().__init__()
352
+ self.out = torch.nn.Sequential(
353
+ torch.nn.Linear(idim, odim),
354
+ torch.nn.LayerNorm(odim, eps=1e-5),
355
+ torch.nn.Dropout(dropout_rate),
356
+ torch.nn.ReLU(),
357
+ )
358
+ self.pos_enc = pos_enc_class
359
+ self.right_context = 0
360
+ self.subsampling_rate = 1
361
+
362
+ def forward(
363
+ self,
364
+ x: torch.Tensor,
365
+ x_mask: torch.Tensor,
366
+ offset: Union[int, torch.Tensor] = 0
367
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
368
+ """Input x.
369
+
370
+ Args:
371
+ x (torch.Tensor): Input tensor (#batch, time, idim).
372
+ x_mask (torch.Tensor): Input mask (#batch, 1, time).
373
+
374
+ Returns:
375
+ torch.Tensor: linear input tensor (#batch, time', odim),
376
+ where time' = time .
377
+ torch.Tensor: linear input mask (#batch, 1, time'),
378
+ where time' = time .
379
+
380
+ """
381
+ x = self.out(x)
382
+ x, pos_emb = self.pos_enc(x, offset)
383
+ return x, pos_emb, x_mask
src/chatterbox/models/s3gen/transformer/upsample_encoder.py ADDED
@@ -0,0 +1,318 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu)
2
+ # 2022 Xingchen Song (sxc19@mails.tsinghua.edu.cn)
3
+ # 2024 Alibaba Inc (Xiang Lyu)
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ # Modified from ESPnet(https://github.com/espnet/espnet)
17
+ """Encoder definition."""
18
+ from typing import Tuple
19
+
20
+ import torch
21
+ from torch import nn
22
+ from torch.nn import functional as F
23
+
24
+ from .convolution import ConvolutionModule
25
+ from .encoder_layer import ConformerEncoderLayer
26
+ from .positionwise_feed_forward import PositionwiseFeedForward
27
+ from ..utils.class_utils import (
28
+ COSYVOICE_EMB_CLASSES,
29
+ COSYVOICE_SUBSAMPLE_CLASSES,
30
+ COSYVOICE_ATTENTION_CLASSES,
31
+ COSYVOICE_ACTIVATION_CLASSES,
32
+ )
33
+ from ..utils.mask import make_pad_mask
34
+ from ..utils.mask import add_optional_chunk_mask
35
+
36
+
37
+ class Upsample1D(nn.Module):
38
+ """A 1D upsampling layer with an optional convolution.
39
+
40
+ Parameters:
41
+ channels (`int`):
42
+ number of channels in the inputs and outputs.
43
+ use_conv (`bool`, default `False`):
44
+ option to use a convolution.
45
+ use_conv_transpose (`bool`, default `False`):
46
+ option to use a convolution transpose.
47
+ out_channels (`int`, optional):
48
+ number of output channels. Defaults to `channels`.
49
+ """
50
+
51
+ def __init__(self, channels: int, out_channels: int, stride: int = 2):
52
+ super().__init__()
53
+ self.channels = channels
54
+ self.out_channels = out_channels
55
+ self.stride = stride
56
+ # In this mode, first repeat interpolate, than conv with stride=1
57
+ self.conv = nn.Conv1d(self.channels, self.out_channels, stride * 2 + 1, stride=1, padding=0)
58
+
59
+ def forward(self, inputs: torch.Tensor, input_lengths: torch.Tensor):
60
+ outputs = F.interpolate(inputs, scale_factor=float(self.stride), mode="nearest")
61
+ outputs = F.pad(outputs, (self.stride * 2, 0), value=0.0)
62
+ outputs = self.conv(outputs)
63
+ return outputs, input_lengths * self.stride
64
+
65
+
66
+ class PreLookaheadLayer(nn.Module):
67
+ def __init__(self, channels: int, pre_lookahead_len: int = 1):
68
+ super().__init__()
69
+ self.channels = channels
70
+ self.pre_lookahead_len = pre_lookahead_len
71
+ self.conv1 = nn.Conv1d(
72
+ channels, channels,
73
+ kernel_size=pre_lookahead_len + 1,
74
+ stride=1, padding=0,
75
+ )
76
+ self.conv2 = nn.Conv1d(
77
+ channels, channels,
78
+ kernel_size=3, stride=1, padding=0,
79
+ )
80
+
81
+ def forward(self, inputs: torch.Tensor) -> torch.Tensor:
82
+ """
83
+ inputs: (batch_size, seq_len, channels)
84
+ """
85
+ outputs = inputs.transpose(1, 2).contiguous()
86
+ # look ahead
87
+ outputs = F.pad(outputs, (0, self.pre_lookahead_len), mode='constant', value=0.0)
88
+ outputs = F.leaky_relu(self.conv1(outputs))
89
+ # outputs
90
+ outputs = F.pad(outputs, (2, 0), mode='constant', value=0.0)
91
+ outputs = self.conv2(outputs)
92
+ outputs = outputs.transpose(1, 2).contiguous()
93
+
94
+ # residual connection
95
+ outputs = outputs + inputs
96
+ return outputs
97
+
98
+
99
+ class UpsampleConformerEncoder(torch.nn.Module):
100
+
101
+ def __init__(
102
+ self,
103
+ input_size: int = 512,
104
+ output_size: int = 512,
105
+ attention_heads: int = 8,
106
+ linear_units: int = 2048,
107
+ num_blocks: int = 6,
108
+ dropout_rate: float = 0.1,
109
+ positional_dropout_rate: float = 0.1,
110
+ attention_dropout_rate: float = 0.1,
111
+ input_layer: str = "linear",
112
+ pos_enc_layer_type: str = "rel_pos_espnet",
113
+ normalize_before: bool = True,
114
+ static_chunk_size: int = 0,
115
+ use_dynamic_chunk: bool = False,
116
+ global_cmvn: torch.nn.Module = None,
117
+ use_dynamic_left_chunk: bool = False,
118
+ positionwise_conv_kernel_size: int = 1,
119
+ macaron_style: bool = False,
120
+ selfattention_layer_type: str = "rel_selfattn",
121
+ activation_type: str = "swish",
122
+ use_cnn_module: bool = False,
123
+ cnn_module_kernel: int = 15,
124
+ causal: bool = False,
125
+ cnn_module_norm: str = "batch_norm",
126
+ key_bias: bool = True,
127
+ gradient_checkpointing: bool = False,
128
+ ):
129
+ """
130
+ Args:
131
+ input_size (int): input dim
132
+ output_size (int): dimension of attention
133
+ attention_heads (int): the number of heads of multi head attention
134
+ linear_units (int): the hidden units number of position-wise feed
135
+ forward
136
+ num_blocks (int): the number of decoder blocks
137
+ dropout_rate (float): dropout rate
138
+ attention_dropout_rate (float): dropout rate in attention
139
+ positional_dropout_rate (float): dropout rate after adding
140
+ positional encoding
141
+ input_layer (str): input layer type.
142
+ optional [linear, conv2d, conv2d6, conv2d8]
143
+ pos_enc_layer_type (str): Encoder positional encoding layer type.
144
+ opitonal [abs_pos, scaled_abs_pos, rel_pos, no_pos]
145
+ normalize_before (bool):
146
+ True: use layer_norm before each sub-block of a layer.
147
+ False: use layer_norm after each sub-block of a layer.
148
+ static_chunk_size (int): chunk size for static chunk training and
149
+ decoding
150
+ use_dynamic_chunk (bool): whether use dynamic chunk size for
151
+ training or not, You can only use fixed chunk(chunk_size > 0)
152
+ or dyanmic chunk size(use_dynamic_chunk = True)
153
+ global_cmvn (Optional[torch.nn.Module]): Optional GlobalCMVN module
154
+ use_dynamic_left_chunk (bool): whether use dynamic left chunk in
155
+ dynamic chunk training
156
+ key_bias: whether use bias in attention.linear_k, False for whisper models.
157
+ gradient_checkpointing: rerunning a forward-pass segment for each
158
+ checkpointed segment during backward.
159
+ """
160
+ super().__init__()
161
+ self._output_size = output_size
162
+
163
+ self.global_cmvn = global_cmvn
164
+ self.embed = COSYVOICE_SUBSAMPLE_CLASSES[input_layer](
165
+ input_size,
166
+ output_size,
167
+ dropout_rate,
168
+ COSYVOICE_EMB_CLASSES[pos_enc_layer_type](output_size,
169
+ positional_dropout_rate),
170
+ )
171
+
172
+ self.normalize_before = normalize_before
173
+ self.after_norm = torch.nn.LayerNorm(output_size, eps=1e-5)
174
+ self.static_chunk_size = static_chunk_size
175
+ self.use_dynamic_chunk = use_dynamic_chunk
176
+ self.use_dynamic_left_chunk = use_dynamic_left_chunk
177
+ self.gradient_checkpointing = gradient_checkpointing
178
+ activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]()
179
+ # self-attention module definition
180
+ encoder_selfattn_layer_args = (
181
+ attention_heads,
182
+ output_size,
183
+ attention_dropout_rate,
184
+ key_bias,
185
+ )
186
+ # feed-forward module definition
187
+ positionwise_layer_args = (
188
+ output_size,
189
+ linear_units,
190
+ dropout_rate,
191
+ activation,
192
+ )
193
+ # convolution module definition
194
+ convolution_layer_args = (output_size, cnn_module_kernel, activation,
195
+ cnn_module_norm, causal)
196
+ self.pre_lookahead_layer = PreLookaheadLayer(channels=512, pre_lookahead_len=3)
197
+ self.encoders = torch.nn.ModuleList([
198
+ ConformerEncoderLayer(
199
+ output_size,
200
+ COSYVOICE_ATTENTION_CLASSES[selfattention_layer_type](
201
+ *encoder_selfattn_layer_args),
202
+ PositionwiseFeedForward(*positionwise_layer_args),
203
+ PositionwiseFeedForward(
204
+ *positionwise_layer_args) if macaron_style else None,
205
+ ConvolutionModule(
206
+ *convolution_layer_args) if use_cnn_module else None,
207
+ dropout_rate,
208
+ normalize_before,
209
+ ) for _ in range(num_blocks)
210
+ ])
211
+ self.up_layer = Upsample1D(channels=512, out_channels=512, stride=2)
212
+ self.up_embed = COSYVOICE_SUBSAMPLE_CLASSES[input_layer](
213
+ input_size,
214
+ output_size,
215
+ dropout_rate,
216
+ COSYVOICE_EMB_CLASSES[pos_enc_layer_type](output_size,
217
+ positional_dropout_rate),
218
+ )
219
+ self.up_encoders = torch.nn.ModuleList([
220
+ ConformerEncoderLayer(
221
+ output_size,
222
+ COSYVOICE_ATTENTION_CLASSES[selfattention_layer_type](
223
+ *encoder_selfattn_layer_args),
224
+ PositionwiseFeedForward(*positionwise_layer_args),
225
+ PositionwiseFeedForward(
226
+ *positionwise_layer_args) if macaron_style else None,
227
+ ConvolutionModule(
228
+ *convolution_layer_args) if use_cnn_module else None,
229
+ dropout_rate,
230
+ normalize_before,
231
+ ) for _ in range(4)
232
+ ])
233
+
234
+ def output_size(self) -> int:
235
+ return self._output_size
236
+
237
+ def forward(
238
+ self,
239
+ xs: torch.Tensor,
240
+ xs_lens: torch.Tensor,
241
+ decoding_chunk_size: int = 0,
242
+ num_decoding_left_chunks: int = -1,
243
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
244
+ """Embed positions in tensor.
245
+
246
+ Args:
247
+ xs: padded input tensor (B, T, D)
248
+ xs_lens: input length (B)
249
+ decoding_chunk_size: decoding chunk size for dynamic chunk
250
+ 0: default for training, use random dynamic chunk.
251
+ <0: for decoding, use full chunk.
252
+ >0: for decoding, use fixed chunk size as set.
253
+ num_decoding_left_chunks: number of left chunks, this is for decoding,
254
+ the chunk size is decoding_chunk_size.
255
+ >=0: use num_decoding_left_chunks
256
+ <0: use all left chunks
257
+ Returns:
258
+ encoder output tensor xs, and subsampled masks
259
+ xs: padded output tensor (B, T' ~= T/subsample_rate, D)
260
+ masks: torch.Tensor batch padding mask after subsample
261
+ (B, 1, T' ~= T/subsample_rate)
262
+ NOTE(xcsong):
263
+ We pass the `__call__` method of the modules instead of `forward` to the
264
+ checkpointing API because `__call__` attaches all the hooks of the module.
265
+ https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2
266
+ """
267
+ T = xs.size(1)
268
+ masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T)
269
+ if self.global_cmvn is not None:
270
+ xs = self.global_cmvn(xs)
271
+ xs, pos_emb, masks = self.embed(xs, masks)
272
+ mask_pad = masks # (B, 1, T/subsample_rate)
273
+ chunk_masks = add_optional_chunk_mask(xs, masks,
274
+ self.use_dynamic_chunk,
275
+ self.use_dynamic_left_chunk,
276
+ decoding_chunk_size,
277
+ self.static_chunk_size,
278
+ num_decoding_left_chunks)
279
+ # lookahead + conformer encoder
280
+ xs = self.pre_lookahead_layer(xs)
281
+ xs = self.forward_layers(xs, chunk_masks, pos_emb, mask_pad)
282
+
283
+ # upsample + conformer encoder
284
+ xs = xs.transpose(1, 2).contiguous()
285
+ xs, xs_lens = self.up_layer(xs, xs_lens)
286
+ xs = xs.transpose(1, 2).contiguous()
287
+ T = xs.size(1)
288
+ masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T)
289
+ xs, pos_emb, masks = self.up_embed(xs, masks)
290
+ mask_pad = masks # (B, 1, T/subsample_rate)
291
+ chunk_masks = add_optional_chunk_mask(xs, masks,
292
+ self.use_dynamic_chunk,
293
+ self.use_dynamic_left_chunk,
294
+ decoding_chunk_size,
295
+ self.static_chunk_size * self.up_layer.stride,
296
+ num_decoding_left_chunks)
297
+ xs = self.forward_up_layers(xs, chunk_masks, pos_emb, mask_pad)
298
+
299
+ if self.normalize_before:
300
+ xs = self.after_norm(xs)
301
+ # Here we assume the mask is not changed in encoder layers, so just
302
+ # return the masks before encoder layers, and the masks will be used
303
+ # for cross attention with decoder later
304
+ return xs, masks
305
+
306
+ def forward_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor,
307
+ pos_emb: torch.Tensor,
308
+ mask_pad: torch.Tensor) -> torch.Tensor:
309
+ for layer in self.encoders:
310
+ xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
311
+ return xs
312
+
313
+ def forward_up_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor,
314
+ pos_emb: torch.Tensor,
315
+ mask_pad: torch.Tensor) -> torch.Tensor:
316
+ for layer in self.up_encoders:
317
+ xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
318
+ return xs
src/chatterbox/models/s3gen/utils/class_utils.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright [2023-11-28] <sxc19@mails.tsinghua.edu.cn, Xingchen Song>
2
+ # 2024 Alibaba Inc (authors: Xiang Lyu)
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ import torch
16
+
17
+ from ..transformer.activation import Swish
18
+ from ..transformer.subsampling import (
19
+ LinearNoSubsampling,
20
+ EmbedinigNoSubsampling,
21
+ Conv1dSubsampling2,
22
+ Conv2dSubsampling4,
23
+ Conv2dSubsampling6,
24
+ Conv2dSubsampling8,
25
+ )
26
+ from ..transformer.embedding import (
27
+ PositionalEncoding,
28
+ RelPositionalEncoding,
29
+ WhisperPositionalEncoding,
30
+ LearnablePositionalEncoding,
31
+ NoPositionalEncoding)
32
+ from ..transformer.attention import (MultiHeadedAttention,
33
+ RelPositionMultiHeadedAttention)
34
+ from ..transformer.embedding import EspnetRelPositionalEncoding
35
+ from ..transformer.subsampling import LegacyLinearNoSubsampling
36
+
37
+
38
+ COSYVOICE_ACTIVATION_CLASSES = {
39
+ "hardtanh": torch.nn.Hardtanh,
40
+ "tanh": torch.nn.Tanh,
41
+ "relu": torch.nn.ReLU,
42
+ "selu": torch.nn.SELU,
43
+ "swish": getattr(torch.nn, "SiLU", Swish),
44
+ "gelu": torch.nn.GELU,
45
+ }
46
+
47
+ COSYVOICE_SUBSAMPLE_CLASSES = {
48
+ "linear": LinearNoSubsampling,
49
+ "linear_legacy": LegacyLinearNoSubsampling,
50
+ "embed": EmbedinigNoSubsampling,
51
+ "conv1d2": Conv1dSubsampling2,
52
+ "conv2d": Conv2dSubsampling4,
53
+ "conv2d6": Conv2dSubsampling6,
54
+ "conv2d8": Conv2dSubsampling8,
55
+ 'paraformer_dummy': torch.nn.Identity
56
+ }
57
+
58
+ COSYVOICE_EMB_CLASSES = {
59
+ "embed": PositionalEncoding,
60
+ "abs_pos": PositionalEncoding,
61
+ "rel_pos": RelPositionalEncoding,
62
+ "rel_pos_espnet": EspnetRelPositionalEncoding,
63
+ "no_pos": NoPositionalEncoding,
64
+ "abs_pos_whisper": WhisperPositionalEncoding,
65
+ "embed_learnable_pe": LearnablePositionalEncoding,
66
+ }
67
+
68
+ COSYVOICE_ATTENTION_CLASSES = {
69
+ "selfattn": MultiHeadedAttention,
70
+ "rel_selfattn": RelPositionMultiHeadedAttention,
71
+ }
src/chatterbox/models/s3gen/utils/mask.py ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2019 Shigeki Karita
2
+ # 2020 Mobvoi Inc (Binbin Zhang)
3
+ # 2024 Alibaba Inc (authors: Xiang Lyu)
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+
17
+ import torch
18
+
19
+ '''
20
+ def subsequent_mask(
21
+ size: int,
22
+ device: torch.device = torch.device("cpu"),
23
+ ) -> torch.Tensor:
24
+ """Create mask for subsequent steps (size, size).
25
+
26
+ This mask is used only in decoder which works in an auto-regressive mode.
27
+ This means the current step could only do attention with its left steps.
28
+
29
+ In encoder, fully attention is used when streaming is not necessary and
30
+ the sequence is not long. In this case, no attention mask is needed.
31
+
32
+ When streaming is need, chunk-based attention is used in encoder. See
33
+ subsequent_chunk_mask for the chunk-based attention mask.
34
+
35
+ Args:
36
+ size (int): size of mask
37
+ str device (str): "cpu" or "cuda" or torch.Tensor.device
38
+ dtype (torch.device): result dtype
39
+
40
+ Returns:
41
+ torch.Tensor: mask
42
+
43
+ Examples:
44
+ >>> subsequent_mask(3)
45
+ [[1, 0, 0],
46
+ [1, 1, 0],
47
+ [1, 1, 1]]
48
+ """
49
+ ret = torch.ones(size, size, device=device, dtype=torch.bool)
50
+ return torch.tril(ret)
51
+ '''
52
+
53
+
54
+ def subsequent_chunk_mask(
55
+ size: int,
56
+ chunk_size: int,
57
+ num_left_chunks: int = -1,
58
+ device: torch.device = torch.device("cpu"),
59
+ ) -> torch.Tensor:
60
+ """Create mask for subsequent steps (size, size) with chunk size,
61
+ this is for streaming encoder
62
+
63
+ Args:
64
+ size (int): size of mask
65
+ chunk_size (int): size of chunk
66
+ num_left_chunks (int): number of left chunks
67
+ <0: use full chunk
68
+ >=0: use num_left_chunks
69
+ device (torch.device): "cpu" or "cuda" or torch.Tensor.device
70
+
71
+ Returns:
72
+ torch.Tensor: mask
73
+
74
+ Examples:
75
+ >>> subsequent_chunk_mask(4, 2)
76
+ [[1, 1, 0, 0],
77
+ [1, 1, 0, 0],
78
+ [1, 1, 1, 1],
79
+ [1, 1, 1, 1]]
80
+ """
81
+ # NOTE this modified implementation meets onnx export requirements, but it doesn't support num_left_chunks
82
+ # actually this is not needed after we have inference cache implemented, will remove it later
83
+ pos_idx = torch.arange(size, device=device)
84
+ block_value = (torch.div(pos_idx, chunk_size, rounding_mode='trunc') + 1) * chunk_size
85
+ ret = pos_idx.unsqueeze(0) < block_value.unsqueeze(1)
86
+ return ret
87
+
88
+
89
+ def add_optional_chunk_mask(xs: torch.Tensor,
90
+ masks: torch.Tensor,
91
+ use_dynamic_chunk: bool,
92
+ use_dynamic_left_chunk: bool,
93
+ decoding_chunk_size: int,
94
+ static_chunk_size: int,
95
+ num_decoding_left_chunks: int,
96
+ enable_full_context: bool = True):
97
+ """ Apply optional mask for encoder.
98
+
99
+ Args:
100
+ xs (torch.Tensor): padded input, (B, L, D), L for max length
101
+ mask (torch.Tensor): mask for xs, (B, 1, L)
102
+ use_dynamic_chunk (bool): whether to use dynamic chunk or not
103
+ use_dynamic_left_chunk (bool): whether to use dynamic left chunk for
104
+ training.
105
+ decoding_chunk_size (int): decoding chunk size for dynamic chunk, it's
106
+ 0: default for training, use random dynamic chunk.
107
+ <0: for decoding, use full chunk.
108
+ >0: for decoding, use fixed chunk size as set.
109
+ static_chunk_size (int): chunk size for static chunk training/decoding
110
+ if it's greater than 0, if use_dynamic_chunk is true,
111
+ this parameter will be ignored
112
+ num_decoding_left_chunks: number of left chunks, this is for decoding,
113
+ the chunk size is decoding_chunk_size.
114
+ >=0: use num_decoding_left_chunks
115
+ <0: use all left chunks
116
+ enable_full_context (bool):
117
+ True: chunk size is either [1, 25] or full context(max_len)
118
+ False: chunk size ~ U[1, 25]
119
+
120
+ Returns:
121
+ torch.Tensor: chunk mask of the input xs.
122
+ """
123
+ # Whether to use chunk mask or not
124
+ if use_dynamic_chunk:
125
+ max_len = xs.size(1)
126
+ if decoding_chunk_size < 0:
127
+ chunk_size = max_len
128
+ num_left_chunks = -1
129
+ elif decoding_chunk_size > 0:
130
+ chunk_size = decoding_chunk_size
131
+ num_left_chunks = num_decoding_left_chunks
132
+ else:
133
+ # chunk size is either [1, 25] or full context(max_len).
134
+ # Since we use 4 times subsampling and allow up to 1s(100 frames)
135
+ # delay, the maximum frame is 100 / 4 = 25.
136
+ chunk_size = torch.randint(1, max_len, (1, )).item()
137
+ num_left_chunks = -1
138
+ if chunk_size > max_len // 2 and enable_full_context:
139
+ chunk_size = max_len
140
+ else:
141
+ chunk_size = chunk_size % 25 + 1
142
+ if use_dynamic_left_chunk:
143
+ max_left_chunks = (max_len - 1) // chunk_size
144
+ num_left_chunks = torch.randint(0, max_left_chunks,
145
+ (1, )).item()
146
+ chunk_masks = subsequent_chunk_mask(xs.size(1), chunk_size,
147
+ num_left_chunks,
148
+ xs.device) # (L, L)
149
+ chunk_masks = chunk_masks.unsqueeze(0) # (1, L, L)
150
+ chunk_masks = masks & chunk_masks # (B, L, L)
151
+ elif static_chunk_size > 0:
152
+ num_left_chunks = num_decoding_left_chunks
153
+ chunk_masks = subsequent_chunk_mask(xs.size(1), static_chunk_size,
154
+ num_left_chunks,
155
+ xs.device) # (L, L)
156
+ chunk_masks = chunk_masks.unsqueeze(0) # (1, L, L)
157
+ chunk_masks = masks & chunk_masks # (B, L, L)
158
+ else:
159
+ chunk_masks = masks
160
+ assert chunk_masks.dtype == torch.bool
161
+ if (chunk_masks.sum(dim=-1) == 0).sum().item() != 0:
162
+ logging.warning('get chunk_masks all false at some timestep, force set to true, make sure they are masked in futuer computation!')
163
+ chunk_masks[chunk_masks.sum(dim=-1)==0] = True
164
+ return chunk_masks
165
+
166
+
167
+ def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor:
168
+ """Make mask tensor containing indices of padded part.
169
+
170
+ See description of make_non_pad_mask.
171
+
172
+ Args:
173
+ lengths (torch.Tensor): Batch of lengths (B,).
174
+ Returns:
175
+ torch.Tensor: Mask tensor containing indices of padded part.
176
+
177
+ Examples:
178
+ >>> lengths = [5, 3, 2]
179
+ >>> make_pad_mask(lengths)
180
+ masks = [[0, 0, 0, 0 ,0],
181
+ [0, 0, 0, 1, 1],
182
+ [0, 0, 1, 1, 1]]
183
+ """
184
+ batch_size = lengths.size(0)
185
+ max_len = max_len if max_len > 0 else lengths.max().item()
186
+ seq_range = torch.arange(0,
187
+ max_len,
188
+ dtype=torch.int64,
189
+ device=lengths.device)
190
+ seq_range_expand = seq_range.unsqueeze(0).expand(batch_size, max_len)
191
+ seq_length_expand = lengths.unsqueeze(-1)
192
+ mask = seq_range_expand >= seq_length_expand
193
+ return mask
src/chatterbox/models/s3gen/utils/mel.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """mel-spectrogram extraction in Matcha-TTS"""
2
+ from librosa.filters import mel as librosa_mel_fn
3
+ import torch
4
+ import numpy as np
5
+
6
+
7
+ # NOTE: they decalred these global vars
8
+ mel_basis = {}
9
+ hann_window = {}
10
+
11
+
12
+ def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
13
+ return torch.log(torch.clamp(x, min=clip_val) * C)
14
+
15
+
16
+ def spectral_normalize_torch(magnitudes):
17
+ output = dynamic_range_compression_torch(magnitudes)
18
+ return output
19
+
20
+ """
21
+ feat_extractor: !name:matcha.utils.audio.mel_spectrogram
22
+ n_fft: 1920
23
+ num_mels: 80
24
+ sampling_rate: 24000
25
+ hop_size: 480
26
+ win_size: 1920
27
+ fmin: 0
28
+ fmax: 8000
29
+ center: False
30
+
31
+ """
32
+
33
+ def mel_spectrogram(y, n_fft=1920, num_mels=80, sampling_rate=24000, hop_size=480, win_size=1920,
34
+ fmin=0, fmax=8000, center=False):
35
+ """Copied from https://github.com/shivammehta25/Matcha-TTS/blob/main/matcha/utils/audio.py
36
+ Set default values according to Cosyvoice's config.
37
+ """
38
+
39
+ if isinstance(y, np.ndarray):
40
+ y = torch.tensor(y).float()
41
+
42
+ if len(y.shape) == 1:
43
+ y = y[None, ]
44
+
45
+ if torch.min(y) < -1.0:
46
+ print("min value is ", torch.min(y))
47
+ if torch.max(y) > 1.0:
48
+ print("max value is ", torch.max(y))
49
+
50
+ global mel_basis, hann_window # pylint: disable=global-statement,global-variable-not-assigned
51
+ if f"{str(fmax)}_{str(y.device)}" not in mel_basis:
52
+ mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
53
+ mel_basis[str(fmax) + "_" + str(y.device)] = torch.from_numpy(mel).float().to(y.device)
54
+ hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device)
55
+
56
+ y = torch.nn.functional.pad(
57
+ y.unsqueeze(1), (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), mode="reflect"
58
+ )
59
+ y = y.squeeze(1)
60
+
61
+ spec = torch.view_as_real(
62
+ torch.stft(
63
+ y,
64
+ n_fft,
65
+ hop_length=hop_size,
66
+ win_length=win_size,
67
+ window=hann_window[str(y.device)],
68
+ center=center,
69
+ pad_mode="reflect",
70
+ normalized=False,
71
+ onesided=True,
72
+ return_complex=True,
73
+ )
74
+ )
75
+
76
+ spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9))
77
+
78
+ spec = torch.matmul(mel_basis[str(fmax) + "_" + str(y.device)], spec)
79
+ spec = spectral_normalize_torch(spec)
80
+
81
+ return spec
src/chatterbox/models/s3gen/xvector.py ADDED
@@ -0,0 +1,428 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # -*- encoding: utf-8 -*-
3
+ # Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
4
+ # MIT License (https://opensource.org/licenses/MIT)
5
+ # Modified from 3D-Speaker (https://github.com/alibaba-damo-academy/3D-Speaker)
6
+
7
+
8
+ from collections import OrderedDict
9
+ import torch
10
+ import torch.nn.functional as F
11
+ import torch.utils.checkpoint as cp
12
+ import torchaudio.compliance.kaldi as Kaldi
13
+
14
+
15
+ def pad_list(xs, pad_value):
16
+ """Perform padding for the list of tensors.
17
+
18
+ Args:
19
+ xs (List): List of Tensors [(T_1, `*`), (T_2, `*`), ..., (T_B, `*`)].
20
+ pad_value (float): Value for padding.
21
+
22
+ Returns:
23
+ Tensor: Padded tensor (B, Tmax, `*`).
24
+
25
+ Examples:
26
+ >>> x = [torch.ones(4), torch.ones(2), torch.ones(1)]
27
+ >>> x
28
+ [tensor([1., 1., 1., 1.]), tensor([1., 1.]), tensor([1.])]
29
+ >>> pad_list(x, 0)
30
+ tensor([[1., 1., 1., 1.],
31
+ [1., 1., 0., 0.],
32
+ [1., 0., 0., 0.]])
33
+
34
+ """
35
+ n_batch = len(xs)
36
+ max_len = max(x.size(0) for x in xs)
37
+ pad = xs[0].new(n_batch, max_len, *xs[0].size()[1:]).fill_(pad_value)
38
+
39
+ for i in range(n_batch):
40
+ pad[i, : xs[i].size(0)] = xs[i]
41
+
42
+ return pad
43
+
44
+
45
+ def extract_feature(audio):
46
+ features = []
47
+ feature_times = []
48
+ feature_lengths = []
49
+ for au in audio:
50
+ feature = Kaldi.fbank(au.unsqueeze(0), num_mel_bins=80)
51
+ feature = feature - feature.mean(dim=0, keepdim=True)
52
+ features.append(feature)
53
+ feature_times.append(au.shape[0])
54
+ feature_lengths.append(feature.shape[0])
55
+ # padding for batch inference
56
+ features_padded = pad_list(features, pad_value=0)
57
+ # features = torch.cat(features)
58
+ return features_padded, feature_lengths, feature_times
59
+
60
+
61
+ class BasicResBlock(torch.nn.Module):
62
+ expansion = 1
63
+
64
+ def __init__(self, in_planes, planes, stride=1):
65
+ super(BasicResBlock, self).__init__()
66
+ self.conv1 = torch.nn.Conv2d(
67
+ in_planes, planes, kernel_size=3, stride=(stride, 1), padding=1, bias=False
68
+ )
69
+ self.bn1 = torch.nn.BatchNorm2d(planes)
70
+ self.conv2 = torch.nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
71
+ self.bn2 = torch.nn.BatchNorm2d(planes)
72
+
73
+ self.shortcut = torch.nn.Sequential()
74
+ if stride != 1 or in_planes != self.expansion * planes:
75
+ self.shortcut = torch.nn.Sequential(
76
+ torch.nn.Conv2d(
77
+ in_planes,
78
+ self.expansion * planes,
79
+ kernel_size=1,
80
+ stride=(stride, 1),
81
+ bias=False,
82
+ ),
83
+ torch.nn.BatchNorm2d(self.expansion * planes),
84
+ )
85
+
86
+ def forward(self, x):
87
+ out = F.relu(self.bn1(self.conv1(x)))
88
+ out = self.bn2(self.conv2(out))
89
+ out += self.shortcut(x)
90
+ out = F.relu(out)
91
+ return out
92
+
93
+
94
+ class FCM(torch.nn.Module):
95
+ def __init__(self, block=BasicResBlock, num_blocks=[2, 2], m_channels=32, feat_dim=80):
96
+ super(FCM, self).__init__()
97
+ self.in_planes = m_channels
98
+ self.conv1 = torch.nn.Conv2d(1, m_channels, kernel_size=3, stride=1, padding=1, bias=False)
99
+ self.bn1 = torch.nn.BatchNorm2d(m_channels)
100
+
101
+ self.layer1 = self._make_layer(block, m_channels, num_blocks[0], stride=2)
102
+ self.layer2 = self._make_layer(block, m_channels, num_blocks[0], stride=2)
103
+
104
+ self.conv2 = torch.nn.Conv2d(
105
+ m_channels, m_channels, kernel_size=3, stride=(2, 1), padding=1, bias=False
106
+ )
107
+ self.bn2 = torch.nn.BatchNorm2d(m_channels)
108
+ self.out_channels = m_channels * (feat_dim // 8)
109
+
110
+ def _make_layer(self, block, planes, num_blocks, stride):
111
+ strides = [stride] + [1] * (num_blocks - 1)
112
+ layers = []
113
+ for stride in strides:
114
+ layers.append(block(self.in_planes, planes, stride))
115
+ self.in_planes = planes * block.expansion
116
+ return torch.nn.Sequential(*layers)
117
+
118
+ def forward(self, x):
119
+ x = x.unsqueeze(1)
120
+ out = F.relu(self.bn1(self.conv1(x)))
121
+ out = self.layer1(out)
122
+ out = self.layer2(out)
123
+ out = F.relu(self.bn2(self.conv2(out)))
124
+
125
+ shape = out.shape
126
+ out = out.reshape(shape[0], shape[1] * shape[2], shape[3])
127
+ return out
128
+
129
+
130
+ def get_nonlinear(config_str, channels):
131
+ nonlinear = torch.nn.Sequential()
132
+ for name in config_str.split("-"):
133
+ if name == "relu":
134
+ nonlinear.add_module("relu", torch.nn.ReLU(inplace=True))
135
+ elif name == "prelu":
136
+ nonlinear.add_module("prelu", torch.nn.PReLU(channels))
137
+ elif name == "batchnorm":
138
+ nonlinear.add_module("batchnorm", torch.nn.BatchNorm1d(channels))
139
+ elif name == "batchnorm_":
140
+ nonlinear.add_module("batchnorm", torch.nn.BatchNorm1d(channels, affine=False))
141
+ else:
142
+ raise ValueError("Unexpected module ({}).".format(name))
143
+ return nonlinear
144
+
145
+
146
+ def statistics_pooling(x, dim=-1, keepdim=False, unbiased=True, eps=1e-2):
147
+ mean = x.mean(dim=dim)
148
+ std = x.std(dim=dim, unbiased=unbiased)
149
+ stats = torch.cat([mean, std], dim=-1)
150
+ if keepdim:
151
+ stats = stats.unsqueeze(dim=dim)
152
+ return stats
153
+
154
+
155
+ class StatsPool(torch.nn.Module):
156
+ def forward(self, x):
157
+ return statistics_pooling(x)
158
+
159
+
160
+ class TDNNLayer(torch.nn.Module):
161
+ def __init__(
162
+ self,
163
+ in_channels,
164
+ out_channels,
165
+ kernel_size,
166
+ stride=1,
167
+ padding=0,
168
+ dilation=1,
169
+ bias=False,
170
+ config_str="batchnorm-relu",
171
+ ):
172
+ super(TDNNLayer, self).__init__()
173
+ if padding < 0:
174
+ assert (
175
+ kernel_size % 2 == 1
176
+ ), "Expect equal paddings, but got even kernel size ({})".format(kernel_size)
177
+ padding = (kernel_size - 1) // 2 * dilation
178
+ self.linear = torch.nn.Conv1d(
179
+ in_channels,
180
+ out_channels,
181
+ kernel_size,
182
+ stride=stride,
183
+ padding=padding,
184
+ dilation=dilation,
185
+ bias=bias,
186
+ )
187
+ self.nonlinear = get_nonlinear(config_str, out_channels)
188
+
189
+ def forward(self, x):
190
+ x = self.linear(x)
191
+ x = self.nonlinear(x)
192
+ return x
193
+
194
+
195
+ class CAMLayer(torch.nn.Module):
196
+ def __init__(
197
+ self, bn_channels, out_channels, kernel_size, stride, padding, dilation, bias, reduction=2
198
+ ):
199
+ super(CAMLayer, self).__init__()
200
+ self.linear_local = torch.nn.Conv1d(
201
+ bn_channels,
202
+ out_channels,
203
+ kernel_size,
204
+ stride=stride,
205
+ padding=padding,
206
+ dilation=dilation,
207
+ bias=bias,
208
+ )
209
+ self.linear1 = torch.nn.Conv1d(bn_channels, bn_channels // reduction, 1)
210
+ self.relu = torch.nn.ReLU(inplace=True)
211
+ self.linear2 = torch.nn.Conv1d(bn_channels // reduction, out_channels, 1)
212
+ self.sigmoid = torch.nn.Sigmoid()
213
+
214
+ def forward(self, x):
215
+ y = self.linear_local(x)
216
+ context = x.mean(-1, keepdim=True) + self.seg_pooling(x)
217
+ context = self.relu(self.linear1(context))
218
+ m = self.sigmoid(self.linear2(context))
219
+ return y * m
220
+
221
+ def seg_pooling(self, x, seg_len=100, stype="avg"):
222
+ if stype == "avg":
223
+ seg = F.avg_pool1d(x, kernel_size=seg_len, stride=seg_len, ceil_mode=True)
224
+ elif stype == "max":
225
+ seg = F.max_pool1d(x, kernel_size=seg_len, stride=seg_len, ceil_mode=True)
226
+ else:
227
+ raise ValueError("Wrong segment pooling type.")
228
+ shape = seg.shape
229
+ seg = seg.unsqueeze(-1).expand(*shape, seg_len).reshape(*shape[:-1], -1)
230
+ seg = seg[..., : x.shape[-1]]
231
+ return seg
232
+
233
+
234
+ class CAMDenseTDNNLayer(torch.nn.Module):
235
+ def __init__(
236
+ self,
237
+ in_channels,
238
+ out_channels,
239
+ bn_channels,
240
+ kernel_size,
241
+ stride=1,
242
+ dilation=1,
243
+ bias=False,
244
+ config_str="batchnorm-relu",
245
+ memory_efficient=False,
246
+ ):
247
+ super(CAMDenseTDNNLayer, self).__init__()
248
+ assert kernel_size % 2 == 1, "Expect equal paddings, but got even kernel size ({})".format(
249
+ kernel_size
250
+ )
251
+ padding = (kernel_size - 1) // 2 * dilation
252
+ self.memory_efficient = memory_efficient
253
+ self.nonlinear1 = get_nonlinear(config_str, in_channels)
254
+ self.linear1 = torch.nn.Conv1d(in_channels, bn_channels, 1, bias=False)
255
+ self.nonlinear2 = get_nonlinear(config_str, bn_channels)
256
+ self.cam_layer = CAMLayer(
257
+ bn_channels,
258
+ out_channels,
259
+ kernel_size,
260
+ stride=stride,
261
+ padding=padding,
262
+ dilation=dilation,
263
+ bias=bias,
264
+ )
265
+
266
+ def bn_function(self, x):
267
+ return self.linear1(self.nonlinear1(x))
268
+
269
+ def forward(self, x):
270
+ if self.training and self.memory_efficient:
271
+ x = cp.checkpoint(self.bn_function, x)
272
+ else:
273
+ x = self.bn_function(x)
274
+ x = self.cam_layer(self.nonlinear2(x))
275
+ return x
276
+
277
+
278
+ class CAMDenseTDNNBlock(torch.nn.ModuleList):
279
+ def __init__(
280
+ self,
281
+ num_layers,
282
+ in_channels,
283
+ out_channels,
284
+ bn_channels,
285
+ kernel_size,
286
+ stride=1,
287
+ dilation=1,
288
+ bias=False,
289
+ config_str="batchnorm-relu",
290
+ memory_efficient=False,
291
+ ):
292
+ super(CAMDenseTDNNBlock, self).__init__()
293
+ for i in range(num_layers):
294
+ layer = CAMDenseTDNNLayer(
295
+ in_channels=in_channels + i * out_channels,
296
+ out_channels=out_channels,
297
+ bn_channels=bn_channels,
298
+ kernel_size=kernel_size,
299
+ stride=stride,
300
+ dilation=dilation,
301
+ bias=bias,
302
+ config_str=config_str,
303
+ memory_efficient=memory_efficient,
304
+ )
305
+ self.add_module("tdnnd%d" % (i + 1), layer)
306
+
307
+ def forward(self, x):
308
+ for layer in self:
309
+ x = torch.cat([x, layer(x)], dim=1)
310
+ return x
311
+
312
+
313
+ class TransitLayer(torch.nn.Module):
314
+ def __init__(self, in_channels, out_channels, bias=True, config_str="batchnorm-relu"):
315
+ super(TransitLayer, self).__init__()
316
+ self.nonlinear = get_nonlinear(config_str, in_channels)
317
+ self.linear = torch.nn.Conv1d(in_channels, out_channels, 1, bias=bias)
318
+
319
+ def forward(self, x):
320
+ x = self.nonlinear(x)
321
+ x = self.linear(x)
322
+ return x
323
+
324
+
325
+ class DenseLayer(torch.nn.Module):
326
+ def __init__(self, in_channels, out_channels, bias=False, config_str="batchnorm-relu"):
327
+ super(DenseLayer, self).__init__()
328
+ self.linear = torch.nn.Conv1d(in_channels, out_channels, 1, bias=bias)
329
+ self.nonlinear = get_nonlinear(config_str, out_channels)
330
+
331
+ def forward(self, x):
332
+ if len(x.shape) == 2:
333
+ x = self.linear(x.unsqueeze(dim=-1)).squeeze(dim=-1)
334
+ else:
335
+ x = self.linear(x)
336
+ x = self.nonlinear(x)
337
+ return x
338
+
339
+ # @tables.register("model_classes", "CAMPPlus")
340
+ class CAMPPlus(torch.nn.Module):
341
+ def __init__(
342
+ self,
343
+ feat_dim=80,
344
+ embedding_size=192,
345
+ growth_rate=32,
346
+ bn_size=4,
347
+ init_channels=128,
348
+ config_str="batchnorm-relu",
349
+ memory_efficient=True,
350
+ output_level="segment",
351
+ **kwargs,
352
+ ):
353
+ super().__init__()
354
+
355
+ self.head = FCM(feat_dim=feat_dim)
356
+ channels = self.head.out_channels
357
+ self.output_level = output_level
358
+
359
+ self.xvector = torch.nn.Sequential(
360
+ OrderedDict(
361
+ [
362
+ (
363
+ "tdnn",
364
+ TDNNLayer(
365
+ channels,
366
+ init_channels,
367
+ 5,
368
+ stride=2,
369
+ dilation=1,
370
+ padding=-1,
371
+ config_str=config_str,
372
+ ),
373
+ ),
374
+ ]
375
+ )
376
+ )
377
+ channels = init_channels
378
+ for i, (num_layers, kernel_size, dilation) in enumerate(
379
+ zip((12, 24, 16), (3, 3, 3), (1, 2, 2))
380
+ ):
381
+ block = CAMDenseTDNNBlock(
382
+ num_layers=num_layers,
383
+ in_channels=channels,
384
+ out_channels=growth_rate,
385
+ bn_channels=bn_size * growth_rate,
386
+ kernel_size=kernel_size,
387
+ dilation=dilation,
388
+ config_str=config_str,
389
+ memory_efficient=memory_efficient,
390
+ )
391
+ self.xvector.add_module("block%d" % (i + 1), block)
392
+ channels = channels + num_layers * growth_rate
393
+ self.xvector.add_module(
394
+ "transit%d" % (i + 1),
395
+ TransitLayer(channels, channels // 2, bias=False, config_str=config_str),
396
+ )
397
+ channels //= 2
398
+
399
+ self.xvector.add_module("out_nonlinear", get_nonlinear(config_str, channels))
400
+
401
+ if self.output_level == "segment":
402
+ self.xvector.add_module("stats", StatsPool())
403
+ self.xvector.add_module(
404
+ "dense", DenseLayer(channels * 2, embedding_size, config_str="batchnorm_")
405
+ )
406
+ else:
407
+ assert (
408
+ self.output_level == "frame"
409
+ ), "`output_level` should be set to 'segment' or 'frame'. "
410
+
411
+ for m in self.modules():
412
+ if isinstance(m, (torch.nn.Conv1d, torch.nn.Linear)):
413
+ torch.nn.init.kaiming_normal_(m.weight.data)
414
+ if m.bias is not None:
415
+ torch.nn.init.zeros_(m.bias)
416
+
417
+ def forward(self, x):
418
+ x = x.permute(0, 2, 1) # (B,T,F) => (B,F,T)
419
+ x = self.head(x)
420
+ x = self.xvector(x)
421
+ if self.output_level == "frame":
422
+ x = x.transpose(1, 2)
423
+ return x
424
+
425
+ def inference(self, audio_list):
426
+ speech, speech_lengths, speech_times = extract_feature(audio_list)
427
+ results = self.forward(speech.to(torch.float32))
428
+ return results
src/chatterbox/models/s3tokenizer/__init__.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .s3tokenizer import (
2
+ S3_SR,
3
+ S3_HOP,
4
+ S3_TOKEN_HOP,
5
+ S3_TOKEN_RATE,
6
+ SPEECH_VOCAB_SIZE,
7
+ S3Tokenizer,
8
+ )
9
+
10
+
11
+ SOS = SPEECH_VOCAB_SIZE
12
+ EOS = SPEECH_VOCAB_SIZE + 1
13
+
14
+
15
+
16
+ def drop_invalid_tokens(x):
17
+ """Drop SoS and EoS"""
18
+ assert len(x.shape) == 1 or (len(x.shape) == 2 and x.shape[0] == 1), "only batch size of one allowed for now"
19
+ if SOS in x:
20
+ s = (x == SOS).nonzero(as_tuple=True)[0].squeeze(0) + 1
21
+ else:
22
+ s = 0
23
+
24
+ if EOS in x:
25
+ e = (x == EOS).nonzero(as_tuple=True)[0].squeeze(0)
26
+ else:
27
+ e = None
28
+
29
+ x = x[s: e]
30
+ return x
src/chatterbox/models/s3tokenizer/s3tokenizer.py ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Tuple
2
+
3
+ import numpy as np
4
+ import librosa
5
+ import torch
6
+ import torch.nn.functional as F
7
+ from s3tokenizer.utils import padding
8
+ from s3tokenizer.model_v2 import (
9
+ S3TokenizerV2,
10
+ ModelConfig,
11
+ )
12
+
13
+
14
+ # Sampling rate of the inputs to S3TokenizerV2
15
+ S3_SR = 16_000
16
+ S3_HOP = 160 # 100 frames/sec
17
+ S3_TOKEN_HOP = 640 # 25 tokens/sec
18
+ S3_TOKEN_RATE = 25
19
+ SPEECH_VOCAB_SIZE = 6561
20
+
21
+
22
+ class S3Tokenizer(S3TokenizerV2):
23
+ """
24
+ s3tokenizer.S3TokenizerV2 with the following changes:
25
+ - a more integrated `forward`
26
+ - compute `log_mel_spectrogram` using `_mel_filters` and `window` in `register_buffers`
27
+ """
28
+
29
+ ignore_state_dict_missing = ("_mel_filters", "window")
30
+
31
+ def __init__(
32
+ self,
33
+ name: str="speech_tokenizer_v2_25hz",
34
+ config: ModelConfig = ModelConfig()
35
+ ):
36
+ super().__init__(name)
37
+
38
+ self.n_fft = 400
39
+ _mel_filters = librosa.filters.mel(
40
+ sr=S3_SR,
41
+ n_fft=self.n_fft,
42
+ n_mels=config.n_mels
43
+ )
44
+ self.register_buffer(
45
+ "_mel_filters",
46
+ torch.FloatTensor(_mel_filters),
47
+ )
48
+
49
+ self.register_buffer(
50
+ "window",
51
+ torch.hann_window(self.n_fft),
52
+ )
53
+
54
+ def pad(self, wavs, sr) -> List[torch.Tensor]:
55
+ """
56
+ Given a list of wavs with the same `sample_rate`, pad them so that the length is multiple of 40ms (S3 runs at 25 token/sec).
57
+ """
58
+ processed_wavs = []
59
+ for wav in wavs:
60
+ if isinstance(wav, np.ndarray):
61
+ wav = torch.from_numpy(wav)
62
+ if wav.dim() == 1:
63
+ wav = wav.unsqueeze(0)
64
+
65
+ n_tokens = (wav.shape[1] / sr) * S3_TOKEN_RATE
66
+ n_tokens = np.ceil(n_tokens)
67
+ intended_wav_len = n_tokens * (sr / S3_TOKEN_RATE)
68
+ intended_wav_len = int(intended_wav_len)
69
+ wav = torch.nn.functional.pad(
70
+ wav,
71
+ (0, intended_wav_len - wav.shape[-1]),
72
+ mode="constant",
73
+ value=0
74
+ )
75
+ processed_wavs.append(wav)
76
+ return processed_wavs
77
+
78
+ def _prepare_audio(self, wavs):
79
+ """Prepare a list of audios for s3tokenizer processing."""
80
+ processed_wavs = []
81
+ for wav in wavs:
82
+ if isinstance(wav, np.ndarray):
83
+ wav = torch.from_numpy(wav)
84
+ if wav.dim() == 1:
85
+ wav = wav.unsqueeze(0)
86
+
87
+ processed_wavs.append(wav)
88
+ return processed_wavs
89
+
90
+ @torch.no_grad()
91
+ def forward(
92
+ self,
93
+ wavs: torch.Tensor,
94
+ accelerator: 'Accelerator'=None,
95
+ max_len: int=None,
96
+ ) -> Tuple[torch.Tensor, torch.LongTensor]:
97
+ """
98
+ NOTE: mel-spec has a hop size of 160 points (100 frame/sec).
99
+ FIXME: this class inherits `nn.Module` but doesn't accept `torch.Tensor` and handles a list of wavs one by one, which is unexpected.
100
+
101
+ Args
102
+ ----
103
+ - `wavs`: 16 kHz speech audio
104
+ - `max_len` max length to truncate the output sequence to (25 token/sec).
105
+ NOTE: please pad the waveform if longer sequence is needed.
106
+ """
107
+ processed_wavs = self._prepare_audio(wavs)
108
+ mels, mel_lens = [], []
109
+ for wav in processed_wavs:
110
+ wav = wav.to(self.device)
111
+ mel = self.log_mel_spectrogram(wav) # [B=1, F, T]
112
+ if max_len is not None:
113
+ mel = mel[..., :max_len * 4] # num_mel_frames = 4 * num_tokens
114
+ mels.append(mel.squeeze(0))
115
+
116
+ mels, mel_lens = padding(mels)
117
+ if accelerator is None:
118
+ tokenizer = self
119
+ else:
120
+ tokenizer = accelerator.unwrap_model(self)
121
+
122
+ speech_tokens, speech_token_lens = tokenizer.quantize(mels, mel_lens.to(self.device))
123
+ return (
124
+ speech_tokens.long().detach(),
125
+ speech_token_lens.long().detach(),
126
+ )
127
+
128
+ def log_mel_spectrogram(
129
+ self,
130
+ audio: torch.Tensor,
131
+ padding: int = 0,
132
+ ):
133
+ """
134
+ Compute the log-Mel spectrogram of
135
+
136
+ Parameters
137
+ ----------
138
+ audio: torch.Tensor, shape = (*)
139
+ The path to audio or either a NumPy array or Tensor containing the
140
+ audio waveform in 16 kHz
141
+
142
+ padding: int
143
+ Number of zero samples to pad to the right
144
+
145
+ Returns
146
+ -------
147
+ torch.Tensor, shape = (128, n_frames)
148
+ A Tensor that contains the Mel spectrogram
149
+ """
150
+ if not torch.is_tensor(audio):
151
+ audio = torch.from_numpy(audio)
152
+
153
+ audio = audio.to(self.device)
154
+ if padding > 0:
155
+ audio = F.pad(audio, (0, padding))
156
+ stft = torch.stft(
157
+ audio, self.n_fft, S3_HOP,
158
+ window=self.window.to(self.device),
159
+ return_complex=True
160
+ )
161
+ magnitudes = stft[..., :-1].abs()**2
162
+
163
+ mel_spec = self._mel_filters.to(self.device) @ magnitudes
164
+
165
+ log_spec = torch.clamp(mel_spec, min=1e-10).log10()
166
+ log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
167
+ log_spec = (log_spec + 4.0) / 4.0
168
+ return log_spec
src/chatterbox/models/t3/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .t3 import T3
src/chatterbox/models/t3/inference/alignment_stream_analyzer.py ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2025 Resemble AI
2
+ # Author: John Meade, Jeremy Hsu
3
+ # MIT License
4
+ import logging
5
+ import torch
6
+ from dataclasses import dataclass
7
+ from types import MethodType
8
+
9
+
10
+ logger = logging.getLogger(__name__)
11
+
12
+
13
+ @dataclass
14
+ class AlignmentAnalysisResult:
15
+ # was this frame detected as being part of a noisy beginning chunk with potential hallucinations?
16
+ false_start: bool
17
+ # was this frame detected as being part of a long tail with potential hallucinations?
18
+ long_tail: bool
19
+ # was this frame detected as repeating existing text content?
20
+ repetition: bool
21
+ # was the alignment position of this frame too far from the previous frame?
22
+ discontinuity: bool
23
+ # has inference reached the end of the text tokens? eg, this remains false if inference stops early
24
+ complete: bool
25
+ # approximate position in the text token sequence. Can be used for generating online timestamps.
26
+ position: int
27
+
28
+
29
+ class AlignmentStreamAnalyzer:
30
+ def __init__(self, tfmr, queue, text_tokens_slice, alignment_layer_idx=9, eos_idx=0):
31
+ """
32
+ Some transformer TTS models implicitly solve text-speech alignment in one or more of their self-attention
33
+ activation maps. This module exploits this to perform online integrity checks which streaming.
34
+ A hook is injected into the specified attention layer, and heuristics are used to determine alignment
35
+ position, repetition, etc.
36
+
37
+ NOTE: currently requires no queues.
38
+ """
39
+ # self.queue = queue
40
+ self.text_tokens_slice = (i, j) = text_tokens_slice
41
+ self.eos_idx = eos_idx
42
+ self.alignment = torch.zeros(0, j-i)
43
+ # self.alignment_bin = torch.zeros(0, j-i)
44
+ self.curr_frame_pos = 0
45
+ self.text_position = 0
46
+
47
+ self.started = False
48
+ self.started_at = None
49
+
50
+ self.complete = False
51
+ self.completed_at = None
52
+
53
+ # Using `output_attentions=True` is incompatible with optimized attention kernels, so
54
+ # using it for all layers slows things down too much. We can apply it to just one layer
55
+ # by intercepting the kwargs and adding a forward hook (credit: jrm)
56
+ self.last_aligned_attn = None
57
+ self._add_attention_spy(tfmr, alignment_layer_idx)
58
+
59
+ def _add_attention_spy(self, tfmr, alignment_layer_idx):
60
+ """
61
+ Adds a forward hook to a specific attention layer to collect outputs.
62
+ Using `output_attentions=True` is incompatible with optimized attention kernels, so
63
+ using it for all layers slows things down too much.
64
+ (credit: jrm)
65
+ """
66
+
67
+ def attention_forward_hook(module, input, output):
68
+ """
69
+ See `LlamaAttention.forward`; the output is a 3-tuple: `attn_output, attn_weights, past_key_value`.
70
+ NOTE:
71
+ - When `output_attentions=True`, `LlamaSdpaAttention.forward` calls `LlamaAttention.forward`.
72
+ - `attn_output` has shape [B, H, T0, T0] for the 0th entry, and [B, H, 1, T0+i] for the rest i-th.
73
+ """
74
+ step_attention = output[1].cpu() # (B, 16, N, N)
75
+ self.last_aligned_attn = step_attention[0].mean(0) # (N, N)
76
+
77
+ target_layer = tfmr.layers[alignment_layer_idx].self_attn
78
+ hook_handle = target_layer.register_forward_hook(attention_forward_hook)
79
+
80
+ # Backup original forward
81
+ original_forward = target_layer.forward
82
+ def patched_forward(self, *args, **kwargs):
83
+ kwargs['output_attentions'] = True
84
+ return original_forward(*args, **kwargs)
85
+
86
+ # TODO: how to unpatch it?
87
+ target_layer.forward = MethodType(patched_forward, target_layer)
88
+
89
+ def step(self, logits):
90
+ """
91
+ Emits an AlignmentAnalysisResult into the output queue, and potentially modifies the logits to force an EOS.
92
+ """
93
+ # extract approximate alignment matrix chunk (1 frame at a time after the first chunk)
94
+ aligned_attn = self.last_aligned_attn # (N, N)
95
+ i, j = self.text_tokens_slice
96
+ if self.curr_frame_pos == 0:
97
+ # first chunk has conditioning info, text tokens, and BOS token
98
+ A_chunk = aligned_attn[j:, i:j].clone().cpu() # (T, S)
99
+ else:
100
+ # subsequent chunks have 1 frame due to KV-caching
101
+ A_chunk = aligned_attn[:, i:j].clone().cpu() # (1, S)
102
+
103
+ # TODO: monotonic masking; could have issue b/c spaces are often skipped.
104
+ A_chunk[:, self.curr_frame_pos + 1:] = 0
105
+
106
+
107
+ self.alignment = torch.cat((self.alignment, A_chunk), dim=0)
108
+
109
+ A = self.alignment
110
+ T, S = A.shape
111
+
112
+ # update position
113
+ cur_text_posn = A_chunk[-1].argmax()
114
+ discontinuity = not(-4 < cur_text_posn - self.text_position < 7) # NOTE: very lenient!
115
+ if not discontinuity:
116
+ self.text_position = cur_text_posn
117
+
118
+ # Hallucinations at the start of speech show up as activations at the bottom of the attention maps!
119
+ # To mitigate this, we just wait until there are no activations far off-diagonal in the last 2 tokens,
120
+ # and there are some strong activations in the first few tokens.
121
+ false_start = (not self.started) and (A[-2:, -2:].max() > 0.1 or A[:, :4].max() < 0.5)
122
+ self.started = not false_start
123
+ if self.started and self.started_at is None:
124
+ self.started_at = T
125
+
126
+ # Is generation likely complete?
127
+ self.complete = self.complete or self.text_position >= S - 3
128
+ if self.complete and self.completed_at is None:
129
+ self.completed_at = T
130
+
131
+ # NOTE: EOS rarely assigned activations, and second-last token is often punctuation, so use last 3 tokens.
132
+ # NOTE: due to the false-start behaviour, we need to make sure we skip activations for the first few tokens.
133
+ last_text_token_duration = A[15:, -3:].sum()
134
+
135
+ # Activations for the final token that last too long are likely hallucinations.
136
+ long_tail = self.complete and (A[self.completed_at:, -3:].sum(dim=0).max() >= 10) # 400ms
137
+
138
+ # If there are activations in previous tokens after generation has completed, assume this is a repetition error.
139
+ repetition = self.complete and (A[self.completed_at:, :-5].max(dim=1).values.sum() > 5)
140
+
141
+ # If a bad ending is detected, force emit EOS by modifying logits
142
+ # NOTE: this means logits may be inconsistent with latents!
143
+ if long_tail or repetition:
144
+ logger.warn(f"forcing EOS token, {long_tail=}, {repetition=}")
145
+ # (±2**15 is safe for all dtypes >= 16bit)
146
+ logits = -(2**15) * torch.ones_like(logits)
147
+ logits[..., self.eos_idx] = 2**15
148
+
149
+ # Suppress EoS to prevent early termination
150
+ if cur_text_posn < S - 3: # FIXME: arbitrary
151
+ logits[..., self.eos_idx] = -2**15
152
+
153
+ self.curr_frame_pos += 1
154
+ return logits
src/chatterbox/models/t3/inference/t3_hf_backend.py ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional
2
+
3
+ import torch
4
+ from torch import nn as nn
5
+ from transformers import LlamaConfig, LlamaModel, LlamaPreTrainedModel, GenerationMixin
6
+ from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
7
+
8
+
9
+ class T3HuggingfaceBackend(LlamaPreTrainedModel, GenerationMixin):
10
+ """
11
+ Override some HuggingFace interface methods so we can use the standard `generate` method with our
12
+ custom embedding / logit layers.
13
+
14
+ NOTE: need to extend "*PreTrainedModel" to avoid re-initializing weights!
15
+ """
16
+
17
+ def __init__(
18
+ self,
19
+ config: LlamaConfig,
20
+ llama: LlamaModel,
21
+ *,
22
+ speech_enc,
23
+ speech_head,
24
+ latents_queue=None,
25
+ logits_queue=None,
26
+ alignment_stream_analyzer: 'AlignmentStreamAnalyzer'=None,
27
+ ):
28
+ super().__init__(config)
29
+ self.model = llama
30
+ self.speech_enc = speech_enc
31
+ self.speech_head = speech_head
32
+ self._added_cond = False
33
+ self.alignment_stream_analyzer = alignment_stream_analyzer
34
+
35
+ @torch.inference_mode()
36
+ def prepare_inputs_for_generation(
37
+ self, input_ids: torch.Tensor, decoder_cond: torch.Tensor, use_cache: bool, past_key_values=None,
38
+ # This argument was introduced in some recent version of transformers (>=4.29.1)
39
+ cache_position=None
40
+ ):
41
+ """
42
+ This is a method used by huggingface's generate() method.
43
+ Overridden here to apply our custom speech token embedding layer.
44
+
45
+ :param input_ids: (B, S) int64 tensors of input tokens.
46
+ :param decoder_cond: (B, T, C) float32 tensor of conditioning (prefixed to <input_embeds>)
47
+ """
48
+
49
+ # Make use of the kv cache: only the last input ID is new, we trim away all the ones before
50
+ if not use_cache:
51
+ past_key_values = None
52
+ if past_key_values is not None:
53
+ input_ids = input_ids[:, -1:]
54
+
55
+ # custom speech token embedding layer
56
+ inputs_embeds = self.speech_enc(input_ids)
57
+
58
+ # prefix decoder conditioning if applicable
59
+ if not self._added_cond:
60
+ assert past_key_values is not None # should be first step
61
+ if decoder_cond.size(0) != inputs_embeds.size(0):
62
+ decoder_cond = decoder_cond.expand(inputs_embeds.size(0), -1, -1)
63
+ inputs_embeds = torch.cat([decoder_cond, inputs_embeds], dim=1)
64
+ self._added_cond = True
65
+
66
+ return {
67
+ "inputs_embeds": inputs_embeds,
68
+ "past_key_values": past_key_values,
69
+ "use_cache": use_cache,
70
+ }
71
+
72
+ @torch.inference_mode()
73
+ def forward(
74
+ self,
75
+ inputs_embeds: torch.Tensor,
76
+ past_key_values: Optional[torch.Tensor]=None,
77
+ use_cache=True,
78
+ output_attentions=False,
79
+ output_hidden_states=True,
80
+ return_dict=True,
81
+ ):
82
+ """
83
+ This is a method used by huggingface's generate() method.
84
+ Overridden here to apply our custom layer norm and speech logit projection layers.
85
+
86
+ :param inputs_embeds: (B, S, C) float32 tensor of conditioning inputs. If past key values are given,
87
+ S should be 1.
88
+ """
89
+ is_large_input = inputs_embeds.size(1) != 1
90
+ has_cache = past_key_values is not None and len(past_key_values) > 0
91
+ assert not (is_large_input and has_cache)
92
+ assert return_dict
93
+ assert output_hidden_states
94
+
95
+ tfmr_out = self.model(
96
+ inputs_embeds=inputs_embeds,
97
+ past_key_values=past_key_values,
98
+ use_cache=use_cache,
99
+ output_attentions=output_attentions,
100
+ output_hidden_states=output_hidden_states,
101
+ return_dict=True,
102
+ )
103
+ hidden_states = tfmr_out.hidden_states[-1] # (B, seq, dim)
104
+
105
+ logits = self.speech_head(hidden_states)
106
+ # assert inputs_embeds.size(0) == 1 # (disabled for CFG)
107
+
108
+ # NOTE: hallucination handler may modify logits to force emit an EOS token
109
+ # logits = self.alignment_stream_analyzer.step(logits)
110
+
111
+ return CausalLMOutputWithCrossAttentions(
112
+ logits=logits,
113
+ past_key_values=tfmr_out.past_key_values,
114
+ hidden_states=tfmr_out.hidden_states,
115
+ attentions=tfmr_out.attentions,
116
+ )
src/chatterbox/models/t3/llama_configs.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ LLAMA_520M_CONFIG_DICT = dict(
2
+ # Arbitrary small number that won't cause problems when loading.
3
+ # These param are unused due to custom input layers.
4
+ vocab_size=8,
5
+ # default params needed for loading most pretrained 1B weights
6
+ max_position_embeddings=131072,
7
+ hidden_size=1024,
8
+ intermediate_size=4096,
9
+ num_hidden_layers=30,
10
+ num_attention_heads=16,
11
+ attn_implementation="sdpa",
12
+ head_dim=64,
13
+ tie_word_embeddings=False,
14
+ hidden_act="silu",
15
+ attention_bias=False,
16
+ attention_dropout=0.0,
17
+ initializer_range=0.02,
18
+ mlp_bias=False,
19
+ model_type="llama",
20
+ num_key_value_heads=16,
21
+ pretraining_tp=1,
22
+ rms_norm_eps=1e-05,
23
+ rope_scaling=dict(
24
+ factor=8.0,
25
+ high_freq_factor=4.0,
26
+ low_freq_factor=1.0,
27
+ original_max_position_embeddings=8192,
28
+ rope_type="llama3"
29
+ ),
30
+ rope_theta=500000.0,
31
+ torch_dtype="bfloat16",
32
+ use_cache=True,
33
+ )
34
+
35
+ LLAMA_CONFIGS = {
36
+ "Llama_520M": LLAMA_520M_CONFIG_DICT,
37
+ }