Spaces:
Sleeping
Sleeping
Create config_stage.py
Browse files- config_stage.py +254 -0
config_stage.py
ADDED
|
@@ -0,0 +1,254 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Configuration stage for the Loci Similes GUI."""
|
| 2 |
+
|
| 3 |
+
from __future__ import annotations
|
| 4 |
+
|
| 5 |
+
import sys
|
| 6 |
+
|
| 7 |
+
try:
|
| 8 |
+
import gradio as gr
|
| 9 |
+
except ImportError as exc:
|
| 10 |
+
missing = getattr(exc, "name", None)
|
| 11 |
+
base_msg = (
|
| 12 |
+
"Optional GUI dependencies are missing. Install them via "
|
| 13 |
+
"'pip install locisimiles[gui]' (Python 3.13+ also requires the "
|
| 14 |
+
"audioop-lts backport) to use the Gradio interface."
|
| 15 |
+
)
|
| 16 |
+
if missing and missing != "gradio":
|
| 17 |
+
raise ImportError(f"{base_msg} (missing package: {missing})") from exc
|
| 18 |
+
raise ImportError(base_msg) from exc
|
| 19 |
+
|
| 20 |
+
from .utils import validate_csv
|
| 21 |
+
from locisimiles.pipeline import ClassificationPipelineWithCandidategeneration
|
| 22 |
+
from locisimiles.document import Document
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def _show_processing_status() -> dict:
|
| 26 |
+
"""Show the processing spinner."""
|
| 27 |
+
spinner_html = """
|
| 28 |
+
<div style="display: flex; align-items: center; justify-content: center; padding: 20px; background-color: #e3f2fd; border-radius: 8px; margin: 20px 0;">
|
| 29 |
+
<div style="display: flex; flex-direction: column; align-items: center; gap: 15px;">
|
| 30 |
+
<div style="border: 4px solid #f3f3f3; border-top: 4px solid #2196F3; border-radius: 50%; width: 40px; height: 40px; animation: spin 1s linear infinite;"></div>
|
| 31 |
+
<div style="font-size: 16px; color: #1976D2; font-weight: 500;">Processing documents... This may take several minutes on first run.</div>
|
| 32 |
+
<div style="font-size: 13px; color: #666;">Downloading models, generating embeddings, and classifying candidates...</div>
|
| 33 |
+
</div>
|
| 34 |
+
</div>
|
| 35 |
+
<style>
|
| 36 |
+
@keyframes spin {
|
| 37 |
+
0% { transform: rotate(0deg); }
|
| 38 |
+
100% { transform: rotate(360deg); }
|
| 39 |
+
}
|
| 40 |
+
</style>
|
| 41 |
+
"""
|
| 42 |
+
return gr.update(value=spinner_html, visible=True)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def _process_documents(
|
| 46 |
+
query_file: str | None,
|
| 47 |
+
source_file: str | None,
|
| 48 |
+
classification_model: str,
|
| 49 |
+
embedding_model: str,
|
| 50 |
+
top_k: int,
|
| 51 |
+
threshold: float,
|
| 52 |
+
) -> tuple:
|
| 53 |
+
"""Process the documents using the Loci Similes pipeline and navigate to results step.
|
| 54 |
+
|
| 55 |
+
Args:
|
| 56 |
+
query_file: Path to query CSV file
|
| 57 |
+
source_file: Path to source CSV file
|
| 58 |
+
classification_model: Name of the classification model
|
| 59 |
+
embedding_model: Name of the embedding model
|
| 60 |
+
top_k: Number of top candidates to retrieve
|
| 61 |
+
threshold: Similarity threshold (not used in pipeline, for future filtering)
|
| 62 |
+
|
| 63 |
+
Returns:
|
| 64 |
+
Tuple of (processing_status_update, walkthrough_update, results_state, query_doc_state)
|
| 65 |
+
"""
|
| 66 |
+
if not query_file or not source_file:
|
| 67 |
+
gr.Warning("Both query and source documents must be uploaded before processing.")
|
| 68 |
+
return gr.update(visible=False), gr.Walkthrough(selected=1), None, None
|
| 69 |
+
|
| 70 |
+
# Validate both files
|
| 71 |
+
query_valid, query_msg = validate_csv(query_file)
|
| 72 |
+
source_valid, source_msg = validate_csv(source_file)
|
| 73 |
+
|
| 74 |
+
if not query_valid or not source_valid:
|
| 75 |
+
gr.Warning("Please ensure both documents are valid before processing.")
|
| 76 |
+
return gr.update(visible=False), gr.Walkthrough(selected=1), None, None
|
| 77 |
+
|
| 78 |
+
try:
|
| 79 |
+
# Detect device (prefer GPU if available)
|
| 80 |
+
import torch
|
| 81 |
+
if torch.cuda.is_available():
|
| 82 |
+
device = "cuda"
|
| 83 |
+
elif torch.backends.mps.is_available():
|
| 84 |
+
device = "mps"
|
| 85 |
+
else:
|
| 86 |
+
device = "cpu"
|
| 87 |
+
|
| 88 |
+
# Initialize pipeline
|
| 89 |
+
# Note: First run will download models (~500MB each), subsequent runs use cached models
|
| 90 |
+
pipeline = ClassificationPipelineWithCandidategeneration(
|
| 91 |
+
classification_name=classification_model,
|
| 92 |
+
embedding_model_name=embedding_model,
|
| 93 |
+
device=device,
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
# Load documents
|
| 97 |
+
query_doc = Document(query_file)
|
| 98 |
+
source_doc = Document(source_file)
|
| 99 |
+
|
| 100 |
+
# Run pipeline
|
| 101 |
+
results = pipeline.run(
|
| 102 |
+
query=query_doc,
|
| 103 |
+
source=source_doc,
|
| 104 |
+
top_k=top_k,
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
# Store results
|
| 108 |
+
num_queries = len(results)
|
| 109 |
+
total_matches = sum(len(matches) for matches in results.values())
|
| 110 |
+
|
| 111 |
+
print(f"Processing complete! Found matches for {num_queries} query segments ({total_matches} total matches).")
|
| 112 |
+
|
| 113 |
+
# Return results and navigate to results step (Step 3, id=2)
|
| 114 |
+
return (
|
| 115 |
+
gr.update(visible=False), # Hide processing status
|
| 116 |
+
gr.Walkthrough(selected=2), # Navigate to Results step
|
| 117 |
+
results, # Store results in state
|
| 118 |
+
query_doc, # Store query doc in state
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
except Exception as e:
|
| 122 |
+
print(f"Processing error: {e}", file=sys.stderr)
|
| 123 |
+
import traceback
|
| 124 |
+
traceback.print_exc()
|
| 125 |
+
gr.Error(f"Processing failed: {str(e)}")
|
| 126 |
+
return (
|
| 127 |
+
gr.update(visible=False), # Hide processing status
|
| 128 |
+
gr.Walkthrough(selected=1), # Stay on Configuration step
|
| 129 |
+
None, # No results
|
| 130 |
+
None, # No query doc
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
def build_config_stage() -> tuple[gr.Step, dict]:
|
| 135 |
+
"""Build the configuration stage UI.
|
| 136 |
+
|
| 137 |
+
Returns:
|
| 138 |
+
Tuple of (Step component, dict of components for external access)
|
| 139 |
+
"""
|
| 140 |
+
components = {}
|
| 141 |
+
|
| 142 |
+
with gr.Step("Pipeline Configuration", id=1) as step:
|
| 143 |
+
gr.Markdown("### ⚙️ Step 2: Pipeline Configuration")
|
| 144 |
+
gr.Markdown(
|
| 145 |
+
"Configure the two-stage pipeline. Stage 1 (Embedding): Quickly ranks all source segments by similarity to each query segment. "
|
| 146 |
+
"Stage 2 (Classification): Examines the top-K candidates more carefully to identify true intertextual references. "
|
| 147 |
+
"Higher K values catch more potential citations but increase computation time. The threshold filters results by classification confidence."
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
with gr.Row():
|
| 151 |
+
# Left column: Model Selection
|
| 152 |
+
with gr.Column():
|
| 153 |
+
gr.Markdown("**🤖 Model Selection**")
|
| 154 |
+
components["classification_model"] = gr.Dropdown(
|
| 155 |
+
label="Classification Model",
|
| 156 |
+
choices=["julian-schelb/PhilBerta-class-latin-intertext-v1"],
|
| 157 |
+
value="julian-schelb/PhilBerta-class-latin-intertext-v1",
|
| 158 |
+
interactive=True,
|
| 159 |
+
info="Model used to classify candidate pairs as intertextual or not",
|
| 160 |
+
)
|
| 161 |
+
components["embedding_model"] = gr.Dropdown(
|
| 162 |
+
label="Embedding Model",
|
| 163 |
+
choices=["julian-schelb/SPhilBerta-emb-lat-intertext-v1"],
|
| 164 |
+
value="julian-schelb/SPhilBerta-emb-lat-intertext-v1",
|
| 165 |
+
interactive=True,
|
| 166 |
+
info="Model used to generate embeddings for candidate retrieval",
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
# Right column: Retrieval Parameters
|
| 170 |
+
with gr.Column():
|
| 171 |
+
gr.Markdown("**🛠️ Retrieval Parameters**")
|
| 172 |
+
components["top_k"] = gr.Slider(
|
| 173 |
+
minimum=1,
|
| 174 |
+
maximum=50,
|
| 175 |
+
value=10,
|
| 176 |
+
step=1,
|
| 177 |
+
label="Top K Candidates",
|
| 178 |
+
info="How many candidates to examine per query. Higher values find more references but take longer to process.",
|
| 179 |
+
)
|
| 180 |
+
components["threshold"] = gr.Slider(
|
| 181 |
+
minimum=0.0,
|
| 182 |
+
maximum=1.0,
|
| 183 |
+
value=0.5,
|
| 184 |
+
step=0.05,
|
| 185 |
+
label="Classification Threshold",
|
| 186 |
+
info="Minimum confidence to count as a 'find'. Lower = more results but more false positives; Higher = fewer but more certain results.",
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
components["processing_status"] = gr.HTML(visible=False)
|
| 190 |
+
|
| 191 |
+
with gr.Row():
|
| 192 |
+
components["back_btn"] = gr.Button("← Back to Upload", size="lg")
|
| 193 |
+
components["process_btn"] = gr.Button("Process Documents →", variant="primary", size="lg")
|
| 194 |
+
|
| 195 |
+
return step, components
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
def setup_config_handlers(
|
| 199 |
+
components: dict,
|
| 200 |
+
file_states: dict,
|
| 201 |
+
pipeline_states: dict,
|
| 202 |
+
walkthrough: gr.Walkthrough,
|
| 203 |
+
results_components: dict,
|
| 204 |
+
) -> None:
|
| 205 |
+
"""Set up event handlers for the configuration stage.
|
| 206 |
+
|
| 207 |
+
Args:
|
| 208 |
+
components: Dictionary of UI components from build_config_stage
|
| 209 |
+
file_states: Dictionary with query_file_state and source_file_state
|
| 210 |
+
pipeline_states: Dictionary with results_state and query_doc_state
|
| 211 |
+
walkthrough: The Walkthrough component for navigation
|
| 212 |
+
results_components: Components from results stage for updating
|
| 213 |
+
"""
|
| 214 |
+
from .results_stage import update_results_display
|
| 215 |
+
|
| 216 |
+
# Back button: Step 2 → Step 1
|
| 217 |
+
components["back_btn"].click(
|
| 218 |
+
fn=lambda: gr.Walkthrough(selected=0),
|
| 219 |
+
outputs=walkthrough,
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
# Process button: Step 2 → Step 3
|
| 223 |
+
components["process_btn"].click(
|
| 224 |
+
fn=_show_processing_status,
|
| 225 |
+
outputs=components["processing_status"],
|
| 226 |
+
).then(
|
| 227 |
+
fn=_process_documents,
|
| 228 |
+
inputs=[
|
| 229 |
+
file_states["query_file_state"],
|
| 230 |
+
file_states["source_file_state"],
|
| 231 |
+
components["classification_model"],
|
| 232 |
+
components["embedding_model"],
|
| 233 |
+
components["top_k"],
|
| 234 |
+
components["threshold"],
|
| 235 |
+
],
|
| 236 |
+
outputs=[
|
| 237 |
+
components["processing_status"],
|
| 238 |
+
walkthrough,
|
| 239 |
+
pipeline_states["results_state"],
|
| 240 |
+
pipeline_states["query_doc_state"],
|
| 241 |
+
],
|
| 242 |
+
).then(
|
| 243 |
+
fn=update_results_display,
|
| 244 |
+
inputs=[
|
| 245 |
+
pipeline_states["results_state"],
|
| 246 |
+
pipeline_states["query_doc_state"],
|
| 247 |
+
components["threshold"],
|
| 248 |
+
],
|
| 249 |
+
outputs=[
|
| 250 |
+
results_components["query_segments"],
|
| 251 |
+
results_components["query_segments_state"],
|
| 252 |
+
results_components["matches_dict_state"],
|
| 253 |
+
],
|
| 254 |
+
)
|