Loci-Similes-Demo / config_stage.py
julian-schelb's picture
Update config_stage.py
625cdf2 verified
"""Configuration stage for the Loci Similes GUI."""
from __future__ import annotations
import sys
try:
import gradio as gr
except ImportError as exc:
missing = getattr(exc, "name", None)
base_msg = (
"Optional GUI dependencies are missing. Install them via "
"'pip install locisimiles[gui]' (Python 3.13+ also requires the "
"audioop-lts backport) to use the Gradio interface."
)
if missing and missing != "gradio":
raise ImportError(f"{base_msg} (missing package: {missing})") from exc
raise ImportError(base_msg) from exc
from utils import validate_csv
from locisimiles.pipeline import ClassificationPipelineWithCandidategeneration
from locisimiles.document import Document
def _show_processing_status() -> dict:
"""Show the processing spinner."""
spinner_html = """
<div style="display: flex; align-items: center; justify-content: center; padding: 20px; background-color: #e3f2fd; border-radius: 8px; margin: 20px 0;">
<div style="display: flex; flex-direction: column; align-items: center; gap: 15px;">
<div style="border: 4px solid #f3f3f3; border-top: 4px solid #2196F3; border-radius: 50%; width: 40px; height: 40px; animation: spin 1s linear infinite;"></div>
<div style="font-size: 16px; color: #1976D2; font-weight: 500;">Processing documents... This may take several minutes on first run.</div>
<div style="font-size: 13px; color: #666;">Downloading models, generating embeddings, and classifying candidates...</div>
</div>
</div>
<style>
@keyframes spin {
0% { transform: rotate(0deg); }
100% { transform: rotate(360deg); }
}
</style>
"""
return gr.update(value=spinner_html, visible=True)
def _process_documents(
query_file: str | None,
source_file: str | None,
classification_model: str,
embedding_model: str,
top_k: int,
threshold: float,
) -> tuple:
"""Process the documents using the Loci Similes pipeline and navigate to results step.
Args:
query_file: Path to query CSV file
source_file: Path to source CSV file
classification_model: Name of the classification model
embedding_model: Name of the embedding model
top_k: Number of top candidates to retrieve
threshold: Similarity threshold (not used in pipeline, for future filtering)
Returns:
Tuple of (processing_status_update, walkthrough_update, results_state, query_doc_state)
"""
if not query_file or not source_file:
gr.Warning("Both query and source documents must be uploaded before processing.")
return gr.update(visible=False), gr.Walkthrough(selected=1), None, None
# Validate both files
query_valid, query_msg = validate_csv(query_file)
source_valid, source_msg = validate_csv(source_file)
if not query_valid or not source_valid:
gr.Warning("Please ensure both documents are valid before processing.")
return gr.update(visible=False), gr.Walkthrough(selected=1), None, None
try:
# Detect device (prefer GPU if available)
import torch
if torch.cuda.is_available():
device = "cuda"
elif torch.backends.mps.is_available():
device = "mps"
else:
device = "cpu"
# Initialize pipeline
# Note: First run will download models (~500MB each), subsequent runs use cached models
pipeline = ClassificationPipelineWithCandidategeneration(
classification_name=classification_model,
embedding_model_name=embedding_model,
device=device,
)
# Load documents
query_doc = Document(query_file)
source_doc = Document(source_file)
# Run pipeline
results = pipeline.run(
query=query_doc,
source=source_doc,
top_k=top_k,
)
# Store results
num_queries = len(results)
total_matches = sum(len(matches) for matches in results.values())
print(f"Processing complete! Found matches for {num_queries} query segments ({total_matches} total matches).")
# Return results and navigate to results step (Step 3, id=2)
return (
gr.update(visible=False), # Hide processing status
gr.Walkthrough(selected=2), # Navigate to Results step
results, # Store results in state
query_doc, # Store query doc in state
)
except Exception as e:
print(f"Processing error: {e}", file=sys.stderr)
import traceback
traceback.print_exc()
gr.Error(f"Processing failed: {str(e)}")
return (
gr.update(visible=False), # Hide processing status
gr.Walkthrough(selected=1), # Stay on Configuration step
None, # No results
None, # No query doc
)
def build_config_stage() -> tuple[gr.Step, dict]:
"""Build the configuration stage UI.
Returns:
Tuple of (Step component, dict of components for external access)
"""
components = {}
with gr.Step("Pipeline Configuration", id=1) as step:
gr.Markdown("### βš™οΈ Step 2: Pipeline Configuration")
gr.Markdown(
"Configure the two-stage pipeline. Stage 1 (Embedding): Quickly ranks all source segments by similarity to each query segment. "
"Stage 2 (Classification): Examines the top-K candidates more carefully to identify true intertextual references. "
"Higher K values catch more potential citations but increase computation time. The threshold filters results by classification confidence."
)
with gr.Row():
# Left column: Model Selection
with gr.Column():
gr.Markdown("**πŸ€– Model Selection**")
components["classification_model"] = gr.Dropdown(
label="Classification Model",
choices=["julian-schelb/PhilBerta-class-latin-intertext-v1"],
value="julian-schelb/PhilBerta-class-latin-intertext-v1",
interactive=True,
info="Model used to classify candidate pairs as intertextual or not",
)
components["embedding_model"] = gr.Dropdown(
label="Embedding Model",
choices=["julian-schelb/SPhilBerta-emb-lat-intertext-v1"],
value="julian-schelb/SPhilBerta-emb-lat-intertext-v1",
interactive=True,
info="Model used to generate embeddings for candidate retrieval",
)
# Right column: Retrieval Parameters
with gr.Column():
gr.Markdown("**πŸ› οΈ Retrieval Parameters**")
components["top_k"] = gr.Slider(
minimum=1,
maximum=50,
value=10,
step=1,
label="Top K Candidates",
info="How many candidates to examine per query. Higher values find more references but take longer to process.",
)
components["threshold"] = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.5,
step=0.05,
label="Classification Threshold",
info="Minimum confidence to count as a 'find'. Lower = more results but more false positives; Higher = fewer but more certain results.",
)
components["processing_status"] = gr.HTML(visible=False)
with gr.Row():
components["back_btn"] = gr.Button("← Back to Upload", size="lg")
components["process_btn"] = gr.Button("Process Documents β†’", variant="primary", size="lg")
return step, components
def setup_config_handlers(
components: dict,
file_states: dict,
pipeline_states: dict,
walkthrough: gr.Walkthrough,
results_components: dict,
) -> None:
"""Set up event handlers for the configuration stage.
Args:
components: Dictionary of UI components from build_config_stage
file_states: Dictionary with query_file_state and source_file_state
pipeline_states: Dictionary with results_state and query_doc_state
walkthrough: The Walkthrough component for navigation
results_components: Components from results stage for updating
"""
from results_stage import update_results_display
# Back button: Step 2 β†’ Step 1
components["back_btn"].click(
fn=lambda: gr.Walkthrough(selected=0),
outputs=walkthrough,
)
# Process button: Step 2 β†’ Step 3
components["process_btn"].click(
fn=_show_processing_status,
outputs=components["processing_status"],
).then(
fn=_process_documents,
inputs=[
file_states["query_file_state"],
file_states["source_file_state"],
components["classification_model"],
components["embedding_model"],
components["top_k"],
components["threshold"],
],
outputs=[
components["processing_status"],
walkthrough,
pipeline_states["results_state"],
pipeline_states["query_doc_state"],
],
).then(
fn=update_results_display,
inputs=[
pipeline_states["results_state"],
pipeline_states["query_doc_state"],
components["threshold"],
],
outputs=[
results_components["query_segments"],
results_components["query_segments_state"],
results_components["matches_dict_state"],
],
)